
Operating System Support for Procedural Abstraction in Embedded Systems 

Keun Soo Yima, Jeong-Joon Yooa, Jae Don Leea, and Jihong IGrnb.* 
aComputing Lab., Samsung Advanced Institute of Technology, Yongin 449-712, Korea 
b~chool of Computer Sci. and Engr., Seoul National University, Seoul 151-742, Korea 

keunsoo.yim@samsung.com 

Abstract 
Procedural abstraction reduces code size by replacing 

repeated code fragments with call instructions to a sub- 
routine that executes the repeated fragment. However, in 
order to build a subroutine, extra instructions are neces- 
sary to support the procedural call mechanism. In this 
paper, we present an operating system level technique 
which improves the space efficiency of a procedural ab- 
straction-based code compaction technique. The call- 
related extra instructions are not used in the proposed 
technique because operating system routines implicitly 
supports the procedure call and return. The proposed 
technique consists of three execution modes including one 
applicable to ROM-based systems. The experimental re- 
sults show the proposed technique reduces the code size 
significantly while increasing the execution time slightly. 

1. Introduction 

The cost and power consumption of embedded real- 
time systems both depend heavily on the size of memory 
[I]. A real-time system consists of four main hardware 
components: processor, memory, and 110 devices. As 
processor and 110 devices have irreplaceable features, 
memory (e.g., DRAM) is often pointed out as an optimi- 
zation point. Memory forms and consumes a large amount 
of silicon area and electric energy, respectively, thus re- 
ducing the memory size surfaces as a critical design ob- 
jective, particularly in mass-produced real-time systems. 

Code compaction reduces program size significantly 
and at the same time stores the code in an executable form 
[2]. Specifically, procedural abstraction retrieves repeated 
instruction sequences and replaces them with call instruc- 
tions to a newly created procedure that runs the original 
sequence [3,4]. For future space eff~ciency improvement, 
it translates similar instruction sequences to identical se- 
quences by reordering instructions, renaming registers, 
and using relative addresses in branch. Figure I(a) exem- 
plifies the original code where identical letters denote the 
same instruction sequences. Fragment B is repeated twice, 
and can be abstracted as a procedure shown in Figure I@). 
Although this requires additional two call instructions and 
one return instruction, this reduces two instructions over- 
all and still maintains the code executable. 

Jihong Kim was supported by the Ministry of lnformation and Communication, 
Korea, under the Information Tech. Research Center support program supervised 
by the Institute of lnformation Tech. Assessment, IITA-2005-C1090-0502-0031. 

However, this occasionally requires larger numbers of 
extra instructions, particularly when the system stack and 
return address are required to be managed. Figure I(c) is 
an example of abstracted code when fragments ABC and 
ABE are a leaf procedure that does not have a call instruc- 
tion. Thus, original fragments of ABC and ABE do not 
store the return address to the system stack using push 
and pop instructions. Since procedural abstraction has 
changed ABC and DBE to a non-leaf procedure, extra 
push and pop instructions should be used to manage the 
return address. Due to these stack operations, the code 
size becomes three instructions larger than the original 
size, and thus degrades the value of procedural abstrac- 
tion in terms of code size reduction. 

In this paper, an operating system technique is pre- 
sented for improving the space efficiency of the proce- 
dural abstraction. The extra instructions are not required 
in the proposed technique because operating system rou- 
tines impicitly process operations executed by the addi- 
tional instructions. The proposed technique consists of 
three execution modes, each impacting performance dif- 
ferently. One of them is applicable to ROM-based sys- 
tems. In utilizing the execution frequency profiling data, 
the proposed techniques can be effectively used for com- 
pacting codes in cooperation with existing code size re- 
duction techniques. The experimental results show that 
over half of program codes are seldom executed. By util- 
izing this phenomenon the proposed technique reduces 
the code size significantly while delaying the execution 
time slightly. 

The rest of this paper is organized as follows. Section 
2 reviews the related work. Section 3 describes the pro- 
posed technique, and Section 4 and 5 present the imple- 
mentation and evaluations. Section 6 concludes this paper. 

(a) 19 lnst (b) 17 lnst 
Fieure 1. Procedural abstraction exam~le. 
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2. Related work 

There are two principle technologies that reduce the 
program code size: compression and compaction [2,3,5]. 
Compression is superior over compaction in terms of re- 
ducing code size [6]. However, it suffers from long de- 
compression time and thus hardware decompressors are 
used to reduce the decompression time. This hardware 
increases the cost of embedded systems. 

Compaction does not suffer from decompression as it 
reduces code size in direct executable form. Compaction 
includes the basic compiler optimization techniques [7], 
e.g., elimination of redundant, unreachable, and dead 
codes. Its advanced technique is code factoring, which is 
classified into two types: local factoring and procedural 
abstraction [3, 121. Local factoring moves identical in- 
structions from basic blocks to their common predecessor 
or successor. 

The procedural abstraction retrieves identical instruc- 
tion sequences and replaces them with call instructions to 
the newly created procedure that executes the identical 
sequence. Its efficiency in terms of code size reduction 
can be improved by translating similar instruction se- 
quences to identical sequences. This method can use in- 
struction reordering and register renaming techniques, 
and can use relative-addressing mode in branch instruc- 
tions. In addition, predicated instructions can be used to 
conditionally skip parts of instruction sequences [8]. 

However, this method requires a considerable number 
of extra instructions as shown in Figure 1. Figure 2 is an 
example of when the repeated code is a non-leaf proce- 
dure. Here, fragments BCD are repeated twice, and thus 
both can be abstracted as a procedure. Since fragments 
BD include a call instruction to fragment C, as shown in 
Figure 2(c), BC must manage the return address using 
push and pop instructions. Otherwise, the return address 
is modified by a call instruction in fragment B, and frag- 
ment D returns to an incorrect location. As a result, in 
order to build a procedure five instructions are used, two 
call, one push, one pop, and one return instructions. 

(a) 24 lnst (b) 21 lnst (c) 23 lnst- 

Figure 2. Overhead of procedural abstraction. 

In order to address this procedural abstraction over- 
head, two novel instructions are proposed. These are se- 
quential and bit-mask echo instructions: 'ech0.s offset, 
length' and 'ech0.b offset, mask' [9, 101. The sequential 
echo branches to a target specified by offset, executes a 
certain number of instructions specified by length, and 
returns to the next instruction of this ech0.s instruction. 
The bit-mask echo (ech0.b) conditionally executes the 
target instructions. It executes N-th instruction of the tar- 
get only if mask & (I<<(N-I)) is true. These instructions 
can be fabricated as machine instructions since each of 
these echo instructions is a combination of micro- 
instructions. This hides the execution time delay. In the- 
ory, echo instructions mimic dictionary-based compres- 
sion algorithms [5, 61. That is the reason the technique is 
superior over other existing compaction techniques. 

At the time of writing, no commercial microprocessors 
support the echo instructions. Thus, microprocessor re- 
designing and fabrication are required for this to occur, 
increasing development cost. The increased cost can be 
larger than the reduced cost of memory achieved using 
echo. Currently, only a Java virtual machine uses echo 
[lo]. Although, the concept of reducing the code size of 
the proposed technique is similar to echo, the proposed 
technique does not require microprocessor modification, 
this makes the technique a practical and attractive solu- 
tion in low-cost embedded systems. 

Furthermore, code can be compacted if the microproc- 
essor has two instruction sets with different width. For 
example, ARM processor has two modes: Thumb and 
ARM. The width of Thumb and ARM is I6 and 32bits, 
respectively, programs coded by Thumb are typically 
smaller than programs coded by ARM [l  I]. 

3. Proposed code compaction technique 

The framework of the proposed code compaction 
technique is provided in Figure 3. Similar fragments are 
translated to identical code fragments, and identical frag- 
ments are selected for compaction. In order to determine 
the method of compaction, the execution frequency of the 
selected code obtained by profiling is used. If the fre- 
quency is high, the procedural abstraction is applied as it 
builds faster code than the proposed technique. However, 
if the frequency is low or zero, the proposed technique is 
applied as it achieves greater code size reduction. The 
proposed technique has three execution modes. 

3.1. Exception mode 
We use two repeat commands: basic and conditional. 

Figure 4 shows the basic repeat (Repeat.B) applied to the 
code used in Figure l(a). In this mode, Repe0t.B is an 
undefined instruction that raises the undefined instruction 
exception on execution. Then, the processor jumps to the 
exception handler defined by the operating system. 
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The handler saves the registers used. It detects offset 
and length of the target fragment by reading operands of 
the Repeat.B instruction. In Figure 4, it stores the next 
instruction of target fragment B, which is the first instruc- 
tion of fragment C. The next instruction is then changed 
to another undefined instruction of Return.B. Finally, this 
handler restores the saved registers and jumps to target B. 

The processor starts execution from the target and fi- 
nally meets the Return.B instruction. In checking the op- 
code of instruction which raised the exception, the han- 
dler of undefined instruction exception identifies Re- 
turn.B from Repeat.B. In this case, the handler restores 
the Return.B instruction by the original instruction, and 
then it returns to the next instruction of Repeat.B. This 
handler shall properly manage the program counter, stack 
pointer, and return address. 

The conditional repeat command (Repeat.C) operates 
in the similar way as Repeat.B, except for the followings. 
Figure 5 demonstrates that Repeat.C skips some instruc- 
tions in the target fragment. In the figure, the condition 
mask is 1101 lb, which means a skip of the third instruc- 
tion of the target. In the mask, the least significant bit is 
the first instruction of the target. The handler stores the 
third instruction and replaces it by a no operation instruc- 
tion. The replaced instruction is restored in the handler of 
Return.C, called after executing the target fragment. 

(21 w m  ~ h .  t r m n t  I. 
npoated .I hro point* I. Lh. 
B q m a l  .be lrpn I h n  Wo 

For M k d  trwmnt. b 

End I 
Figure 3. Proposed code compaction framework. 

f 
(a) 19 lnst I (b ) l5  lnst 

Figure 4. Proposed basic repeat command. 
* I: change the nexr instruction of target fragment to Rehrrn.B. 11: re- 
store the changed instruction. 

3.2. Branch mode 
The exception delays the time of execution due to its 

indirect branching and pipeline flushing. In order to over- 
come this overhead, a direct branch mode is presented. 
This mode uses stack pushtpop instructions with a jump 
(or a system call) instruction. The push instruction stores 
offset and length of the target fragment, and the jump 
instruction directly jumps to the Repeat.B or Repeat.C 
handler. In this mode, the handler reads the target offset 
and length from the stack. Except for this, the operation is 
identical to that of the handler in the exception mode. 

While this mode addresses the delay caused by the ex- 
ception mode, it uses one additional instruction for the 
stack push operation. The exception mode is only used if 
the size of the target fragment is small and the execution 
frequency is low. 

3.3. ROM mode 
The above two modes modify the code. However, this 

is impossible in ROM-based systems. Thus, an additional 
ROM mode is presented. Instead of modifying the in- 
structions in the target fragment, this ROM mode copies 
them to its buffer placed in RAM. It rebinds the addresses 
used in the copied instructions and then executes the cop- 
ied code directly in the buffer. 

Figure 6 is an example that uses Repeat.C. Since the 
mask is 1000lb, the first and the fifth instructions of the 
target fragment (Cl  and C4) are requested for execution. 
Thus, C l  and C4 are copied to the RAM buffer (denoted 
by dotted boxes). It then sets the next instruction of the 
copied instructions to Retum.C. This transfers control to 
the handler when the processor completes execution of all 
requested target instructions. 

For conditional repeat command, this mode can be 
faster than the branch mode even in non-ROM-based sys- 
tems. This is because of the fact that the branch mode 
modifies instructions requested for skipping and copies 
instructions requested for execution. If the number of 
skipped instructions is larger than that of executed in- 
structions, this mode can reduce overall memory opera- 
tion count, which eventually improves execution speed. 

I . 
(a) 18 lnst (b) 14 lnst 

Figure 5. Proposed conditional repeat command. 
I :  change B2 to no operation instruction and the next instruction of the 
targetfrngment to Return.C. 11: skip because it is a no-operation. III: 
restore the changed instructions. 
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(a) 16 lnst 

Figure 6.  ROM mode with conditional repeat command. 
* I: copy the regue~ted instructions, CI and C4, to the RAM-buffer and 
set nert instruction of the copied instructions to Retum.C. II: transfer 
the control ofprocecsor properly. 

4. Implementation 

The proposed technique is implemented on a real-time 
operating system, the Sarnsung Multiplatform Kernel 
(SMK). We assume that the hardware platfonn supports 
instruction and data cache coherency protocol. The repeat 
and return instructions are defined using the undefined 
op-codes. For example, ARM instructions where 27-25th 
bits are 01 and 4th bit is are undefined instructions. 
Based on this, we define Repeat.B, Return.B, RepeaLC, 
and Return.C as shown in Table 1. The offset field de- 
notes 214x4~ = 64KB address space in ARM mode. Simi- 
larly the length and mask each uses only 8 bits, which can 
be enlarged by using bits allocated for the offset field. 

The exception handlers for the software defined in- 
structions must be programmed. Table 2 is a pseudo code 
where handler is an entry point of the handler. It quickly 
identifies instruction type (line 1-7). If it is Repeat.B, the 
saved registers are restored (line 8). It interprets offset 
from the operand field of the instruction where an arith- 
metic shift operation is used to cope with the negative 
value (line 9-1 1). Similarly length is calculated (line 12- 
13). Based on these offset and length, it modifies the next 
instruction of the target fragment (line 14, 19). Prior to 
modifying the instruction, both the original instruction 
and the return address are stored in a custom stack 
pointed by bufer (line 15-18). Due to this stack, the 
pseudo code is reenterable, allowing nested repeats. The 
stack is dedicated to each task, and thus it is changed at 
context switch operation. It finally restores the saved reg- 
isters and jumps to the target fragment (line 20-22). 

After executing the target fragment, the processor will 
generate another exception, which is handled by return-b. 

Table 1. Encoding of the proposed commands. ............................................ ................................................................ ................................................................ ................................................................ .................................................... "...,.,.*.. ..... ...-.........,.,........,.....,.,..*......,........,.... ....... ........................................................ 
0: Undejned instruction space, I: Repeat.B inst., 2: Retum.B inst., 3: 

Repeat.C inst., 4: Return.C inst. 

; Pop from stack 

; Restore the inst. 

Table 2. Pseudo code of handlers. 

27 buffer 't buffer - 4 
28 Push RO 
29 Pop RO, PC ; Return 
* PC: Program counter, LR: Link register, [R]: Memory value where 

21 
02 
03 
04 
05 
!6 

address = R, #: Constant, >>x Arithmetic shift right. 

It restores the next instruction of the target fragment to 
the original instruction stored in the custom stack (line 
23-25). It then returns to the next instruction of the Re- 
peat.B instruction (line 26-29). The exception handlers of 
Repeat.C and Return.C are similar to these two handlers. 
The major difference is that the Repeat.B handler changes 
specified instructions in the target fragment to no opera- 
tion instructions, and the Return.B handler restores the 
modified instructions to the original. 

handler: 

5. Performance evaluations 

.extern buffer ; Index of a custom stack, 
Push RO ; Push to stack 
ROC LR-41 
RO C [RO & 0x01 800000 >> 23 
if (RO = 0) Jump repeat-k; 
else if (RO = 1) Jump return-b; 

The performance metrics of the proposed technique 
are the normalized code size and execution time. The 
normalized code size of the proposed technique is almost 
identical to that of the existing echo instructions. Thus, 
the previous experimental data [3, 9, 10, 121 is used in 
order to evaluate the performance of the proposed tech- 
nique as shown in Figure 7. It demonstrates that the pro- 
posed technique reduces code size by 30-40% with 
SPEC2000 benchmark suite and 10-20% with Media 
Bench suite. This reduction ratio is -10% higher than that 
achievable with procedural abstraction. 

The proposed technique requires extra memory for 
handler code memory and custom stack. This memory is 
relatively small when compared with the whole program 
code and data size. The size of extra code and data mern- 
ory are -5 12 bytes and -32 bytes, respectively. 

The normalized execution time of the proposed tech- 
nique is now analyzed, and evidence data where the pro- 
posed technique can avoid delay in the execution time is 
presented. Generally, code using the proposed technique 
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runs slower than code using procedural abstraction. Pro- 
cedural abstraction delays the execution time by -15%, 
and the delay can be reduced to less than 5% when it util- 
izes profiling data [I 31. However, the proposed technique 
executes more instructions than procedural abstraction. 
Each handler in Table 2 consists of about 10-50 instruc- 
tions, while procedural abstraction uses a branch and two 
push and pop instructions. The handler also can increase 
the cache miss ratio. If handler is frequently called, the 
increased miss ratio would be low. 

It is observed that in practice the proposed technique 
can avoid the delay in execution time by taking advantage 
from the execution frequency profiling data. Specifically, 
it was found that a large portion of code fragments in em- 
bedded software is never or seldom executed with con- 
ventional usage patterns. We have implemented a code 
coverage analysis tool to measure the execution fre- 
quency of all codes in the operating system. For example, 
more than 59% of the operating system code segments 
were not executed although we run 424 different test ap- 
plications on top of it. These include unused destructor 
functions of inter-task communication primitives and des- 
tination of untaken branches in boot and initialization 
codes. The ratio of unexecuted fragments would be much 
greater in application codes as they are not shared by 
other software. Thus, if the proposed technique is applied 
to these unused or seldom used fragments, the delay in 
the execution time will be negligible. 

Finally, we compare the proposed technique with echo 
instructions. The echo reduces the code size significantly, 
and does not slow down the execution speed if supported 

Figure 7. Code size vs. execution time. 

. . 

,: . . ........... ' ,.* ..-' ..' .' -8 . . . . . . . . .  . . . .  ' . .  
Figure 8. Ratio of unexecuted fragments in operating sys- 
tem components when over 400 test cases are used. 

by the hardware. However, so far as we know, no com- 
mercial processor supports these instructions. The great- 
est advantage of the proposed technique is that it does not 
rely on hardware extension. That is the technical chal- 
lenge solved in this paper 1141. 

6. Conclusion 

This paper presented an operating system technique 
for supporting echo instructions without modifying mi- 
croprocessor architecture. First, the exception mode can 
reduce program code size if at least two instructions are 
repeated in at least two points. This mode is most appro- 
priate for tiny embedded systems where code size is criti- 
cal. Second, the branch mode does not raise an exception, 
and thus it provides a greater execution speed. This is 
valuable for frequently-executed codes. Third, the last 
mode allows these two modes to be applicable to ROM- 
based systems. The experimental results showed that a 
large fraction of codes is never executed. If the proposed 
technique is applied for this fraction, it can reduce the 
code size largely without delaying the execution time. 
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