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ABSTRACT 
Flash memory based embedded computing systems are becoming 
increasingly prevalent. These systems typically have to provide 
an instant start-up time. However, we observe that mounting a file 
system for flash memory takes 1 to 25 seconds mainly depending 
on the flash capacity. Since the flash chip capacity is doubled in 
every year, this mounting time will soon become the most 
dominant reason of the delay of system start-up time. Therefore, 
in this paper, we present instant mounting techniques for flash file 
systems by storing the in-memory file system metadata to flash 
memory when unmounting the file system and reloading the 
stored metadata quickly when mounting the file system. These 
metadata snapshot techniques are specifically developed for 
NOR- and NAND-type flash memories, while at the same time, 
overcoming their physical constraints. The proposed techniques 
check the validity of the stored snapshot and use the proposed fast 
crash recovery techniques when the snapshot is invalid. Based on 
the experimental results, the proposed techniques can reduce the 
flash mounting time by about two orders of magnitude over the 
existing de facto standard flash file system. * 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.4.3. [Operating Systems]: File 
systems management; B.3.2 [Memory Structures]: Mass storage. 

General Terms 
Design, Management, Measurement, Performance. 

Keywords 
Fast booting, flash memory, fast mounting, and metadata snapshot. 

1. INTRODUCTION 
Embedded computing systems should be able to provide an instant 
start-up time [3]. In these systems, flash memory is typically used 
as a storage medium because of its small size, shock resistance, 
and low-power consumption. However, when file systems are 
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mounted for flash memory, it takes a large fraction of the total 
device start-up time. For example, Figure 1 shows the start-up 
time of a Compaq iPAQ handheld device running Linux operating 
system. It shows that the flash mounting time takes over 4 
seconds out of the total device start-up time of approximately 14 
seconds when 16MB flash memory is used. We also found that 
the flash mounting time heavily depends on the flash capacity and 
stored data size. Since flash chip capacity is doubling every year 
[7], the flash mounting time will soon become the most dominant 
reason of the delay of system start-up time. In desktop computers, 
we also face the long flash mounting time when an USB flash 
device is plugged in. Thus, a fast mounting technique for flash file 
systems needs to be developed for embedded and desktop systems. 

Basically this long mounting time is attributed to two physical 
constraints of write operation in flash memory [2]. First, since 
flash memory is a version of EEPROM, write operations should 
be preceded by an erase operation. Second, an erase operation, 
which can be performed in a larger granularity (i.e., block) than a 
write operation (i.e., page), takes relatively long time from a 
millisecond to a second. In order to hide the erase operation from 
upper-layer application programs, the existing flash file systems, 
e.g., JFFS2 [9] and YAFFS2 [1], use an out-place update method, 
which redirects an update request to a page which has been erased 
in advance. Since the location of updated page is not recorded in 
the original page, the file systems scan the entire flash space at 
mounting time in order to collect the location of lastly updated 
pages. The collected data are then reorganized in the main 
memory. This delays the flash mounting time significantly. 

In this paper, we present instant mounting techniques for flash file 
systems. The proposed techniques store the in-memory file 
system metadata to flash memory when unmounting the file 
system and reload the stored metadata quickly when mounting the 
file system. The metadata snapshot techniques are specifically 
developed for NOR- and NAND-type flash memories by 
overcoming their physical constraints. 

First, in flash memory, the number of erase operation that can be 
performed in a block is limited (e.g., from 100 thousands to 1 
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Fig. 1. A breakdown of boot-up time in a PDA running Linux. 
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million times). Thus, all blocks should be erased evenly in order 
to reach the erase limit simultaneously, namely the wear-leveling 
property. In order to ensure this, the proposed snapshot techniques 
select less frequently erased blocks and store a variable-size 
snapshot into them by using a linked list (Section 3.1 and 3.2). The 
proposed snapshot technique for NOR flash finds the last stored 
snapshot instantaneously as it reserves the first block as an 
ordered tree that manages pointers to the snapshot head blocks 
(Section 3.1). Second, this technique is further extended for 
NAND flash, which supports only page-based I/O [11] (Section 
3.2). The proposed snapshot technique for NAND flash also 
ensures the wear-leveling property and finds the last stored 
snapshot in an instant. 

Third, these snapshot techniques check the validity of the stored 
snapshot at mounting time. If the snapshot is invalid, three novel 
fast crash recovery techniques are used to rebuild the in-memory 
metadata quickly (Section 3.3). Fourth, a data compression 
technique is used to reduce the snapshot size and consequently the 
time used to store the snapshot to flash memory when unmounting 
the file system (Section 3.4). 

The experimental results show that the proposed techniques 
ensure the wear-leveling property and also reduce the flash 
mounting time by about two orders of magnitude over the existing 
de facto standard flash file system [9]. For example, when the 
flash capacity is 128MB and the stored data size is 100MB, the 
mounting time is reduced from over 10 seconds to below 100 
milliseconds. The results also show that the proposed fast 
recovery techniques significantly reduce the I/O time required for 
mounting the crashed file system. Although the proposed 
snapshot technique for NOR flash takes up a longer unmounting 
time than the existing file system, the data compression technique 
reduces the unmounting time of the proposed snapshot techniques 
by over 50%. 

The rest of this paper is organized as follows. In Section 2, we 
describe the overall organization of the existing flash file systems 
and review the existing snapshot techniques as compared with the 
proposed techniques. The proposed techniques for NOR- and 
NAND-type flash memories are described in Section 3, while the 
evaluation results are given in Section 4. In Section 5, we 
conclude this paper with a summary. 

2. RELATED WORK 
In embedded computing devices, flash memory has significant 
merits such as light-weight, shock-resistance, and low-power 
consumption. There are two types of flash memories: NOR and 
NAND. NOR flash is usually used as a code storage medium 
because it supports word-unit I/O and provides faster read speed 
than NAND flash. Conversely, as NAND flash supports only 
page-based I/O (e.g., 512B or 2KB) and provides faster write 
speed, it is widely used as a large-scale data storage medium. 

In flash memory, write operations have to be preceded by an erase 
operation, and the number of erase that can be performed in a 
block is limited. In order to hide the erase while ensuring the 
wear-leveling property, the flash translation layer (FTL) [4, 5, 10] 
has been developed to be able to translate the logical addresses 
generated by a host system to physical addresses of flash memory. 
Since FTL provides an identical abstraction to hard disks, a disk 
file system (e.g., FAT and ext2 [8]) is used in the host to control 

the FTL-based flash memory. However, the use of FTL is 
restricted by international patents, and it is known that the 
performance of FTL can be seriously degraded if the host file 
system generates write operations frequently. 

Therefore, recent embedded computing devices tend to directly 
use flash file systems (e.g., JFFS2 [9] and YAFFS2 [1]) which are 
based on a data journaling technique. Unfortunately, the 
journaling technique incurs long mounting time for the flash file 
systems as exemplified in Figure 2 where the root directory 
contains a file which is updated by a write operation. In step I, the 
root directory has an inode and a directory entry [8] which tell 
that it has the file A whose inode number is 2. The file also has an 
inode which means that its version is 1 and the attached data 
range is 1 to 4 pages. In step II, when a write operation is 
performed on the file, the journaling technique makes a new inode 
for the file rather than directly updating the data pages attached to 
the existing inode. In this new inode, the version is increased by 1 
and the range exactly specifies the updated data pages. Then, the 
data pages 2 and 3 attached to the old inode become invalid. If the 
empty block ratio of flash memory is lower than the specified 
threshold value (e.g., 20%), a garbage collector copies the valid 
pages in the block 2, which has the smallest number of valid 
pages, to an empty block as shown in step III. The garbage 
collector finally erases the block 2 as shown in step IV. In this 
manner, the existing flash file systems logically hide erase 
operations from application programs. Furthermore, these file 
systems ensure the wear-leveling property as the performed erase 
count is considered when selecting blocks for new inode and data 
pages. 

In order to directly find an inode which has the latest copy of a 
requested page, at mounting time these file systems scan entire 
flash memory space and build an in-memory metadata as shown 
in Figure 3. For example, in order to access the second page of the  
 

2 3

2 3
2

(2)
2-3

2-1 2-2 2-3 2-4

1
(1)

2
(1)
1-3

1

1
(1)

1
(1)

1
(1)

2
(A)

I

II

III

IV

2
(A)

2
(A)

2
(A)

1-1 1-2 1-3 1-4

* Dir. Entry
 - #: Inode no.
 - F: File name

* Data Page
 - #: Page No.

* Empty Page

2 3 ...

...

* Inode
 - #: Number
 - V: Version
 - A-B: Range

#
(F)

#

#
(V)
A-B

3-1 3-2 3-3 3-4 4-1 ...

2
(1)
1-3

1

2 3
2

(2)
2-3

2 3
2

(1)
1-3

1
2

(3)
1-1

1 ...

2
(2)
2-3

2 3
2

(3)
1-1

1 ...

 
Fig. 2. Data management in the journaling flash file systems. 
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Fig. 3. An in-memory metadata of the journaling flash file 
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Fig. 4. Existing snapshot techniques in LFS(a) and FTL(b). 
 

file, these systems first finds its inode cache data in the in-
memory metadata by using a hash function with its inode number. 
They then traverse the linked raw inodes until they reach the raw 
inode whose data range includes the second page. Finally the 
physical page number stored in the raw inode is used to access the 
requested page in flash memory. 

However, scanning flash space and building an in-memory 
metadata require long I/O and computation times, respectively. 
This in turn delays the mounting time of the existing flash file 
systems significantly, especially when both the flash capacity and 
stored data size are large. 

The existing flash file systems borrowed the journaling idea from 
a disk file system of the log-structured file system (LFS) [6]. In 
LFS, a metadata snapshot technique is used to reduce the long 
mount time as well as the crash recovery time. Specifically, LFS 
periodically stores a metadata snapshot to a hard disk and updates 
the super block placed in the first sector of the disk for directing 
the stored snapshot as shown in Figure 4(a). However, this 
technique is not directly applicable to flash memory due to the 
following two reasons. First, since the update operation requires 
that the super block be erased and the original super block data be 
partially restored, the data can be lost if the power goes down 
unexpectedly during the restoration, causing a data integrity 
problem. Second, the super block reaches the erase limit quickly, 
thereby breaking the wear-leveling property. 

Kim et al. [5] adopted a metadata snapshot technique for FTL 
where the snapshot size is small (e.g. 512B) and fixed. The 
technique stores a metadata snapshot to dedicated areas in a 
round-robin manner and reloads the latest snapshot at mounting 
time from the areas as shown in Figure 4(b). Thus, the technique 
avoids the integrity problem and keeps the wear-leveling property. 
However, the technique is not applicable to flash file systems 
where the snapshot size varies between below 100KB and over 
1MB depending on the stored data size because the technique 
breaks the wear-leveling property. For example, if the snapshot 
size is relatively large as compared with the size of dedicated 
areas, the areas reach the erase limit quickly, and conversely, if 
the snapshot size is small, the remaining flash memory space 
reaches the limit quickly. Furthermore, the technique stores the 
snapshot whenever it is changed. However, since the snapshot 
size of flash file systems is quite large, this can degrade the I/O 
performance significantly in the file systems. The snapshot 
techniques for flash file systems which will help overcome these 
technical obstacles are discussed in the following section. 

3. INSTANT MOUNTING TECHNIQUES 
This section describes the proposed snapshot techniques for NOR 
and NAND flashes with three fast crash recovery techniques and 
a fast unmounting technique. 

3.1 Snapshot Technique for NOR Flash 
Our design goal is to provide an instant lookup method for the 
lastly stored snapshot, while ensuring the wear-leveling property. 
In order to achieve these goals, we store snapshots to variable-size 
areas managed by linked lists and sequentially record the location 
of the stored snapshots to prearranged areas by using an ordered 
tree data structure. 

In Figure 5, it can be seen that the first block of flash memory is 
reserved as a root block which sequentially stores pointers to 
snapshot header blocks. And since the block size (Bsize) is 
typically 128KB in NOR flash and the size of a pointer to block is 
2B (Psize), the maximum number of pointers that can be stored in 
the root block is Bsize / Psize (=216). Pointers are sequentially stored 
from the first word in the root block. If the root block is full, the 
block is erased before writing a new pointer to the block. At 
mounting time, we can find the last stored pointer quickly using 
sequential or binary search algorithms. The sequential searching 
reads the stored pointes from the first one until it reads a null 
pointer. Its time complexity is O(Bsize / Psize). The binary searching 
divides the root block into two sub-blocks and reads the boundary 
pointer of these sub-blocks. If the pointer is null, this searching 
selects the left sub-block. Otherwise, the other one is selected. 
With the selected sub-block, the above procedure is repeated until 
the last stored pointer is found. This search algorithm has a better 
time complexity of O(lg(Bsize / Psize)). 

Each pointer in the root block directs the corresponding header 
block as shown in Figure 5. The header blocks and their related 
data (marked by dotted boxes), with the exception of the last one, 
could be erased in advance, while the last one is always 
maintained in a valid state. A header block contains several 
snapshot headers, and a snapshot header consists of a mounting 
flag (M), an unmounting flag (U), and a pointer to the snapshot 
data block (Pt). Since the snapshot header size (Hsize) is typically 
4B, the maximum number of snapshot headers that can be stored 
in a header block is Bsize / Hsize (=215). The snapshot headers are 
sequentially stored onto the header block, and one of the two 
searching algorithms is used to find the last stored snapshot 
header in the same way as done by the root block. The pointer 
stored in the latest snapshot header is used to access the snapshot 
data that were last stored. 
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Fig. 5. Snapshot management in the proposed snapshot 
technique for NOR flash. 
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As the snapshot data size varies, the snapshot data is stored in 
several snapshot blocks which are managed by a linked list. These 
blocks are selected by considering the performed erase count in 
order to ensure the wear-leveling property. All snapshot blocks 
has a pointer to the next block, and this pointer value is zero if the 
block is the last one. The last snapshot block also has a size field 
(SZ) which specifies the size of the snapshot data stored in the last 
snapshot block as shown in Figure 5. 

In summary, this technique only reads lg(Bsize / Psize) x Psize + 
lg(Bsize / Hsize) x Hsize (=92) bytes in an average case to fine the 
location of the last stored snapshot, providing an instant lookup 
time. Furthermore, this ensures the wear-leveling property due to 
the following two reasons. First, the root block is extremely and 
rarely erased in every Bsize / Psize x Bsize / Hsize (=231) snapshot 
writing operations. Second, the header and snapshot blocks are 
selected by considering the number of performed erase operations. 

After mounting the file system, when the in-memory metadata is 
firstly changed due to a write, we set the M flag of the next one of 
the latest snapshot header to be 1. At unmounting time, if the M 
flag is set, we store the metadata to flash memory, record the 
location of the stored snapshot in the snapshot header, and finally 
set the U flag to be 1. By doing this, we can check the validity of 
the latest snapshot by testing whether the U flag is set or not. 

3.2 Snapshot Technique for NAND Flash 
The snapshot technique that is developed for NOR flash can not 
be applied to NAND flash because NAND flash supports only 
page-based I/O. For example, when we store a pointer in the root 
block or a snapshot header to a header block, an internal 
fragmentation occurs in the page since the size of both a pointer 
and a snapshot header is smaller than the page size of NAND 
flash and thereby wasting the flash memory space significantly 
[11]. Note that without erasing a block which embeds the page, it 
is practically impossible to write data to the unused space of the 
page. Thus, we must specifically develop another space-efficient 
snapshot technique for NAND flash. 

The proposed snapshot technique for NAND flash reserves the 
first N blocks in flash memory as header blocks. As shown in 
Figure 6, each header block is used to store the snapshot header, 
which consists of a mounting page and an unmounting page, and 
the snapshot data. When the in-memory metadata is changed due 
to a write operation, we select a header block in a round-robin 
manner and erase both the selected block and the data blocks 
linked by the selected block. The mounting page of the selected 
block keeps a special symbol (SS), parameter N, and a mounting 
count (M), which is increased by 1 at every snapshot writing 
operation. The special symbol means that this is a used header 
block and is actually stored in a spare area of the mounting page. 
A spare area is a small out-of-band area (e.g. 16 or 64 bytes) 
which is attached to each page in NAND flash. 

When unmounting the file system, we store both the snapshot size 
(SZ) and data to the selected block. If the snapshot size is larger 
than the size of free pages in the selected block, we store the 
snapshot to multiple data blocks by using a linked list. A pointer 
(Pt) is used to direct the next block, and the pointer value is zero 
if the block is the last one. Finally, an unmounting count (U), 
which is equal to the mounting count, is stored onto the 
unmounting page of the selected block. 
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Fig. 6. Snapshot management in the proposed snapshot 
technique for NAND flash when the header block count is 4. 
 

This means that the internal fragmentation occurs only on the two 
pages of the mounting and unmounting pages. Since the snapshot 
size, snapshot data, and pointer field are stored onto pages at one 
time, no internal fragmentation space is incurred for them. 

Only one header block is erased at each snapshot writing 
operation despite of the snapshot size. Thus, the proposed 
technique ensures wear-leveling property for the reserved header 
blocks. However, the erase rate of the reserved header blocks can 
be different from that of the remaining data blocks. Thus, we 
adaptively control the parameter N by using Eq. 1 where Bsize 
means the flash block size, Fsize means flash memory capacity, 
and Ecount means the total number of performed erase operations 
in the data blocks during the mounting time. At unmounting time 
after storing the snapshot in flash memory, Eq. 1 is used to 
calculate N’, and the calculated N’ is used to control N. If N’ is 
larger than N, we increase N by 1. Otherwise, N is decreased by 1. 
We set the range of N to be 2 to 10% of total block count. The 
modified N is stored onto the unmounting page of the header 
block, which means that the first N blocks are reserved as header 
blocks. In this way, the proposed technique for NAND flash 
adaptively changes the reserved area size in order to ensure the 
wear-leveling property. 
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At mounting time, we read the mounting count of all reserved 
header blocks. Since we do not know the N, we sequentially read 
header block from the first one and check its special symbol until 
we read max{N} = 0.1 x Fsize / Bsize blocks or the special symbol 
is not valid. We then select a block which has the highest 
mounting count and check whether the mounting count is equal to 
the unmounting count. If these counts are the same, as this means 
that the block has a valid snapshot, we directly use its snapshot 
data as an in-memory metadata. In summary, we only need to 
read max{N} x Psize + Psize bytes to find the latest snapshot in 
NAND flash. 

3.3 Fast Mounting for Crashed File System  
In the proposed snapshot techniques, if the latest snapshot is not 
valid, this means that the file system crashed due to power failure 
or operating system fault. Although recently updated data are not 
written to flash memory, the data stored in the flash memory are 
consistent because the existing flash file systems write the 
updated data to flash memory one by one. Thus, we can build an 
in-memory metadata in the same way as the existing flash file 
systems perform mounting operation. However, this takes up long 
I/O and computation times, and thus, in order to resolve this 
problem we develop three fast crash recovery techniques. 
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Fig. 7. Example of the proposed fast crash recovery 
techniques. 
 

First, we do not scan data pages in flash memory. Since each 
inode embeds the location and size of the attached data pages, we 
can skip the scanning for the attached data pages as shown in 
Figure 7(a). Irrespective of this, the existing flash file systems can 
still read the data pages for checking CRC errors in the pages. The 
proposed technique performs this error checking when the data is 
actually accessed. Second, we do not scan empty pages in flash 
memory by using a sequential writing policy. Since we 
sequentially write data to a block from the first page, we can stop 
scanning for the rest of the block when we read an empty page. 
With this technique, we read only inode pages, data pages, and 
the first page of empty areas as shown in Figure 7(b). Third, 
combining these two techniques as shown in Figure 7(c), we only 
need to read the inode pages and the first page of the empty areas 
in flash memory in order to directly build an in-memory metadata. 
This significantly reduces the crash recovery time. 

3.4 Fast Unmouting by Compressed Snapshot 
Since at unmounting time the proposed snapshot techniques store 
the metadata snapshot to flash memory which provides slow write 
speed, the unmounting time of the proposed techniques can be 
delayed especially when the flash write speed is slow and the 
snapshot size is large. In order to reduce this unmounting time, we 
use a data compression technique [11] in such as way that the 
snapshot is compressed before storing it into flash memory. Since 
the time required for compressing the snapshot is quite shorter 
than the time required for writing the snapshot to flash memory, 
this snapshot compression technique can reduce unmounting time 
of the proposed snapshot techniques significantly. Furthermore, 
this compression technique reduces the flash memory space used 
for storing the snapshot. At mounting, the compressed snapshot is 
decompressed on the fly. 

4. EXPERIMENTAL RESULTS 
We evaluate the mounting time of the proposed techniques over 
an existing flash file systems of JFFS2 on an Intel machine 
(Pentium III 850MHz) running the latest patch version of Linux 
kernel 2.4. We modeled both NOR and NAND flash devices 
whose I/O characteristics are shown in Table 1. Based on this 
model, we developed virtual flash device drivers which hold CPU 
during the time required to perform a requested I/O operation in a 
real non-DMA flash device. The virtual drivers provide a 
common flash driver interface for the flash file systems and 
record the numbers of performed I/O, which are further used to 
analyze the I/O characteristics of the file systems. We also 
measured the time spent to process the flash file systems on CPU. 

First, we measured the mounting time of the existing file system. 
As shown in Figure 8, the mounting time is directly proportional 
to the flash memory capacity. This is because the existing file 

Table I. I/O Characteristics of Flash Memory. 

Type Model Read Write Erase 
Unit 2B 512B 2B 512B 128KB

NOR
Speed 75ns 19.2µs 14µs 3.58ms 1.2s 
Unit 512B 512B 16KB 

NAND
Speed 35.9µs 226µs 2ms 

 

system scans 103% and 125% of the entire flash memory space 
for NOR and NAND flash memories, respectively, during the 
mounting. The file system scans over 100% because it reuses 
some pages which have been evicted from the memory cache. 
Also in NAND flash the ratio of scanned space is higher than that 
in NOR flash because NAND flash only supports page-based I/O, 
reading useless data. 

The mounting time of NAND flash is longer than that of NOR 
flash because the read operation in NAND flash is 2 to 3 times 
slower than that in NOR flash. Even though the I/O speed of flash 
memory is continuously improved due to the enhancement of 
semiconductor technology, we believe that the I/O time required 
to scan the entire flash chip space will continuously take about 5 
to 20 seconds because the flash chip capacity is continuously 
increasing by 100% every year. We also observed that the time 
consumed for computation, which involves classifying block type, 
building an inode tree, and counting nlinks value for all inodes, is 
less than 1 second when the stored data size is less than 1MB [8]. 

Then, we measured the mounting time depending on the stored 
data size. We set the flash capacity to be 128MB and used the 
Linux kernel source tree as a stored data. As shown in Figure 9, a 
larger stored data size incurs longer computation time, while it 
seldom effects the I/O time. We also found that the computation 
time is not dependent on the flash capacity. For example, if the 
flash capacity is 256MB, the computation time is almost equal to 
that shown in Figure 9. However, the computation time depends 
heavily on the computing power of CPU. As we used Pentium III 
in this experiment and embedded systems are typically equipped 
by a low-power embedded CPU, the computation time required 
for mounting the file system on embedded systems will be much 
longer than that presented in this experiment. In addition, we 
believe that the computation time can be partly interleaved with 
the I/O time if DMA I/O operations are used. 

Thus, in the existing flash file system, during mounting procedure, 
the I/O time heavily depends on the flash memory capacity, while 
the computation time is greatly influenced by the stored data size. 
The proposed fast mounting techniques reduce the I/O time by  
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Fig. 8. Mounting time of an existing flash file system as a 
function of the flash memory type and capacity. 
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Fig. 9. Mounting time of an existing flash file system as a 
function of the stored data size. 

 

simply reading the stored snapshot and the computation time by 
directly using the stored snapshot as an in-memory metadata. On 
the other hand, the existing fast mounting technique reduces the 
I/O time only [4]. 

We then measured the in-memory metadata snapshot size of the 
existing flash file systems in order to analyze the mounting time 
precisely. Figure 10 shows the size of snapshot of a 128MB NOR 
flash depending on the use of the snapshot compression technique. 
The snapshot consists of inode caches, raw inodes, and erase 
blocks. It shows that a larger stored data size incurs bigger 
physical inode and inode cache sizes. For example, when the 
stored data size is 100MB, the snapshot size is about 700KB. We 
also observed that the size of erase block metadata is directly 
proportional to the flash memory capacity. Similar features and 
size are observed in NAND flash. Fortunately, in this latter case, 
the snapshot size is reduced by less than half of its original when 
we use the zlib compression algorithm, used in JFFS2 and UNIX. 

Second, we analyzed the mounting time of the proposed snapshot 
techniques with a 128MB NOR flash when a valid snapshot exists. 
Figure 11 shows that both I/O and computation time is reduced by 
over two orders of magnitude as compared with the existing 
system because the proposed techniques do not scan the entire 
flash space nor construct any in-memory metadata. Rather it 
directly uses the stored snapshot. The result also shows that a 
larger stored data size results in longer I/O time due to the 
snapshot size. In fact, the I/O time can be further reduced if the 
compression technique is used. The drawback is that, it takes a 
longer computation time for decompressing the snapshot. We also 
applied the proposed technique to a NAND flash and observed 
slightly longer I/O time but similar performance features. 
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Fig. 10. Snapshot size as a function of the stored data size and 
the use of compression technique. 
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Fig. 11. Mounting time of the proposed snapshot technique in 
NOR flash. 
 

Conversely, the proposed technique has a longer unmounting time 
than the existing system. As shown in Figure 12, the unmouting 
time of the proposed one is directly proportional to the stored data 
size because the snapshot writing operation takes a dominant part 
of the total unmounting time. When the snapshot is compressed, 
the I/O time is reduced by less than half, while the computation 
time is slightly increased. For example, when a 128MB NOR 
flash is used with 100MB of stored data, the unmounting time 
takes about 2.5 seconds, while that of the existing system is less 
than 0.5 second. Fortunately, since NOR flash is used as a code 
storage, its snapshot is seldom changed. Thus, it does not need to 
store the snapshot for a majority of the unmounting time. Even if 
it does need to store the snapshot, we believe that the unmouting 
time can be interleaved with the shutdown procedure of operating 
systems. Furthermore, we measured the unmounting time on a 
NAND flash and observed over 10 times shorter unmounting time 
and similar performance features because the write speed of 
NAND flash was over 15 times faster than that of NOR flash. 
Thus, in NAND flash, the unmounting time of the proposed 
technique is usually less than 1 second. 

Third, we analyzed the wear-leveling property of the proposed 
snapshot techniques over the existing snapshot techniques used in 
LFS and FTL. In LFS, the super block reaches to the erase limit 
quite quickly regardless of the write traffic as shown in Figure 
13(a). Figure 13(b) shows that in FTL the erase count of reserved 
area (marked by white background color) is different from that of 
the remaining data area because the size of reserved area is fixed. 
For example, with the light write traffic, the reserved area reaches 
the limit quickly. Moreover, we observed that in FTL if the stored 
data size is large, the reserved area reaches the limit quickly as 
the snapshot size is heavily dependent on the stored data size. 
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Fig. 12. Unmounting time of the proposed snapshot technique 
in NOR flash. 
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On the other hand, the proposed technique for NOR flash ensures 
the wear-leveling property even though the erase count of the first 
block is smaller than that of remaining blocks. Also the proposed 
technique for NAND flash ensures this property by adaptively 
controlling the size of reserved area depending on the amount of 
write traffic. When the write traffic is heavy, the reserved area 
size is set to be smaller, and conversely when the traffic is light, 
the area size is set to be larger in order to balance the wear-levels 
of the reserved and the remaining areas. 

Finally, we evaluated the effectiveness of the proposed fast crash 
recovery techniques. Figure 14 shows the ratio of scanned flash 
area of the recovery techniques as a function of the stored data 
size on a 128MB NOR flash. With the data skipping technique as 
shown in Figure 7(a), we can skip scanning the data area, whose 
size is only about 30% of the originally stored data size because 
they are stored in a compressed form. By using the sequential 
writing policy as shown in Figure 7(b), we can skip scanning the 
empty areas that takes up a large portion of the flash space when 
the stored data size is small. Finally, the hybrid technique as 
shown in Figure 7(c) only read metadata and the first page of 
empty areas which usually form less than 5% of the entire flash 
space. The metadata consists of inodes, directory entries, and 
node headers. This means that when the file system crashes, the 
I/O time used for mounting can be reduced by more than 95%. 
However, these recovery techniques do not reduce the 
computation time, while the proposed snapshot techniques do. We 
also observed slightly higher scanned area ratio in NAND flash 
because it only provides page-based I/O. 
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Fig. 14. Scanned area ratio of the crash recovery techniques. 

5. CONCULSION 
In this paper, we have presented instant mounting techniques for 
both NOR and NAND flash file systems. The proposed snapshot 
techniques store a metadata snapshot at unmounting time and 
reload the snapshot quickly at mounting time by overcoming the 
physical constraints. These techniques are intended to check the 
validity of the snapshot. If it is invalid, we use three fast crash 
recovery techniques. The experimental results have shown that 
the proposed techniques reduce the mounting time by over two 
orders of magnitude because they reduce both the I/O time (they 
only read a stored snapshot) and the computation time (they 
directly use the snapshot as an in-memory metadata). Therefore, 
we expect that the proposed techniques will be effective in 
reducing the mounting time of flash file systems and consequently 
the boot-up time of flash memory based computing devices. 
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Fig. 13. Analysis of the wear-leveling property under heavy and light write traffics. 
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