
A Space-Efficient On-Chip Compressed Cache
Organization for High Performance Computing1

Keun Soo Yima, Jang-Soo Leeb, Jihong Kima, Shin-Dug Kimc, and Kern Koha
a School of Computer Science and Engineering, Seoul National University, Seoul, Korea

b IBM Poughkeepsie, NY, USA
c Department of Computer Science, Yonsei University, Seoul, Korea

{ksyim, kernkoh}@oslab.snu.ac.kr, jangsoo@us.ibm.com,
jihong@davinci.snu.ac.kr, sdkim@cs.yonsei.ac.kr

Abstract. In order to alleviate the ever-increasing processor-memory perform-
ance gap of high-end parallel computers, on-chip compressed caches have been
developed that can reduce the cache miss count and off-chip memory traffic by
storing and transferring cache lines in a compressed form. However, we ob-
served that their performance gain is often limited due to their use of the
coarse-grained compressed cache line management which incurs internally
fragmented space. In this paper, we present the fine-grained compressed cache
line management which addresses the fragmentation problem, while avoiding
an increase in the metadata size such as tag field and VM page table. Based on
the SimpleScalar simulator with the SPEC benchmark suite, we show that over
an existing compressed cache system the proposed cache organization can re-
duce the memory traffic by 15%, as it delivers compressed cache lines in a
fine-grained way, and the cache miss count by 23%, as it stores up to three
compressed cache lines in a physical cache line.
Keywords. Parallel processing, processor-memory performance gap, on-chip
compressed cache, fine-grained management, internal fragmentation problem.

1 Introduction

As the performance gap between processor and memory has increased by 28-48%
every year, the memory system performance typically dominates the whole computer
system performance [1]. In order to improve the memory performance, high-end
computers are based on large size on-chip caches with a high off-chip memory band-
width. Although these are effective in improving the memory performance, they are
restricted by physical device limits such as the on-chip area and off-chip pin count.

On-chip compressed cache is an alternative approach of improving the memory
performance. Compressed caches, e.g. SCMS [2] and CC [3], store and transfer some
cache lines in a compressed form, thereby, reducing both the on-chip cache miss
count and off-chip memory traffic without having to face the physical limits. The
existing compressed caches manage variable-size compressed cache lines in a coarse-
grained manner. Specifically, as exemplified in Figure 1, if a cache line can be com-
pressed to less than half of the original size, they treat the cache line size as half of
the original size, thereby, incurring internally unused space, namely internal fragmen-
tation. Otherwise, they do not handle the cache line in a compressed form. Thus, at

1 This work was supported by University IT Research center project in Korea.

most two compressed cache lines can be stored in a physical cache line, and only 1 bit
is required to specify the status of a physical cache line whether it embeds two com-
pressed lines or one uncompressed line.

However, their performance gain is often limited by this coarse-grained man-
agement. Figure 2 shows a cumulative compression rate distribution of L2 data cache
lines on an Alpha machine simulator using the SPEC CPU2000 benchmark suite [7]
where the compression rate is defined as the ratio of the compressed data size and the
original data size. It shows that over 60% of cache lines are compressed to less than
25% of the original cache line size. This high compression efficiency, mainly due to
the frequent value locality [4], strongly suggests that the coarse-grained management
is overly conservative.

In order to fully exploit this high compression efficiency, in this paper we pre-
sent the Fine-grained Compressed Memory System (FCMS) based on the four key
techniques. First, the FCMS manages compressed cache lines in a fine-grained man-
ner so that it reduces the fragmented space. This implies that the FCMS is more effec-
tive in reducing the off-chip memory traffic than the existing compressed caches.
Second, based on this fine-grained management, the FCMS stores up to 3 compressed
cache lines in a physical cache line in order to further reduce the cache miss count.
Unfortunately, this fine-grained management can bring out a large size of metadata.
Third, we thus present two additional techniques that limit an increase in the size of
both on-chip cache tag address and VM page table without diminishing the obtained
performance gain. Fourth, we firstly apply the cooperative parallel decompression
technique [5] to on-chip compressed caches in order to reduce the decompression
time without harming the compression efficiency significantly.

In order to evaluate the effectiveness of the FCMS, we modified the SimpleSca-
lar [6] simulator and used the SPEC benchmarks. The experimental results show that
the FCMS reduces the average execution time by 5% and 12% over the SCMS and a
conventional cache system, respectively. In particular, the FCMS reduces the on-chip
L2 cache miss count by 23% and 25% and the off-chip memory traffic by 15% and
46% over the SCMS and the conventional system, respectively, in an average case.

The rest of this paper is organized as follows. In Section 2, we provide the or-
ganization of the FCMS. The experimental methodology is described in Section 3,
while the evaluation results are given in Section 4. We review the related work in
Section 5 and conclude this paper with a summary and a future work in Section 6.

25
%

Compress

Store

Line Size

Uncompressed
Cache Line

Compressed
Cache Line

Internal
Fragmentation

75%

Store

25
%

Compress

Line Size

Managed in a
Compessed Form

Managed in an
Uncompessed Form

Reserved
for Future Use

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
compression rate

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

MAX
AVG
MIN

Fig. 1. The existing coarse-grained com-
pressed cache line management.

Fig. 2. A cumulative compression rate dis-
tribution of on-chip L2 data cache lines.

2 Fine-Grained Compressed Memory System (FCMS)

Figure 3 illustrates the overall cache and memory organization of the FCMS, in which
both the on-chip unified L2 cache and the main memory are managed in a com-
pressed form. When a data memory page is firstly loaded into the main memory, all
L2 cache lines in the page are individually compressed using a hardware compressor.
We use the X-RL compression algorithm [8] because of some of its desirable proper-
ties, such as the high compression efficiency with small size data and fast
(de)compression speed of at least four bytes per cycle. If a compressed cache line
stored in the memory is accessed, the off-chip memory bandwidth can be expanded as
the line is transferred to the on-chip cache in a compressed form. Moreover, as the
line is stored in the on-chip L2 cache in a compressed form, the effective L2 cache
capacity is also expanded.

While the line is stored in the L2 cache, the line is concurrently decompressed
on the fly using a hardware decompressor in order to deliver the required L1 cache
line to the L1 cache. As the remaining L1 cache lines in the decompressed L2 cache
line have a high probability of accessing in the near future due to spatial locality, the
decompressed L2 line is stored in a decompression buffer which can be accessed in
one cycle. The decompression buffer consists of a small fully-associative cache (8
entries [2]) and is managed in the same way as the victim cache does [9]. In this paper,
we assume that the decompression buffer can be concurrently accessed with the L1
caches for the fair performance evaluation with the conventional cache systems.

In the FCMS, only data cache lines are managed in a compressed form. As in-
struction cache lines result in the lower compression efficiency while incurring the
larger decompression overhead, the overall cache and memory system performance
can be degraded if they are managed in a compressed form. Fortunately, as instruc-
tion cache lines are not generally modified at runtime, several off-line code compac-
tion techniques [10] can be used for instruction cache lines for better performance.

2.1. Fine-grained compressed cache line management

The size of compressed cache lines is various. In order to efficiently manage the vari-
able size data, on-chip compressed caches are typically based on a fixed-size alloca-
tion method [11]. In this paper, the fixed unit of managing the compressed cache line
is called as cache bucket, and the cache bucket unit (CBU) is defined as the ratio of
the cache bucket size and the original cache line size. The fixed-size allocation uses
several consequent cache buckets for a variable size data. Thus, the last cache bucket
can incur internal fragmentation, and the average fragmentation size is equal to half
of the cache bucket size.

We can notate 1/2 as CBU of the coarse-grained management of the SCMS and
the CC. As the CC is targeting for embedded processors, we only use the SCMS as a
compressed cache which uses the coarse-grained management scheme. This implies
that due to the internal fragmentation the coarse-grained management wastes about
25% of compressed cache space in an average case. In order to reduce the fragmented
space, we use the fine-grained compressed cache line management in the FCMS.
Thus, the variable-size compressed cache lines can be stored in a more fitting cache
bucket while reducing the internal fragmentation. Figure 4 visualizes the fraction of

from/to compressed main memory

from/to CPU

L1 Data Cache
(Uncompressed)

Decompression
Buffer (DB)

L1 Write
Buffer

Parallel
Decompressor

Parallel
Compressor

Unified L2 Cache
(Compressed)

MUX

MUX

L1 Inst. Cache
(Uncompressed)

Storage Space100
%

0%

Saved Space

Compression
Rate

100%12.5% 25%37.5% 50%62.5% 75%87.5%

Compressed Data

Internal
Fragmentation

SCMS: Internal
 Fragmentation
FCMS: Saved Space

Fig. 3. Overall cache and memory hierar-
chy organization of the FCMS.

Fig. 4. Space efficiency of the fine-grained
management of the FCMS (CBU=1/16).

internal fragmentation as a function of the compression rate where CBU of the FCMS
is assumed to be 1/16. In the figure, white area means the compressed data size, red
areas mean the internally fragmented space for both the FCMS and the SCMS, blue
areas mean the saved space for the FCMS and the fragmented space for the SCMS,
and gray area means the saved space for both the FCMS and the SCMS. Thus, the
amount of internal fragmentation space can be greatly reduced in the FCMS.

In the SCMS, cache lines whose compression rate is higher than or equal to 50%
do not provide any space-efficiency although they are managed in a compressed form
because of the internal fragmentation. On the other hand, in the FCMS, cache lines
that have high compression rate of up to (CBU-1-1)/CBU-1 % (93.75% if CBU is 1/16)
can provide performance benefits. However, the provided benefits of the inefficiently
compressed lines are quite small, while the compressed lines bring out the decom-
pression overhead. Thus, we use the selective compression technique [2] where a
cache line is managed in a compressed form only if its compression rate is less than a
specified threshold value (THRD). If the threshold value is set to be a lower value,
both the performance benefit and the decompression overhead are reduced because
only small fraction of cache lines are compressed. Otherwise if the value is set to be a
higher one, conversely both the benefit and the overhead are increased.

In the FCMS, maximum CBU-1 (16 if CBU = 1/16) numbers of compressed
cache lines can be stored in a physical cache line when all the compressed cache lines
can be stored in a bucket whose size is CBU. Actually, in order to do this, the FCMS
has to use CBU-1 numbers of tag addresses, valid bits, and dirty bits per every physi-
cal cache line. However, this requires a large overhead in terms of on-chip area and
energy consumption, while typically only a part of the CBU-1 tag addresses is used.
Thus, the number of tag address (NTAG) is another design parameter of the FCMS. In
addition, we use LRU as the replacement algorithm of compressed cache lines stored
in a physical cache line.

2.2. Metadata size reduction techniques

The fine-grained management at the same time requires a large amount of metadata,
lgCBU-1 bits (e.g. 4 bits if CBU is 1/16), to specify the number of cache buckets used

for a compressed cache line, while the coarse-grained management where CBU is 1/2
requires only 1 bit for a cache line. When the L2 cache line size is 128 bytes and the
memory page size is 4 kilobytes, the fine-grained management requires 4096/128*
lgCBU-1 bits (e.g. 128 bits if CBU is 1/16) of metadata per every memory page. This
metadata size required by the FCMS is relatively large as compared with the VM
page table entry size of about 32 bits.

In order to reduce this metadata size without lowering the granularity of manag-
ing compressed cache lines, we use a metadata grouping technique. Specifically, we
observed that the number of cache buckets used for all compressed cache lines in an
identical memory page is quite similar to each other because the cache lines have
relatively similar compression rate mainly due to the spatial locality of data. There-
fore, in the FCMS, we only store the maximum number of all cache buckets used for
all cache lines in a same memory page as the metadata. Then, the metadata size of the
FCMS is only lgCBU-1 bits (4 bits if CBU is 1/16) per memory page. In this paper, we
assume that this small size of metadata can be embedded in the VM page table entry,
which typically has some unused bits.

Moreover, if the physical memory capacity is 256 megabytes and cache line size
is 128 bytes, the size of tag addresses for a cache line in the compressed cache is
NTAG*lg(256M/128) bits (63 bits if NTAG is 3). In order to reduce this tag field size,
we use a segmented addressing technique. Specifically, a tag address is divided into a
tag segment and a tag offset, and all compressed cache lines stored a physical cache
line should have an identical tag segment. With this technique, if the tag offset size is
TOFF bits, the tag field size per a cache line is only lg(256M/128) – TOFF + NTAG *
TOFF bits (36 bits if TOFF is 7 bits and NTAG is 3), while that for a conventional
cache is lg(256M/128) = 21 bits. As the FCMS aims to an L2 unified cache where the
cache line size is between 512 bits and 2048 bits, we believe that the additional bits
used for tag fields in the FCMS are acceptable design overhead.

2.3. FCMS-based direct-mapped cache organization

Figure 5 shows the compressed L2 cache organization of the FCMS in a direct-
mapped scheme. The same organization technique applies for set-associative caches.
In this organization, the tag address count (NTAG) is 3, the tag offset size (TOFF) is 4
bits, and the cache bucket unit (CBU) is 1/16. Thus, the tag RAM has three valid bits,
three dirty bits, a tag-segment address, and three tag-offset addresses per every cache
line, and the data RAM is divided into 16 cache buckets.

When a request is generated, the tag segment and the 3 tag offsets of the re-
quested cache set are concurrently compared with that of the generated address. The
results are analyzed by using three OR-gates and an AND-gate so as to determine the
hit or miss. Because only three gates are additionally used in the critical path of the
FCMS as indicated by the bold lines in Figure 5, we assume that the FCMS-based
compressed caches do not cause any additional delay as regarded in the access time.
Moreover, we can use a three-input OR-gate instead of the three two-input OR-gates
to decide the hit or miss, and this reduces the gate delay as regarded in the access time.

We use lgCBU-1 = 4 bits to encode the location of a compressed cache line
stored in the data RAM. Since the location of the first compressed cache line is al-
ways fixed as 0, we use only 8 bits for the location field. The location information is

1st compressed line
2nd compressed line
3rd compressed line

address from CPU

Uncompressed Line

Tag Index Offset

Tag RAM Data RAM

Hit

(4 bits)

(16 cache buckets)

Parallel
Decompressor

Left Shifter

0000

=

D
ecoder

Data (128 Bytes)

==

000110

.

.
.
.

011111

DV location

100101

001111
01110101

01011000
10101110

11110101
0000

1010
1000

1100
1010

0100
1000

1000

tag seg. tag offset
1011

0100
0000

1001
1011

0101
0000

1001
0000

1010
0000

1010

=

MUX

Fig. 5. A fine-grained compressed cache architecture in direct-mapped scheme.

used as an input of the MUX logic, which selects an appropriate one and routes to the
left shifter and parallel decompressor logic. The size of the requested compressed
cache line is concurrently calculated by subtracting the two adjacent location values.

For example, if the second compressed cache line whose tag area is marked by
gray color is accessed, a cache hit occurs and the location data of 0100(2) = 4 is routed
to the left shifter logic, which performs a left shift operation for 4 cache buckets. Also
its size is calculated by subtracting its location value from the location value of the
third one. The result is 1010(2) – 0100(2) = 6 cache buckets. Then, the selected cache
buckets are routed to the cooperative parallel decompressor logic. Finally, they are
delivered to a decompression buffer and an L1 cache in an uncompressed form.

In on-chip compressed caches, the decompression time can seriously degrade the
effectiveness of the data compression technique. For example, the X-RL decompres-
sor takes up to 3+LS/4 cycles for decompressing a cache line, whose size is LS bytes.
This means that a smaller compression unit size results in the shorter decompression
time. However, it simultaneously incurs the lower compression efficiency. Fortu-
nately, the cooperative parallel decompressor [5] can reduce the decompression time
by about 75% while it slightly degrades the compression efficiency. Thus, we use the
parallel (de)compressor in the FCMS and evaluate the performance impact.

3 Experimental Methodology

In cache and memory compression systems, the size of both compressed cache lines
and memory pages is liable to change after performing a write operation. As a result,
the access time of the compressed cache and memory is not fixed but it depends on

runtime status. However, it is difficult to reflect this kind of runtime behaviors in
trace-driven simulations due to their use of static trace data. Moreover, trace-driven
simulations generally do not provide essential operations of superscalar micro-
processors such as out-of-order execution, which is used to adaptively cope with this
variable memory access time. Thus, we implemented FCMS and SCMS based on an
execution-driven simulator of SimpleScalar 3.0 [6]. We mainly modified the on-chip
cache, memory bus, and virtual memory modules of the simulator and newly supplied
the compression and decompression modules.

Specifically, we used Alpha instruction set architecture, which accurately re-
flects the high-performance processor architecture. We used sim-outorder to quantita-
tively evaluate the performance of cache and memory systems. Table 1 describes the
baseline model used in our experiments. The model follows an aggressive 8-issue
out-of-order processor. The cache configuration parameters for the base line model
are assumed to be two 32 kilobytes L1 caches and a unified 256 kilobytes L2 cache
with four-way associativity and 128 bytes cache line size. We referenced an accurate
cache timing model of CACTI for calculating the access time of on-chip caches [12].

We used the SPEC CPU2000 benchmark suite [7] with reference input workload.
The benchmark suite is compiled by using the Compaq Alpha compiler with SPEC
peak settings. The virtual memory image of this benchmark suite is captured after full
execution by using sim-safe. For the sim-outorder simulations, we used a fast for-
warding technique [13] where 1.5 billion instructions are accurately executed after a
coarse-grain simulation of 0.5 billion instructions so as to reduce the simulation time
without notably compromising the simulation accuracy.

Table 1. Base line model.

Parameter Value

Processor Core 2.4 GHz (6 x 400 MHz), 0.13 Micron, Alpha ISA,
8 fetch/issue/decode/commit, 128-RUU, 128-LSQ.

Branch Predictor Bimodal 2K, 512-entry 4-way BTB, 8-entry RAS.
TLB (Inst. / Data) 16 / 32 entry, 4KB page size, 4-way, LRU, 72 cycle latency.

L1 Cache (Inst. / Data) Each 32KB, 1-way, 32B block, LRU, 1 cycle latency, write-back.
L2 Cache (Unified) 256KB, 4-way, 128B blocks, LRU, 7 cycle latency, write-back.

Main Memory 72 cycle latency, 8 bytes bandwidth, 400 MHz bus clock.

4 Performance Evaluations

In this section, we evaluate the performance of the FCMS over a conventional cache
system (CS), a conventional system with a decompression buffer (CSDB), and the
SCMS. In CSDB, the decompression buffer is only used for prefetching the L2 cache
lines to L1 caches.

First, as shown in Figure 6, we measured the average memory cycles spent to
transfer a data cache line where the memory latency is excluded. Because L2 cache
line size is 128 bytes and memory bus bandwidth is 8 bytes, both CS and CSDB re-
quire 8 memory bus cycles to deliver a cache line. On the other hand, in both SCMS
and FCMS, the required bus cycles are significantly reduced as they deliver data
cache lines in a compressed form. Although they use the same compression algorithm

0

2

4

6

8

10

12

14

16

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf AVG

M
e
m

o
ry

 B
u
s
 C

yc
le

CS CSDB SCMS(CBU=1/2) FCMS(CBU=1/4)

FCMS(CBU=1/8) FCMS(CBU=1/16) FCMS(CBU=1/32)

Fig. 6. Average memory bus cycles elapsed to deliver a data cache line.

and the same compression threshold value (50%), the FCMS with a finer-grained
cache bucket size uses the smaller memory bus cycles. This is because the fact that
the fine-grained management more accurately specifies the actual size of compressed
cache lines, thereby, reducing the internal fragmentation. As this tendency is stabi-
lized when CBU is larger than 1/16, we set 1/16 as CBU of the FCMS. The FCMS
where CBU is 1/16 requires about 8.7 memory bus cycles, while the SCMS requires
about 10.2 cycles in an average case. This means that the FCMS reduce the amount of
memory traffic by 15% and 46% as compared with the SCMS and CS, respectively.

Second, we measured the miss count of the on-chip unified L2 cache as shown
in Figure 7. The miss count of CSDB is slightly higher than that of CS because its
decompression buffer filters several L2 cache accesses and consequently disturbs the
reference history of the L2 cache, incurring inefficient cache replacements. The miss
count of the SCMS is reduced by about 2% as compared with both CS and CSDB in
an average case. This is because in the SCMS two compressed cache lines whose tag
addresses are same except for the least significant bit can be stored in a physical
cache line. Thus, even cache lines are sufficiently compressed as shown in Figure 6,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf AVG

N
o
rm

a
liz

e
d
 C

a
c
h
e
 M

is
s
 C

o
u
n
t

CS CSDB SCMS(NTAGS=2) FCMS(NTAGS=2)

FCMS(NTAGS=3) FCMS(NTAGS=4) FCMS(NTAGS=5)

Fig. 7. Normalized miss count of an on-chip unified L2 cache.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf AVG

N
o
rm

a
li
ze

d
 C

a
c
h
e
 M

is
s
 C

o
u
n
t

CS CSDB SCMS(TOFF=1) FCMS(TOFF=1)

FCMS(TOFF=3) FCMS(TOFF=5) FCMS(TOFF=7) FCMS(TOFF=9)

Fig. 8. Normalized miss count of the FCMS as a function of TOFF value.

the probability of storing two compressed lines in a physical cache line is quite low.
On the other hand, in the FCMS the miss count is reduced by 22%, 25%, 25%, and
26% when the NTAG value is 2, 3, 4, and 5, respectively. Thus, we set the NTAG to
be 3 in the FCMS. For benchmarks gzip, eon, gap, and bzip2, the miss count is
slightly reduced in both the SCMS and the FCMS because their workload sizes are
relatively small, thereby, even if a twice large size cache is used the miss count is
seldom reduced.

Third, we measured the cache miss count of the FCMS by changing the TOFF
value as shown in Figure 8. In the FCMS, the miss count is reduced by 2%, 7%, 18%,
21%, and 23% when the TOFF value is 1, 3, 5, 7, and 9, respectively, in an average
case as compared with CS and CSDB. The miss count is stabilized when the TOFF
value is larger than 7 because the accessed cache lines have strong spatial locality,
and the address space covered by the tag-offset and cache line size, 27x128 = 16 kilo-
bytes, is sufficient to cope this locality. Thus, we set the TOFF of the FCMS to be 7.

Fourth, we evaluated the average memory access time (AMAT) in order to ana-
lyze the decompression overhead of the FCMS and the SCMS. We calculated the
code AMAT of these two systems in a similar way of calculating AMAT of CS and
CSDB [1]. On the other hand, Eq. 1 is used to calculate the data AMAT of the FCMS
and the SCMS. In the formula, A, M, C, and DO mean the access time, miss rate,
fraction of compressed lines, and decompression cycles respectively, while the small
symbols of L1, DB, L2, and MM mean the L1 data cache, decompression buffer, uni-
fied L2 cache, and main memory, respectively.

() 




















+

++
++=

avgMMMMMML

avgLLL
DBDBLLData DOCAM

DOCA
MAMAAMAT

;2

;222
11 (1)

Based on this, we measured the data AMAT as shown in Figure 9. It shows that
the FCMS reduces the data AMAT by 29%, 14%, 16%, and 8% in an average case as
compared with CS, CSDB, SCMS, and the SCMS with the cooperative parallel

0
1
2
3
4
5
6
7
8
9

10
11
12

A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf AVG

T
im

e
 (

C
P
U

 c
yc

le
)

L1_AT DB_AT L2_AT L2_DO M_AT M_TT M_DO

Fig. 9. Average data memory access time (Data AMAT).

* DB: decompression buffer; MM: main memory; AT: access time; DO: decompression
overhead; TT: transfer time. (A: CS; B: CSDB; C: SCMS; D: SCMS-Parallel, E: FCMS)

decompressor (SCMS-Parallel). Due to the use of parallel decompressor, the decom-
pression overheads (L2_DO and MM_DO) are significantly reduced in both the
SCMS-Parallel and the FCMS. We used the early restarting technique, which pro-
vides the ability of accessing the critical word as early as possible without waiting for
the complete decompression of the whole cache line, and the decompression time
overlapping technique, which overlaps the transfer time of a compressed cache line
from the main memory and its decompression time, in order to lessen DOL2 and
DOMM, respectively. We observed that most of the decompression times are absorbed
by the decompression buffer in both the FCMS and the SCMS since the hit ratio of
the decompression buffer in the FCMS is over 40% in an average case. We also ob-
served that the FCMS reduces the code AMAT by about 1% as compared with CS,
CSDB, the SCMS, and the SCMS-Parallel as it reduces the miss count of the unified
L2 cache.

Fifth, we measured the instructions per cycle (IPC) as shown in Figure 10. The
average IPC is 1.62, 1.65, 1.72, 1.74, and 1.82 in CS, CSDB, the SCMS, the SCMS-
Parallel, and the FCMS, respectively. This implies that the execution time of the
FCMS is reduced by 12%, 10%, 6%, and 5% in an average case as compared with CS,
CSDB, the SCMS, and the SCMS-Parallel, respectively. In this experiment, the com-
pression threshold of the FCMS is set to be 50%, which is identical configuration to
that of the SCMS. If the compression threshold is set to be a higher value, both the
performance gain and the decompression overhead are increased. Because of this, we
observed that in the FCMS, IPC is slightly influenced by the compression threshold
value, and it is maximized when the threshold value is set to be 50%.

Furthermore, when we use 93.75% (=15/16) as the threshold value, IPC of the
FCMS is only reduced by less than 1% in an average case. Since a higher threshold
value means that a large amount of cache lines is managed in a compressed form and
the fine-grained management of the FCMS significantly reduces the fragmented space
over the coarse-grained management of the SCMS, the FCMS has a higher potential
of expanding the effective main memory capacity than the SCMS. Therefore, we

0

0.5

1

1.5

2

2.5

3

gz
ip vp

r
gc

c
m
cf

cr
af
ty

pa
rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip
2

tw
ol
f

AV
G

In
s
tr
u
c
ti
o
n
s
 P

e
r
C

yc
le

 (
IP

C
)

CS CSDB SCMS SCMS-Parallel FCMS

Fig. 10. Instructions per cycle (IPC).

believe that the real improvement in the execution time obtained with the FCMS will
be much greater than that we presented in this paper.

5 Related Work

Over the past ten years, several research groups have been studied the on-chip cache
and main memory compression systems in order to alleviate the performance gap
between processor, memory, and hard disk [14] as well as reduce the energy con-
sumption of memory systems [15] in high-end parallel computers. The existing on-
chip compressed caches are typically based on the coarse-grained compressed cache
line management because of its simplicity [2, 3]. Although as shown in this paper the
coarse-grained management is overly conservative, so far as we know, none has been
developed a compressed cache system in this perspective of managing compressed
cache lines in a fine-grained manner and storing up to three compressed cache lines in
a physical cache line with the appropriate metadata reduction techniques.

6 Conclusion

Recently on-chip compressed caches have been developed to alleviate the processor-
memory performance gap in high-end parallel computers. However, we have ob-
served that the performance gain of the existing compressed caches is often limited
mainly due to the high compression efficiency of on-chip cache lines. In order to fully
exploit the high compression efficiency, in this paper we have presented a novel on-
chip compressed cache system based on the four key techniques. First, the proposed
system manages the compressed cache lines in a fine-grained manner so that it re-
duces the fragmented space and consequently reduces the memory traffic over the
existing compressed cache systems. Second, based on this, the proposed cache stores
up to three compressed cache lines in a physical cache line, thereby, reducing the
cache miss count over the existing systems. Third, in order to avoid an increase in the
metadata size, the proposed system uses two novel metadata reduction techniques.

Fourth, we firstly have applied a parallel (de)compressor to the on-chip cache systems
and have shown the performance impact of using this. The execution-driven simula-
tion results have shown that the FCMS reduces the average execution time by 5% and
12% over the an existing compressed cache system and a conventional cache system,
respectively. In particular, the FCMS reduces the on-chip L2 cache miss count by
23% and 25% and the off-chip memory traffic by 15% and 46% over the compressed
system and the conventional system, respectively, in an average case.

References

1. J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer Architecture – A Quantitative
Approach, 3rd Ed., Morgan Kaufmann Publishers, 2002.

2. J. S. Lee, W. K. Hong, and S. D. Kim, “Design and Evaluation of On-Chip Cache Compres-
sion Technology,” In Proceedings of the IEEE International Conference on Computer De-
sign, pp. 184-191, 1999.

3. J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data Caches,” In Pro-
ceedings of ACM/IEEE International Symposium on Microarchitecture, pp. 258-265, 2000.

4. Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-centric Data Cache
Design,” In Proceedings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

5. P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel Compression with Cooperative
Dictionary Construction,” In Proceedings of the IEEE Data Compression Conference, pp.
200-209, 1996.

6. T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an Infrastructure for Computer System
Modeling,” IEEE Computer, Vol. 35, Issue 2, pp. 59-67, 2002.

7. J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium,”
IEEE Computer, Vol. 33, Issue 7, pp. 28-35, 2000.

8. M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a Main Memory Hardware
Data Compressor,” In Proceedings of the 22nd EuroMicro Conference, IEEE Computer So-
ciety Press, pp. 422-430, 1996.

9. N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully Associative Cache and Prefetch Buffers,” In Proceedings of the ACM/IEEE Interna-
tional Symposium on Computer Architecture, pp. 364-373, 1990.

10. A. Beszedes, R. Ferenc, T. Gyimothy, A. Dolenc, and K. Karsisto, "Survey of Code-Size
Reduction Methods," ACM Computing Surveys, Vol. 35, No. 3, pp. 223 - 267, 2003.

11. A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System Concepts, 6th Ed., pp. 285-
287, John Wiley & Sons Inc., 2003.

12. P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache Timing, Power, and
Area Model,” Compaq Computer Corporation Western Research Laboratory, Research Re-
port 2001/2, 2001.

13. I. Gomez, L. Pifiuel, M. Prieto, and F. Tirado, “Analysis of Simulation-adapted Bench-
marks SPEC 2000,” ACM Computer Architecture News, Vol. 30 , No. 4, pp. 4-10, 2002.

14. K. S. Yim, J. Kim, and K. Koh, “Performance Analysis of On-Chip Cache and Main Mem-
ory Compression Systems for High-End Parallel Computers,” In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications, pp.
469-475, 2004.

15. L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-Assisted Data Compression for
Energy Minimization in Systems with Embedded Processors,” In Processing of the IEEE
Design, Automation and Test in Europe Conference and Exhibition, pp. 449-453, 2002.

