
A Fast Start-Up Technique for
Flash Memory Based Computing Systems

Keun Soo Yim, Jihong Kim, and Kern Koh
School of Computer Science and Engineering

Seoul National University, Seoul 151-742, Korea
{ksyim, kernkoh}@oslab.snu.ac.kr, jihong@davinci.snu.ac.kr

ABSTRACT
Flash memory based embedded computing systems are becoming
increasingly prevalent. These systems typically have to provide
an instant start-up time. However, we observe that mounting a file
system for flash memory takes 1 to 25 seconds mainly depending
on the flash capacity. Since the flash chip capacity is doubled in
every year, this mounting time will soon become the most
dominant reason of the delay of system start-up time. Therefore,
in this paper, we present instant mounting techniques for flash file
systems by storing the in-memory file system metadata to flash
memory when unmounting the file system and reloading the
stored metadata quickly when mounting the file system. These
metadata snapshot techniques are specifically developed for
NOR- and NAND-type flash memories, while at the same time,
overcoming their physical constraints. The proposed techniques
check the validity of the stored snapshot and use the proposed fast
crash recovery techniques when the snapshot is invalid. Based on
the experimental results, the proposed techniques can reduce the
flash mounting time by about two orders of magnitude over the
existing de facto standard flash file system. *

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.4.3. [Operating Systems]: File
systems management; B.3.2 [Memory Structures]: Mass storage.

General Terms
Design, Management, Measurement, Performance.

Keywords
Fast booting, flash memory, fast mounting, and metadata snapshot.

1. INTRODUCTION
Embedded computing systems should be able to provide an instant
start-up time [3]. In these systems, flash memory is typically used
as a storage medium because of its small size, shock resistance,
and low-power consumption. However, when file systems are

* This research was supported by the Ubiquitous Autonomic Computing

and Network Project, 21st Century Frontier R&D Program in Korea and
was also supported by University IT Research Center Project in Korea.

mounted for flash memory, it takes a large fraction of the total
device start-up time. For example, Figure 1 shows the start-up
time of a Compaq iPAQ handheld device running Linux operating
system. It shows that the flash mounting time takes over 4
seconds out of the total device start-up time of approximately 14
seconds when 16MB flash memory is used. We also found that
the flash mounting time heavily depends on the flash capacity and
stored data size. Since flash chip capacity is doubling every year
[7], the flash mounting time will soon become the most dominant
reason of the delay of system start-up time. In desktop computers,
we also face the long flash mounting time when an USB flash
device is plugged in. Thus, a fast mounting technique for flash file
systems needs to be developed for embedded and desktop systems.

Basically this long mounting time is attributed to two physical
constraints of write operation in flash memory [2]. First, since
flash memory is a version of EEPROM, write operations should
be preceded by an erase operation. Second, an erase operation,
which can be performed in a larger granularity (i.e., block) than a
write operation (i.e., page), takes relatively long time from a
millisecond to a second. In order to hide the erase operation from
upper-layer application programs, the existing flash file systems,
e.g., JFFS2 [9] and YAFFS2 [1], use an out-place update method,
which redirects an update request to a page which has been erased
in advance. Since the location of updated page is not recorded in
the original page, the file systems scan the entire flash space at
mounting time in order to collect the location of lastly updated
pages. The collected data are then reorganized in the main
memory. This delays the flash mounting time significantly.

In this paper, we present instant mounting techniques for flash file
systems. The proposed techniques store the in-memory file
system metadata to flash memory when unmounting the file
system and reload the stored metadata quickly when mounting the
file system. The metadata snapshot techniques are specifically
developed for NOR- and NAND-type flash memories by
overcoming their physical constraints.

First, in flash memory, the number of erase operation that can be
performed in a block is limited (e.g., from 100 thousands to 1

0 5 10 15 20 25 30 35 40

256M

64M

16M

Time (s)

Firmware Kernel Device Driver Network

Root FS User FS RC Script

Fig. 1. A breakdown of boot-up time in a PDA running Linux.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

843

2005 ACM Symposium on Applied Computing

million times). Thus, all blocks should be erased evenly in order
to reach the erase limit simultaneously, namely the wear-leveling
property. In order to ensure this, the proposed snapshot techniques
select less frequently erased blocks and store a variable-size
snapshot into them by using a linked list (Section 3.1 and 3.2). The
proposed snapshot technique for NOR flash finds the last stored
snapshot instantaneously as it reserves the first block as an
ordered tree that manages pointers to the snapshot head blocks
(Section 3.1). Second, this technique is further extended for
NAND flash, which supports only page-based I/O [11] (Section
3.2). The proposed snapshot technique for NAND flash also
ensures the wear-leveling property and finds the last stored
snapshot in an instant.

Third, these snapshot techniques check the validity of the stored
snapshot at mounting time. If the snapshot is invalid, three novel
fast crash recovery techniques are used to rebuild the in-memory
metadata quickly (Section 3.3). Fourth, a data compression
technique is used to reduce the snapshot size and consequently the
time used to store the snapshot to flash memory when unmounting
the file system (Section 3.4).

The experimental results show that the proposed techniques
ensure the wear-leveling property and also reduce the flash
mounting time by about two orders of magnitude over the existing
de facto standard flash file system [9]. For example, when the
flash capacity is 128MB and the stored data size is 100MB, the
mounting time is reduced from over 10 seconds to below 100
milliseconds. The results also show that the proposed fast
recovery techniques significantly reduce the I/O time required for
mounting the crashed file system. Although the proposed
snapshot technique for NOR flash takes up a longer unmounting
time than the existing file system, the data compression technique
reduces the unmounting time of the proposed snapshot techniques
by over 50%.

The rest of this paper is organized as follows. In Section 2, we
describe the overall organization of the existing flash file systems
and review the existing snapshot techniques as compared with the
proposed techniques. The proposed techniques for NOR- and
NAND-type flash memories are described in Section 3, while the
evaluation results are given in Section 4. In Section 5, we
conclude this paper with a summary.

2. RELATED WORK
In embedded computing devices, flash memory has significant
merits such as light-weight, shock-resistance, and low-power
consumption. There are two types of flash memories: NOR and
NAND. NOR flash is usually used as a code storage medium
because it supports word-unit I/O and provides faster read speed
than NAND flash. Conversely, as NAND flash supports only
page-based I/O (e.g., 512B or 2KB) and provides faster write
speed, it is widely used as a large-scale data storage medium.

In flash memory, write operations have to be preceded by an erase
operation, and the number of erase that can be performed in a
block is limited. In order to hide the erase while ensuring the
wear-leveling property, the flash translation layer (FTL) [4, 5, 10]
has been developed to be able to translate the logical addresses
generated by a host system to physical addresses of flash memory.
Since FTL provides an identical abstraction to hard disks, a disk
file system (e.g., FAT and ext2 [8]) is used in the host to control

the FTL-based flash memory. However, the use of FTL is
restricted by international patents, and it is known that the
performance of FTL can be seriously degraded if the host file
system generates write operations frequently.

Therefore, recent embedded computing devices tend to directly
use flash file systems (e.g., JFFS2 [9] and YAFFS2 [1]) which are
based on a data journaling technique. Unfortunately, the
journaling technique incurs long mounting time for the flash file
systems as exemplified in Figure 2 where the root directory
contains a file which is updated by a write operation. In step I, the
root directory has an inode and a directory entry [8] which tell
that it has the file A whose inode number is 2. The file also has an
inode which means that its version is 1 and the attached data
range is 1 to 4 pages. In step II, when a write operation is
performed on the file, the journaling technique makes a new inode
for the file rather than directly updating the data pages attached to
the existing inode. In this new inode, the version is increased by 1
and the range exactly specifies the updated data pages. Then, the
data pages 2 and 3 attached to the old inode become invalid. If the
empty block ratio of flash memory is lower than the specified
threshold value (e.g., 20%), a garbage collector copies the valid
pages in the block 2, which has the smallest number of valid
pages, to an empty block as shown in step III. The garbage
collector finally erases the block 2 as shown in step IV. In this
manner, the existing flash file systems logically hide erase
operations from application programs. Furthermore, these file
systems ensure the wear-leveling property as the performed erase
count is considered when selecting blocks for new inode and data
pages.

In order to directly find an inode which has the latest copy of a
requested page, at mounting time these file systems scan entire
flash memory space and build an in-memory metadata as shown
in Figure 3. For example, in order to access the second page of the

2 3

2 3
2

(2)
2-3

2-1 2-2 2-3 2-4

1
(1)

2
(1)
1-3

1

1
(1)

1
(1)

1
(1)

2
(A)

I

II

III

IV

2
(A)

2
(A)

2
(A)

1-1 1-2 1-3 1-4

* Dir. Entry
 - #: Inode no.
 - F: File name

* Data Page
 - #: Page No.

* Empty Page

2 3 ...

...

* Inode
 - #: Number
 - V: Version
 - A-B: Range

#
(F)

#

#
(V)
A-B

3-1 3-2 3-3 3-4 4-1 ...

2
(1)
1-3

1

2 3
2

(2)
2-3

2 3
2

(1)
1-3

1
2

(3)
1-1

1 ...

2
(2)
2-3

2 3
2

(3)
1-1

1 ...

Fig. 2. Data management in the journaling flash file systems.

Inode
No.

Hash
Function

Version 3
1 - 1
3-4

File A
2
1

Version 2
2 - 3
3-1

Root Dir.
1
0

0

Raw Inode
Data Range

Phyiscal Page No.
Pt. to Next inode

Inode Cache
Inode No.

No. of Links
Pt. to Raw Inodes

0

Fig. 3. An in-memory metadata of the journaling flash file
systems.

844

Data BlockSnapshot Block

...Snapshot

Data BlockFirst Block

Super
Block

Data BlockData BlockPrearranged Block Prearranged Block

...
Snapshot

1
Snap

2
shot Snapshot

3

(a)

(b)

Fig. 4. Existing snapshot techniques in LFS(a) and FTL(b).

file, these systems first finds its inode cache data in the in-
memory metadata by using a hash function with its inode number.
They then traverse the linked raw inodes until they reach the raw
inode whose data range includes the second page. Finally the
physical page number stored in the raw inode is used to access the
requested page in flash memory.

However, scanning flash space and building an in-memory
metadata require long I/O and computation times, respectively.
This in turn delays the mounting time of the existing flash file
systems significantly, especially when both the flash capacity and
stored data size are large.

The existing flash file systems borrowed the journaling idea from
a disk file system of the log-structured file system (LFS) [6]. In
LFS, a metadata snapshot technique is used to reduce the long
mount time as well as the crash recovery time. Specifically, LFS
periodically stores a metadata snapshot to a hard disk and updates
the super block placed in the first sector of the disk for directing
the stored snapshot as shown in Figure 4(a). However, this
technique is not directly applicable to flash memory due to the
following two reasons. First, since the update operation requires
that the super block be erased and the original super block data be
partially restored, the data can be lost if the power goes down
unexpectedly during the restoration, causing a data integrity
problem. Second, the super block reaches the erase limit quickly,
thereby breaking the wear-leveling property.

Kim et al. [5] adopted a metadata snapshot technique for FTL
where the snapshot size is small (e.g. 512B) and fixed. The
technique stores a metadata snapshot to dedicated areas in a
round-robin manner and reloads the latest snapshot at mounting
time from the areas as shown in Figure 4(b). Thus, the technique
avoids the integrity problem and keeps the wear-leveling property.
However, the technique is not applicable to flash file systems
where the snapshot size varies between below 100KB and over
1MB depending on the stored data size because the technique
breaks the wear-leveling property. For example, if the snapshot
size is relatively large as compared with the size of dedicated
areas, the areas reach the erase limit quickly, and conversely, if
the snapshot size is small, the remaining flash memory space
reaches the limit quickly. Furthermore, the technique stores the
snapshot whenever it is changed. However, since the snapshot
size of flash file systems is quite large, this can degrade the I/O
performance significantly in the file systems. The snapshot
techniques for flash file systems which will help overcome these
technical obstacles are discussed in the following section.

3. INSTANT MOUNTING TECHNIQUES
This section describes the proposed snapshot techniques for NOR
and NAND flashes with three fast crash recovery techniques and
a fast unmounting technique.

3.1 Snapshot Technique for NOR Flash
Our design goal is to provide an instant lookup method for the
lastly stored snapshot, while ensuring the wear-leveling property.
In order to achieve these goals, we store snapshots to variable-size
areas managed by linked lists and sequentially record the location
of the stored snapshots to prearranged areas by using an ordered
tree data structure.

In Figure 5, it can be seen that the first block of flash memory is
reserved as a root block which sequentially stores pointers to
snapshot header blocks. And since the block size (Bsize) is
typically 128KB in NOR flash and the size of a pointer to block is
2B (Psize), the maximum number of pointers that can be stored in
the root block is Bsize / Psize (=216). Pointers are sequentially stored
from the first word in the root block. If the root block is full, the
block is erased before writing a new pointer to the block. At
mounting time, we can find the last stored pointer quickly using
sequential or binary search algorithms. The sequential searching
reads the stored pointes from the first one until it reads a null
pointer. Its time complexity is O(Bsize / Psize). The binary searching
divides the root block into two sub-blocks and reads the boundary
pointer of these sub-blocks. If the pointer is null, this searching
selects the left sub-block. Otherwise, the other one is selected.
With the selected sub-block, the above procedure is repeated until
the last stored pointer is found. This search algorithm has a better
time complexity of O(lg(Bsize / Psize)).

Each pointer in the root block directs the corresponding header
block as shown in Figure 5. The header blocks and their related
data (marked by dotted boxes), with the exception of the last one,
could be erased in advance, while the last one is always
maintained in a valid state. A header block contains several
snapshot headers, and a snapshot header consists of a mounting
flag (M), an unmounting flag (U), and a pointer to the snapshot
data block (Pt). Since the snapshot header size (Hsize) is typically
4B, the maximum number of snapshot headers that can be stored
in a header block is Bsize / Hsize (=215). The snapshot headers are
sequentially stored onto the header block, and one of the two
searching algorithms is used to find the last stored snapshot
header in the same way as done by the root block. The pointer
stored in the latest snapshot header is used to access the snapshot
data that were last stored.

Root Block

Header BlockHeader Block

...

Header Block
0
0
0

0 0 0 0 0

M
U
Pt

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0
0

Snapshot Block

Snapshot
0 0

Snapshot Block

Snapshot
1

Snapshot
1 (cont.) 0S

Z

Snapshot Block

Snapshot 8

Snapshot
8 (cont.)

Snapshot Block

Latest
Snapshot

Latest
Snapshot

(cont.)

Snapshot
8 (cont.) 0S

Z

Latest
Snapshot

(cont.)
0S

Z

S
Z

Fig. 5. Snapshot management in the proposed snapshot
technique for NOR flash.

845

As the snapshot data size varies, the snapshot data is stored in
several snapshot blocks which are managed by a linked list. These
blocks are selected by considering the performed erase count in
order to ensure the wear-leveling property. All snapshot blocks
has a pointer to the next block, and this pointer value is zero if the
block is the last one. The last snapshot block also has a size field
(SZ) which specifies the size of the snapshot data stored in the last
snapshot block as shown in Figure 5.

In summary, this technique only reads lg(Bsize / Psize) x Psize +
lg(Bsize / Hsize) x Hsize (=92) bytes in an average case to fine the
location of the last stored snapshot, providing an instant lookup
time. Furthermore, this ensures the wear-leveling property due to
the following two reasons. First, the root block is extremely and
rarely erased in every Bsize / Psize x Bsize / Hsize (=231) snapshot
writing operations. Second, the header and snapshot blocks are
selected by considering the number of performed erase operations.

After mounting the file system, when the in-memory metadata is
firstly changed due to a write, we set the M flag of the next one of
the latest snapshot header to be 1. At unmounting time, if the M
flag is set, we store the metadata to flash memory, record the
location of the stored snapshot in the snapshot header, and finally
set the U flag to be 1. By doing this, we can check the validity of
the latest snapshot by testing whether the U flag is set or not.

3.2 Snapshot Technique for NAND Flash
The snapshot technique that is developed for NOR flash can not
be applied to NAND flash because NAND flash supports only
page-based I/O. For example, when we store a pointer in the root
block or a snapshot header to a header block, an internal
fragmentation occurs in the page since the size of both a pointer
and a snapshot header is smaller than the page size of NAND
flash and thereby wasting the flash memory space significantly
[11]. Note that without erasing a block which embeds the page, it
is practically impossible to write data to the unused space of the
page. Thus, we must specifically develop another space-efficient
snapshot technique for NAND flash.

The proposed snapshot technique for NAND flash reserves the
first N blocks in flash memory as header blocks. As shown in
Figure 6, each header block is used to store the snapshot header,
which consists of a mounting page and an unmounting page, and
the snapshot data. When the in-memory metadata is changed due
to a write operation, we select a header block in a round-robin
manner and erase both the selected block and the data blocks
linked by the selected block. The mounting page of the selected
block keeps a special symbol (SS), parameter N, and a mounting
count (M), which is increased by 1 at every snapshot writing
operation. The special symbol means that this is a used header
block and is actually stored in a spare area of the mounting page.
A spare area is a small out-of-band area (e.g. 16 or 64 bytes)
which is attached to each page in NAND flash.

When unmounting the file system, we store both the snapshot size
(SZ) and data to the selected block. If the snapshot size is larger
than the size of free pages in the selected block, we store the
snapshot to multiple data blocks by using a linked list. A pointer
(Pt) is used to direct the next block, and the pointer value is zero
if the block is the last one. Finally, an unmounting count (U),
which is equal to the mounting count, is stored onto the
unmounting page of the selected block.

 Unmounting Page
 N: Param. N (New)
 U: Unmnt. Cnt.

 Mounting Page
 SS: Special Sym.
 M: Mnt. Cnt.

Header Block 4Header Block 3Header Block 2Header Block 1

S
Z

Snap
shot

Data Block Data Block

P
t 2 0 8 00 0 0 0

0

 Snapshot
 Size

S
Z

 Snapshot
 Data PointerP

t

SS
M
-

N
U
-

SS
1
-

3
1
-

SS
2
-

4
2
-

SS
3
-

0
0
0

SS
M
-

N
U
-

Fig. 6. Snapshot management in the proposed snapshot
technique for NAND flash when the header block count is 4.

This means that the internal fragmentation occurs only on the two
pages of the mounting and unmounting pages. Since the snapshot
size, snapshot data, and pointer field are stored onto pages at one
time, no internal fragmentation space is incurred for them.

Only one header block is erased at each snapshot writing
operation despite of the snapshot size. Thus, the proposed
technique ensures wear-leveling property for the reserved header
blocks. However, the erase rate of the reserved header blocks can
be different from that of the remaining data blocks. Thus, we
adaptively control the parameter N by using Eq. 1 where Bsize
means the flash block size, Fsize means flash memory capacity,
and Ecount means the total number of performed erase operations
in the data blocks during the mounting time. At unmounting time
after storing the snapshot in flash memory, Eq. 1 is used to
calculate N’, and the calculated N’ is used to control N. If N’ is
larger than N, we increase N by 1. Otherwise, N is decreased by 1.
We set the range of N to be 2 to 10% of total block count. The
modified N is stored onto the unmounting page of the header
block, which means that the first N blocks are reserved as header
blocks. In this way, the proposed technique for NAND flash
adaptively changes the reserved area size in order to ensure the
wear-leveling property.

 ()






+

=′⇒
′−

=
′ 1

1

countsize

size

sizesize

count
EB
F

N
NBF

E
N

 (1)

At mounting time, we read the mounting count of all reserved
header blocks. Since we do not know the N, we sequentially read
header block from the first one and check its special symbol until
we read max{N} = 0.1 x Fsize / Bsize blocks or the special symbol
is not valid. We then select a block which has the highest
mounting count and check whether the mounting count is equal to
the unmounting count. If these counts are the same, as this means
that the block has a valid snapshot, we directly use its snapshot
data as an in-memory metadata. In summary, we only need to
read max{N} x Psize + Psize bytes to find the latest snapshot in
NAND flash.

3.3 Fast Mounting for Crashed File System
In the proposed snapshot techniques, if the latest snapshot is not
valid, this means that the file system crashed due to power failure
or operating system fault. Although recently updated data are not
written to flash memory, the data stored in the flash memory are
consistent because the existing flash file systems write the
updated data to flash memory one by one. Thus, we can build an
in-memory metadata in the same way as the existing flash file
systems perform mounting operation. However, this takes up long
I/O and computation times, and thus, in order to resolve this
problem we develop three fast crash recovery techniques.

846

 Scanned Data Empty Inode

R

(c)
(b)
(a) R R

R R

R R

Fig. 7. Example of the proposed fast crash recovery
techniques.

First, we do not scan data pages in flash memory. Since each
inode embeds the location and size of the attached data pages, we
can skip the scanning for the attached data pages as shown in
Figure 7(a). Irrespective of this, the existing flash file systems can
still read the data pages for checking CRC errors in the pages. The
proposed technique performs this error checking when the data is
actually accessed. Second, we do not scan empty pages in flash
memory by using a sequential writing policy. Since we
sequentially write data to a block from the first page, we can stop
scanning for the rest of the block when we read an empty page.
With this technique, we read only inode pages, data pages, and
the first page of empty areas as shown in Figure 7(b). Third,
combining these two techniques as shown in Figure 7(c), we only
need to read the inode pages and the first page of the empty areas
in flash memory in order to directly build an in-memory metadata.
This significantly reduces the crash recovery time.

3.4 Fast Unmouting by Compressed Snapshot
Since at unmounting time the proposed snapshot techniques store
the metadata snapshot to flash memory which provides slow write
speed, the unmounting time of the proposed techniques can be
delayed especially when the flash write speed is slow and the
snapshot size is large. In order to reduce this unmounting time, we
use a data compression technique [11] in such as way that the
snapshot is compressed before storing it into flash memory. Since
the time required for compressing the snapshot is quite shorter
than the time required for writing the snapshot to flash memory,
this snapshot compression technique can reduce unmounting time
of the proposed snapshot techniques significantly. Furthermore,
this compression technique reduces the flash memory space used
for storing the snapshot. At mounting, the compressed snapshot is
decompressed on the fly.

4. EXPERIMENTAL RESULTS
We evaluate the mounting time of the proposed techniques over
an existing flash file systems of JFFS2 on an Intel machine
(Pentium III 850MHz) running the latest patch version of Linux
kernel 2.4. We modeled both NOR and NAND flash devices
whose I/O characteristics are shown in Table 1. Based on this
model, we developed virtual flash device drivers which hold CPU
during the time required to perform a requested I/O operation in a
real non-DMA flash device. The virtual drivers provide a
common flash driver interface for the flash file systems and
record the numbers of performed I/O, which are further used to
analyze the I/O characteristics of the file systems. We also
measured the time spent to process the flash file systems on CPU.

First, we measured the mounting time of the existing file system.
As shown in Figure 8, the mounting time is directly proportional
to the flash memory capacity. This is because the existing file

Table I. I/O Characteristics of Flash Memory.

Type Model Read Write Erase
Unit 2B 512B 2B 512B 128KB

NOR
Speed 75ns 19.2µs 14µs 3.58ms 1.2s
Unit 512B 512B 16KB

NAND
Speed 35.9µs 226µs 2ms

system scans 103% and 125% of the entire flash memory space
for NOR and NAND flash memories, respectively, during the
mounting. The file system scans over 100% because it reuses
some pages which have been evicted from the memory cache.
Also in NAND flash the ratio of scanned space is higher than that
in NOR flash because NAND flash only supports page-based I/O,
reading useless data.

The mounting time of NAND flash is longer than that of NOR
flash because the read operation in NAND flash is 2 to 3 times
slower than that in NOR flash. Even though the I/O speed of flash
memory is continuously improved due to the enhancement of
semiconductor technology, we believe that the I/O time required
to scan the entire flash chip space will continuously take about 5
to 20 seconds because the flash chip capacity is continuously
increasing by 100% every year. We also observed that the time
consumed for computation, which involves classifying block type,
building an inode tree, and counting nlinks value for all inodes, is
less than 1 second when the stored data size is less than 1MB [8].

Then, we measured the mounting time depending on the stored
data size. We set the flash capacity to be 128MB and used the
Linux kernel source tree as a stored data. As shown in Figure 9, a
larger stored data size incurs longer computation time, while it
seldom effects the I/O time. We also found that the computation
time is not dependent on the flash capacity. For example, if the
flash capacity is 256MB, the computation time is almost equal to
that shown in Figure 9. However, the computation time depends
heavily on the computing power of CPU. As we used Pentium III
in this experiment and embedded systems are typically equipped
by a low-power embedded CPU, the computation time required
for mounting the file system on embedded systems will be much
longer than that presented in this experiment. In addition, we
believe that the computation time can be partly interleaved with
the I/O time if DMA I/O operations are used.

Thus, in the existing flash file system, during mounting procedure,
the I/O time heavily depends on the flash memory capacity, while
the computation time is greatly influenced by the stored data size.
The proposed fast mounting techniques reduce the I/O time by

0

5

10

15

20

25

16 32 64 128 256 16 32 64 128 256

NOR Flash NAND Flash

Flash Memory Type and Capacity (MB)

M
o
u
n
ti
n
g
 T

im
e
 (

s
) I/O Time CPU Time

Fig. 8. Mounting time of an existing flash file system as a
function of the flash memory type and capacity.

847

0

5

10

15

20

25

1 20 40 60 80 100 1 20 40 60 80 100

NOR Flash NAND Flash

Flash Memory Type and Data Size (MB)

M
o
u
n
ti
n
g
 T

im
e
 (

s
) I/O Time CPU Time

Fig. 9. Mounting time of an existing flash file system as a
function of the stored data size.

simply reading the stored snapshot and the computation time by
directly using the stored snapshot as an in-memory metadata. On
the other hand, the existing fast mounting technique reduces the
I/O time only [4].

We then measured the in-memory metadata snapshot size of the
existing flash file systems in order to analyze the mounting time
precisely. Figure 10 shows the size of snapshot of a 128MB NOR
flash depending on the use of the snapshot compression technique.
The snapshot consists of inode caches, raw inodes, and erase
blocks. It shows that a larger stored data size incurs bigger
physical inode and inode cache sizes. For example, when the
stored data size is 100MB, the snapshot size is about 700KB. We
also observed that the size of erase block metadata is directly
proportional to the flash memory capacity. Similar features and
size are observed in NAND flash. Fortunately, in this latter case,
the snapshot size is reduced by less than half of its original when
we use the zlib compression algorithm, used in JFFS2 and UNIX.

Second, we analyzed the mounting time of the proposed snapshot
techniques with a 128MB NOR flash when a valid snapshot exists.
Figure 11 shows that both I/O and computation time is reduced by
over two orders of magnitude as compared with the existing
system because the proposed techniques do not scan the entire
flash space nor construct any in-memory metadata. Rather it
directly uses the stored snapshot. The result also shows that a
larger stored data size results in longer I/O time due to the
snapshot size. In fact, the I/O time can be further reduced if the
compression technique is used. The drawback is that, it takes a
longer computation time for decompressing the snapshot. We also
applied the proposed technique to a NAND flash and observed
slightly longer I/O time but similar performance features.

0
100
200
300
400
500
600
700
800

1 20 40 60 80 100 1 20 40 60 80 100

Uncompressed Compressed
Snapshot Type and Stored Data Size (MB)

S
iz

e
 (

K
B

)

Raw Inodes

Inode Cache

Erase Block

Fig. 10. Snapshot size as a function of the stored data size and
the use of compression technique.

0

0.05

0.1

0.15

0.2

0.25

1 20 40 60 80 100 1 20 40 60 80 100

Uncompressed Compressed
Snapshot Type and Stored Data Size (MB)

M
o
u
n
ti
n
g
 T

im
e
 (

s
) I/O Time CPU Time

Fig. 11. Mounting time of the proposed snapshot technique in
NOR flash.

Conversely, the proposed technique has a longer unmounting time
than the existing system. As shown in Figure 12, the unmouting
time of the proposed one is directly proportional to the stored data
size because the snapshot writing operation takes a dominant part
of the total unmounting time. When the snapshot is compressed,
the I/O time is reduced by less than half, while the computation
time is slightly increased. For example, when a 128MB NOR
flash is used with 100MB of stored data, the unmounting time
takes about 2.5 seconds, while that of the existing system is less
than 0.5 second. Fortunately, since NOR flash is used as a code
storage, its snapshot is seldom changed. Thus, it does not need to
store the snapshot for a majority of the unmounting time. Even if
it does need to store the snapshot, we believe that the unmouting
time can be interleaved with the shutdown procedure of operating
systems. Furthermore, we measured the unmounting time on a
NAND flash and observed over 10 times shorter unmounting time
and similar performance features because the write speed of
NAND flash was over 15 times faster than that of NOR flash.
Thus, in NAND flash, the unmounting time of the proposed
technique is usually less than 1 second.

Third, we analyzed the wear-leveling property of the proposed
snapshot techniques over the existing snapshot techniques used in
LFS and FTL. In LFS, the super block reaches to the erase limit
quite quickly regardless of the write traffic as shown in Figure
13(a). Figure 13(b) shows that in FTL the erase count of reserved
area (marked by white background color) is different from that of
the remaining data area because the size of reserved area is fixed.
For example, with the light write traffic, the reserved area reaches
the limit quickly. Moreover, we observed that in FTL if the stored
data size is large, the reserved area reaches the limit quickly as
the snapshot size is heavily dependent on the stored data size.

0

1

2

3

4

5

6

1 20 40 60 80 100 1 20 40 60 80 100

Uncompressed Compressed
Snapshot Type and Stored Data Size (MB)

U
n
m

o
u
n
ti
n
g
 T

im
e
 (

s
)

I/O Time CPU Time

Fig. 12. Unmounting time of the proposed snapshot technique
in NOR flash.

848

On the other hand, the proposed technique for NOR flash ensures
the wear-leveling property even though the erase count of the first
block is smaller than that of remaining blocks. Also the proposed
technique for NAND flash ensures this property by adaptively
controlling the size of reserved area depending on the amount of
write traffic. When the write traffic is heavy, the reserved area
size is set to be smaller, and conversely when the traffic is light,
the area size is set to be larger in order to balance the wear-levels
of the reserved and the remaining areas.

Finally, we evaluated the effectiveness of the proposed fast crash
recovery techniques. Figure 14 shows the ratio of scanned flash
area of the recovery techniques as a function of the stored data
size on a 128MB NOR flash. With the data skipping technique as
shown in Figure 7(a), we can skip scanning the data area, whose
size is only about 30% of the originally stored data size because
they are stored in a compressed form. By using the sequential
writing policy as shown in Figure 7(b), we can skip scanning the
empty areas that takes up a large portion of the flash space when
the stored data size is small. Finally, the hybrid technique as
shown in Figure 7(c) only read metadata and the first page of
empty areas which usually form less than 5% of the entire flash
space. The metadata consists of inodes, directory entries, and
node headers. This means that when the file system crashes, the
I/O time used for mounting can be reduced by more than 95%.
However, these recovery techniques do not reduce the
computation time, while the proposed snapshot techniques do. We
also observed slightly higher scanned area ratio in NAND flash
because it only provides page-based I/O.

0

20

40

60

80

100

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

1 20 40 60 80 100 120 140 160 180 200
Stored Data Size (MB) and Recovery Tech.

S
c
a
n
n
e
d
 A

re
a
 (

%
)

Metadata Data Empty

Fig. 14. Scanned area ratio of the crash recovery techniques.

5. CONCULSION
In this paper, we have presented instant mounting techniques for
both NOR and NAND flash file systems. The proposed snapshot
techniques store a metadata snapshot at unmounting time and
reload the snapshot quickly at mounting time by overcoming the
physical constraints. These techniques are intended to check the
validity of the snapshot. If it is invalid, we use three fast crash
recovery techniques. The experimental results have shown that
the proposed techniques reduce the mounting time by over two
orders of magnitude because they reduce both the I/O time (they
only read a stored snapshot) and the computation time (they
directly use the snapshot as an in-memory metadata). Therefore,
we expect that the proposed techniques will be effective in
reducing the mounting time of flash file systems and consequently
the boot-up time of flash memory based computing devices.

REFERENCES
[1] Aleph One Company, “The Yet Another Flash Filing System

(YAFFS),” http://www.aleph1.co.uk/yaffs/.
[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction

to Flash Memory,” In Proc. of the IEEE, Vol. 91, No. 4, pp. 489-502,
April 2003.

[3] T. R. Bird, “Methods to Improve Bootup Time in Linux,” In Proc. of
the Ottawa Linux Symposium (OLS), Sony Electronics, 2004.

[4] L.-P. Chang and T.-W. Kuo, “An Efficient Management Scheme for
Large-Scale Flash-Memory Storage Systems,” In Proc. of the ACM
Sym. on Applied Computing (SAC), pp. 862-868, 2004.

[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for CompactFlash Systems,” IEEE
Trans. on Consumer Electronics, Vol. 48, No. 2, pp.366-375, 2002.

[6] M. Rosenblum and J.K. Ousterhout, “The Design and
Implementation of a Log-Structured File System,” ACM Trans. on
Computer Systems, Vol. 10, No. 1, pp. 26-52, 1992.

[7] Samsung Electronics, “Advantages of SLC NAND Flash Memory,”
http://www.samsungelectronics.com/.

[8] U. Vahalia, UNIX Internals, The New Frontiers, Ch. 8-9, Prentice
Hall Inc., 1996.

[9] D. Woodhouse, “JFFS: The Journaling Flash File System,” In Proc.
of the Ottawa Linux Symposium (OLS), RedHat Inc., 2001.

[10] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory
Stroage System,” In Proc. of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 86-97, 1994.

[11] K. S. Yim, H. Bahn, and K. Koh, “A Flash Compression Layer for
SmartMedia Card Systems,” IEEE Trans. on Consumer Electronics,
Vol. 50, No. 1, pp. 192-197, 2004.

(a)
LFS

(b)
FTL

.

(c)
Proposed
Technique

for
NOR
Flash

(d)
Proposed
Technique

for
NAND
Flash

Fig. 13. Analysis of the wear-leveling property under heavy and light write traffics.

849

