FlexFS: A Flexible Flash File System for ML C NAND Flash Memory

Sungjin Leé, Keonsoo H& Kangwon Zhanyy Jihong Kini, and Junghwan Kirn

TSeoul National University, Korea
{chamdoo, air21c, kwzhang, jihoh@davinci.snu.ac.kr

*Samsung Electronics, Korea
junghwani.kim@samsung.com

Abstract capacity, performance, and endurance. The capacity of
The multi-level cell (MLC) NAND flash memory MLC flash memory is larger than that of SLC flash mem-

technology enables multiple bits of information to be ory. By storing two (or mor?) bits on ‘?‘_S'”g'e memory
. o . .~ cell, MLC flash memory achieves significant density in-
stored on a single cell, thus making it possible to in-

X .) : creases while lowering the cost per bit over SLC flash
crease the density of the memory without increasing the . : .

S . memory which can only store a single bit on a cell. How-
die size. For most MLC flash memories, each cell can

. . ever, SLC flash memory has a higher performance and
be programmed as a single-level cell or a multi-level cell

) .) . . "a longer cell endurance over MLC flash memory. Es-
during runtime. Therefore, it has a potential to achieve g Y

both the high performance of SLC flash memory and thePeCla”y.' the write performance of SLC flash memory is
) ; much higher than that of MLC flash memory.
high capacity of MLC flash memory.

In this paper, we present a flexible flash file system, As the demand for the high capacity storage system is

called FlexFS, which takes advantage of the dynamic re[ap|dly Increasing, MLC flash memory is being widely

configuration facility of MLC flash memory. FlexFS di- 2rqnzeiedhcl)r|11er:a;iyitrgloctzlrie?:sbigzegDiesw(I:ﬂe(fv’v;vuecrh bf
vides the flash memory medium into SLC and MLC re- P - 419 .) ’

. . . .~ cause of a poor performance characteristic of MLC flash
gions, and dynamically changes the size of each region tQ

. . o memory, it is becoming harder to satisfy users’ require-
meet the changing requirements of applications. We ex-) .
ents for the high performance storage system while

ploit patterns of storage usage to minimize the overhead'°"> 1or .
of reorganizing two different regions. We also propose aprowdlng mcrease_d storage capacity. S

novel wear management scheme which mitigates the ef- To overcomg_thls poor pgrformance, n .th's paper, we
fect of the extra writes required by FlexFS on the lifetime PTOPOSE exploiting the flexible programming feature of

of flash memory. Our implementation of FlexFS in the MLC flash memory [1]. Flexible programming is a writ-

Linux 2.6 kernel shows that it can achieve a performancéng method which enables each cell to be programmed

comparable to SLC flash memory while keeping the cadsa single-level cell (SLC programming) or a multi-level

pacity of MLC flash memory for both simulated and real cell (MLC pro_gramming_). If SLC programming is used
mobile workloads. to write data into a particular cell, the effective proper-

ties of that cell become similar to those of an SLC flash

memory cell. Conversely, MLC programming allows us
1 Introduction to make use of the high capacity associated with MLC

flash memory.
As flash memory technologies quickly improve, NAND The most attractive aspect of flexible programming is
flash memory is becoming an attractive storage solutiorthat it allows fine-grained storage optimizations, in terms
for various IT applications from mobile consumer elec- of both performance and capacity, to meet the require-
tronics to high-end server systems. This rapid growth isnents of applications. For instance, if the current capac-
largely driven by the desirable characteristics of NAND ity of flash memory is insufficient for some application,
flash memory, which include high performance and low-MLC flash memory can change its organization and in-
power consumption. crease the number of multi-level cells to meet the space

There are two types of NAND flash memory in the requirement. However, to exploit flexible cell program-

market: a single-level cell (SLC) and a multi-level cell ming effectively, several issues need to be considered.
(MLC) flash memory. They are distinctive in terms of First, heterogeneous memory cells should be managed

------------ Reference voltage tion 2, we present a brief review of NAND flash memory
and explain MLC flash memory in detail. In Section 3,

we give an overview of FlexFS and introduce the prob-
1 0 1 |ifo)ifoo) |10 lems that occur with a naive approach to exploiting flexi-
ble cell programming. In Section 4, we describe SLC and
' v, ' ' ' Vi
()

Distribution of Cells

MLC management techniques. In Section 5, we present
experimental results. Section 6 describes related work on
heterogeneous storage systems. Finally, in Section 7, we
conclude with a summary and future work.

a) SLC (b) MLC (2 bits/cell

Figure 1: Threshold voltage distributions for SLC (1
bit/cell) and MLC (2 bits/cell)

2 Background

in a way that is transparent to the application layer, be-
cause flexible_programming allows_ twp different types of2'1 NAND Flash Memory
a cell to exist in the same flash chip simultaneously.

Second, dynamic cell reconfigurations between theNAND flash memory consists of multiple blocks, each
SLC and MLC must be handled properly. For example, ifof which is composed of several pages. In many NAND
too many flash cells are used as single-level cells, the cdtash memories, the size of a page is between 512 B and 4
pacity of flash memory might be critically impaired, even KB, and one block consists of between 4 and 128 pages.
though the overall I/O performance is improved. There-NAND flash memory does not support an overwrite op-
fore, itis important to determine the number of SLC cellseration because of its write-once nature. Therefore, be-
and MLC cells so that both the performance and capacityore writing new data into a block, the previous data must
would be optimally supported. be erased. Furthermore, the total number of erasures

Third, the cost of dynamic cell reconfigurations shouldallowed for each block is typically limited to between
be kept as low as possible. Changing the type of a cell 0,000 and 100,000 cycles.
requires expensive erase operations. Since an erase op-Like SRAM and DRAM, flash memory stores bits in a
eration resets cells to their initial bit value (e.g., 1)p th memory cell, which consists of a transistor with a float-
data stored in the cells must first be moved to elsewherdng gate that can store electrons. The number of electrons
The performance overhead of this data migration impairstored on the floating gate determines the threshold volt-
the overall I/0 performance. age,V;, and this threshold voltage represents the state of

Finally, write and erase operations required to changéhe cell. In case of a single-level cell (SLC) flash mem-
the type of a cell reduce the endurance of each cell, reery, each cell has two states, and therefore only a single
sulting in the decrease of the lifetime of flash memory.bit can be stored in that cell. Figure 1(a) shows how the
This problem also needs to be addressed properly. value of a bit is determined by the threshold voltage. If

In this paper, we propose a flexible flash file systemthe threshold voltage is greater than a reference voltage,
calledFlexFS for MLC flash memory that addresses the it is interpreted as a logical ‘1’; otherwise, it is regarded
above requirements effectively. FlexFS provides appli-as a logical ‘0". In general, the write operation moves the
cations with a homogeneous view of storage, while in-state of a cell from ‘1’ to ‘0’, while the erase operation
ternally managing two heterogeneous memory regions;hanges ‘0’ to ‘1’
an SLC region and an MLC region. FlexFS guarantees If flash memory is composed of memory cells which
the maximum capacity of MLC flash memory to users have more than two states, it is called a multi-level cell
while it tries to write as much data as possible to the(MLC) flash memory, and two or more bits of informa-
SLC region so as to achieve the highest /0 performancdion can be stored on each cell, as shown in Figure 1(b).
FlexFS uses a data migration policy to compensate foEven though the density of MLC flash memory is higher
the reduced capacity caused by overuse of the SLC rethan that of SLC flash memory, it requires more precise
gion. In order to prolong the lifespan of flash memory, acharge placement and charge sensing (because of nar-
new wear management scheme is also proposed. rower voltage ranges for each cell state), which in turn

In order to evaluate the effectiveness of FlexFS, wereduces the performance and endurance of MLC flash
implemented FlexFS in the Linux 2.6.15 kernel on amemory in comparison to SLC flash memory.
development board. Evaluations were performed using
synthetic and real workloads. Experimental results sho
that FlexFS achieves 90% of the read and 96% of thvt\e?'z MLC NAND Flash Memory Array
write performance of SLC flash memory, respectively,In MLC flash memory, it is possible to use SLC pro-
while offering the capacity of MLC flash memory. gramming, allowing a multi-level cell to be used as a

The rest of this paper is organized as follows. In Secsingle-level cell. To understand the implications of SLC

BL(0) BL(1) BL(m)

- Table 1: Performance comparison of different types of
2o HJ— HJ— cell programming (us)
: WL(n) HW uﬁ Py | Operaton [SLC | MLCuss | MLCgotn |
: : meméry cell Read (page) 399 409 403
(12 LSB page - H | Write (page) 417 431 994
pages Wi —HE——HE ~—L Erase (block) 860 872 872
MSB page : f i t '
WLO) Hfl Hfl %# logical ‘0’ for the MSB page. If the LSB position is then
e bits - programmed as ‘0’, the bit pattern will change to ‘00’.
Y

Figure 2: An organization of an MLC flash memory ar- 2.3 SLC Programmingin MLC

ray (2 bits/cell
y() Since MLC flash memory stores multiple pages in the

same word line, it is possible for it to act as SLC flash
programming, it is necessary to know the overall archi-meémory by using only the LSB pages (or MSB pages,

tecture of a flash memory array. Figure 2 illustrates thedePending on the manufacturer's specification). Thus,
array of flash memory cells which forms a flash memorySLC Programmingis achieved by only writing data to the
block. We assume that each cell is capable of holding-SB Pages in a block. In this case, since only two states
two bits. For a description purpose, this figure does noPf @ cell, '11" and "10', are used shown in Figure 1(b),
show all the elements, such as source and drain seletlie characteristics of a multi-level cell become very sim-

gates, which are required in a memory array. (For a mordar to those of a single-level cell. The logical offsets of
detailed description, see references [2, 3].) the LSB and MSB pages in a block are determined by the

- cIlash memory specification, and therefore SLC program-
As shown in Figure 2, the memory cells are arranged . .
: . ming can be managed at the file system level. Naturally,
in an array of rows and columns. The cells in eaChSLC programming reduces the capacity of a block by
row are connected to a word line (e.§;L(0)), while half, because only the LSB pages can be used.

the cells in each column are coupled to a bit line (e.g., Table 1 th ; f the th dif
BL(0)). These word and bit lines are used for read an able ~ compares the periormance of the ree dii-
erent types of cell programming method. TK&.C

write operations. During a write operation, the data to be | h " ; data i sLC
written (‘1" or ‘0’) is provided at the bit line while the CIO uhmn s OW_S the?\/[EeC’r ormanlce ala mﬂz;\ puref
word line is asserted. During a read operation, the word!ash memory; LsB column gives the pertor-

line is again asserted, and the threshold voltage of eac ance data when on_ly the LSB pages are used; and the
cell can then be acquired from the bit line. LCporn column gives the data when both the LSB

Fi 2 al h h tual struct fatl and MSB pages are used. The access times for page reads
Igure 2 aiso shows he conceptual structure ot a aSIAnd writes, and for block erase operations were measured

block corr_esponding o a flash memory array. Th_e SiZq.lsing the Samsung’s KFXXGH6X4M flash memory [4]
of a page is deterhrr_1||nte: by thelz)nun}ber of b!t Ilnesr:r}ltheat the device driver interface level. As shown in Table 1,
memory array, while thé number of pages in eac aSllhere are no significant performance differences between

2!1?ka 'St twice thﬁ nurt?]ber of word l:lneti ?Ec?usettvxiﬁ age read and block erase operations for the three pro-
merent pages share the memory celis that befong to éramming methods. However, the write performance is

same word line. These two pages are respectively called. .. : :
the least significant bit (LSB) page and the most Signif_t(l)gtr;[:tcgpstylzcl’mproved WIth\/ LCsp, and approaches
icant bit (MSB) page. As these names imply, each page This improvement in the write performance under

only uses its own bit position of a bit pattern stored in aMLCLSB is the main motivation for FlexFS. Our pri-

cell. (This is possible because each memory cell storeﬁ]ar oal is to imorove the write performance of MLC
two bits, for example, one bit for the LSB page and the Y9 P P

other for the MSB page.) Thus, if a block has 128 pages{ﬁi?nmi?;ogiuzgg tf;?éfl\!jfés;?af:ﬁta%dr;“\;\/rhI|isl”if;lalnt-he
there are 64 LSB and 64 MSB pages. 9 pactty y 9

. M LCporu method.
Because multiple pages are mapped to the same word

line, read and write operations must distinguish the des-

tination page of each operation. For example, if a cellis3 Overview of the FlexFS File System

in an erased state (i.e., alogical ‘11’) and a logical ‘0’ is

programmed to the MSB position of the cell, the cell will We will now describe the overall architecture of the pro-
then have a bit pattern of ‘01’, which is interpreted as aposed FlexFS system. FlexFS is based on JFFS2 file sys-

ertg request Free block MLC block No data MLC block
e i (unknown) (512 KB) (512 KB)

e T
[MLC write buffer J { SLC write buffer } ,,,,,,,,,,

(Ol
@Ky (4 KB) SLC block Copy i SLC block [Free block
MLC e (256 KB) valid pages es6KD) v | (unknown)

programming ‘ Y programming Valid data teeeend Erase blocks |

MLC MLC SLC block SLC block (" Freeblock |

s(ZE sbllé:;)k ek A S(licssbfﬂc)k Zﬁintz;l:’c”k) - 5. 256 KB) (256 KB) | (unknown) |

i (S12KB) | (512KB) Logging [’
(a) Initial state (b) Copying valid pages & (c) Final state

Invalid data Valid data Log blocks erasing SLC blocks

Figure 3: The layout of flash blocks in FlexFS Figure 4: Steps in data migration

tem [5], and hence the overall architecture is very simi-iS used to write to the SLC block. If existing data is up-
lar to JFFS2 except for some features required to manag‘@ted' the old version of the data is first invalidated, while
heterogeneous cells and to exploit flexible programmingthe new data is appended to the free space of a log block.
Therefore, in this section, we focus on how FlexFS deals! N€ space used by this invalid data is later reclaimed by
with different types of a cell. We also introduce a base-the garbage collector (Section 4.3).

line approach to exploit flexible cell programming in or- After all the free pages in the current log block have

der to illustrate the need for better policies, which will be Peen exhausted, a new log block is allocated from the
introduced in detail on the following section. free blocks. However, if there is not enough free space

to store the data, the data migrator triggers a data mi-

)) gration (Section 4.1.1) to create more free space. This

3.1 Design Overview expands the effective capacity of flash memory by mov-
ing the data from the SLC region to the MLC region.
FlexFS logically divides the flash memory medium into Figure 4 illustrates .th.FT‘ steps in data migration. In this
an SLC region, composed of SLC blocks, and an MLCexampIe, there are |n.|t|aIIy two SLC blocks and one free

block, as shown in Figure 4(a). We assume that all the

region consisting of MLC blocks. If a block does not : . .)
contain any data, it is called a free block. In FlexFS, gPages n the two SLC blocks contain valid data. Dur

; ing the data migration, the free block is converted into an
free bIOCk 'S ne|ther_ an SLC block noran MLC.: blqck, s MLC block, and the 128 pages in the two SLC blocks are
type is only determined when data is written into it.

._copied to this MLC block. Then the two SLC blocks are

Figure 3 shows the layout of flash memory blocks in . LT
. erased, making them free blocks. This migration frees
FlexFS. We assume that the number of pages in a block is . o .
p one block, doubling the remaining capacity of flash

128, and the page size is 4 KB. (These values will be used emory, as shown in Figure 4(c),

throughout the rest of this paper.) When a write reques{nWhen a read request arrives, FlexFS first checks

arrives, FlexFS determines the type of region to which : i
yp g whether the write buffers contain the requested data.

the data is to be written, and then stores the data ten“ so, the data in the write buffer is transferred to the
orarily in an appropriate write buffer. This temporar ’) .
P y pprop porary page cache. Otherwise, FlexFS searches an inode cache,

buffering is necessary because the unit of I/O operation hich is kept |) to find a phvsical add
is a single page in flash memory. Therefore, the write!/ 1ICN 1S KEPLIN main memory, to find a physica’ address

buffer stores the incoming data until there is at least thﬁtor the requested file dat"’." The |nc_>de cache maintains the
page size of data (i.e., 4 KB), which can be transferre node numbers and physical locations of data that belong

to flash memory. In order to ensure the data reliability,_0 eachinode. Ifthe physical address of the required data

if there is an explicit flush command from the operating!S found, regardless of the type of block in which the data

system, all the pending data is immediately written to'S stored, FlexFS can read the data from that address.
flash memory. In FlexFS, separate write buffers are used
for the SLC and MLC regions. 3.2 Basdine Approach and Its Problems
FlexFS manages flash memory in a similar fashion to
other log-structured file systems [5, 6, 7], except that twoThe major objective of FlexFS is to support both high
log blocks (one for the SLC and another for the MLC re- performance and high capacity in MLC flash memory. A
gion) are reserved for writing. When data is evicted fromsimplistic solution, which we call the baseline approach,
the write buffer to flash memory, FlexFS writes them se-is first to write as much data as possible into SLC blocks
guentially from the first page to the last page of the correto maximize the 1/O performance. When there are no
sponding region’s log block. MLC programming is used more SLC blocks available, the baseline approach initi-
to write data to the MLC block, and SLC programming ates a data migration so that more space becomes avail-

In order to manage heterogeneous cells efficiently

able for subsequent write requests, so as to maximize the VO request

capacity of flash memory. This simple approach has two P,Ifzufx,,,{ \ Tiate .

serious drawbacks. Foreground T elay
et | aune I

First, if the amount of data stored on flash memory

. R R Tig Tirig Unit of migration
approaches to half of its maximum capacity, almost ally,qground r \ \ (page)
the free blocks are exhausted. This is because the camioeier, e
pacity of the SLC block is half that of the MLC block. % >

1 t Time

At this point, a data migration has to be triggered to free
some blocks before writing the requested data. But, this Figyre 5: Overview of the background migration
reduces the overall I/O performance significantly. To ad-
dress this problem, we introduce techniques to reduce the
migration penalty, or to hide it from users. During this idle time the background migrator can move
Second, the baseline approach degrades the lifetimeata from the SLC region to the MLC region, thus free-
of MLC flash memory seriously. Each block of NAND ing many blocks. These free blocks can then be used as
flash memory has a finite number of erase cycles befor&LC blocks to store data, and so we can avoid a compul-
it becomes unusable. The baseline approach tends to isory data migration if there is sufficient idle time.
crease the number of erase operations because of the ex-In designing the background migration technique,
cessive data migration. In the worst case, the number ahere are two important issues: First, it is important to
erasures could be three times more than in conventionahinimize the delay in response tini&.;,,, inflicted on
flash file systems. We solve this problem by controllingforeground tasks by the background migration. For ex-
the degree of the migration overhead, with the aim ofample, in Figure 5, an I/O request arrivestat but it
meeting a given lifetime requirement. cannot proceed until, because of interference from the
background migration. S®ye;qy IS t2 - t1. To reduce
this delay, the data migrator monitors the 1/0O subsystem,
and suspends the background migration process if there

. . . is an I/O request. Since the unit of a data migration is a
4.1 Reducing the Migration Overhead single page, the maximum delay in response time will be

To reduce or hide the overhead associated with datiSs than the time required to move a page from SLC to
migrations, we introduce three techniquésickground MLC (about 1,403 us) theoretically. In addition, we also
migration, dynamic allocationandlocality-aware data ~ d€sign the background migrator so that it does not utilize
managementThe background migration technique ex- &ll available idle times. Instead, it periodically invokes
ploits the times when the system is idle to hide the data data migration at a predefined triggering inteflial.
migration overhead. This technique is effective for many!f Ziris iS larger than the time required to move a single
mobile embedded systems (e.g., mobile phones) whicR29€; FlexFS reduces the probability that a foreground
have long idle time. The dynamic allocation technique,jOb will be iss.ued while a data migration is running, thus
on the other hand, is aimed at systems with less idle timgurther reducindueiay .-

By redirecting part of the incoming data into the MLC The second issue is when to initiate a background mi-
region depending on the idleness of the system, it regration. Our approach is based on a threshold; if the du-
duces the amount of data that is written into the SLcration of the idle period is longer than a specific threshold
region, which in turn reduces the data migration over-value T, then the background migrator is triggered.
heads. The third technique, locality-aware data managelhis kind of problem has been extensively studied in dy-
ment, exploits the locality of /0 accesses to improve thehamic power management (DPM) of hard disk drives [8],

efficiency of data migration. We will now look at these Which puts a disk into a low-power state after a certain
three techniques in more detail. idle time in order to save energy. However, the transition

to a low-power state has to be made carefully because
it introduces a large performance penalty. Fortunately,
becausé .., is quite short, more aggressive transition-
Figure 5 shows the overall process of the background milng is possible in our background migration technique,
gration. In this figure, the X-axis shows the time andallowing T, to be setto a small value.

the Y-axis gives the type of job being performed by the

file system. A forgground job repregents 1/0 requgsts iS112 Dynamic Allocation Technique

sued by applications or the operating systef,,s, is

a time interval during which the file system is too busy The background migration technique works well when a
to process foreground jobs, afitl;. is an idle interval. system has sufficient idle time. Otherwise, the migration

4 Design and Implementation of FlexFS

4.1.1 Background Migration Technique

Idle period Busy period The state of the SLC region at #,
|

I > > i {eraieoniey Py P)¢

Current time The state of the SLC region at #; / (cold) J| (cold) J| (hot) (cold) J| (cold) J :

I I / (a) the locality-unaware approach
T i (cold) (hot) (cold) (cold) J i i Invalidated

| I T ' 4 ~NeAA P P, Ps Py)i
The previous time window The next time window e \ lﬁi (cord) (cold) (cord)

) (predicted idle time = Tl”d'id)

(measured idle time = T /7" -
idle (b) the locality-aware approach

= [R I _

Figure 6: Our approach to idle time prediction } ,2 Time

overhead cannot be avoided. But it can be ameliorate!9uré 7: A comparison of the locality-unaware and
by writing part of the incoming data into the MLC re- [ocality-aware approaches
gion, S0 as to redqce the amount of d_ata to be moved bMifferent flash regions depending en Therefore, the
the background migrator. Although this approach results . .)
. . number of pages to be written into the SLC region,
in a lower 1/O performance than SLC flash memory, it "¢, ~ and the amount of data destined for the MLC
can prevent significant performance degradation due to évp MLC u ! _
compulsory data migration. region,N,” ““, can be expressed as follows:

The dynamic allocator determines the amount of data
that will be written into the SLC region. Intuitively, it

is clear that this must depend on how much idle timeg;n a1y after writing allV, pages, the dynamic allocator
there is in a given system. Since the amount of idle time.;|culates a new value affor the nextN pages.
changes dynamically with user activities, we need to pre- b

dict it carefully. Figure 6 illustrates the basic idea of our]]
idle time prediction approach, which is based on previ-#1-3 Locality-aware Data Management Technique

ous work [9]. In this figure, each time window repre- pieyFs is based on a log-structured file system, and
sents the period during whicN,, pages are written into arefore it uses the out-place update policy. Under this
flash_memory. The dynamlc aII.ocator stores measuregoncy’ hot data with a high update frequency generates
idle times for several previous time windows, and usesyore outdated versions of itself than cold data, which is
them to predict the idle timeT7,°%, for the next time , yated infrequently. Our locality-aware data manage-
window. The value off%;<" is a weighted average of ment technique exploits this characteristic to increase th
the idle times for the latest 10 time windows; the threeefficiency of data migration.
most recent windows are given a higher weight to take Figure 7 compares the locality-aware and the locality-
the recency of I/O pattern into account. unaware approaches. We assume that, at timéhree

If we know the value oﬂ”ﬁlid, we can use itto calcu- ¢old pages, p», andps, and one hot pagg;, exist in
late an allocation ratio, denoted by which determines the SLC region. Betweeh andt,, there are some idle
how many pages will be written to the SLC region in the periods, and new pages, ps, ps, andpg are written
next time window. The value of can be expressed as into the SLC region. Note that; is rewritten because

NJEC =N, -, NMC =N, -(1-a). 3)

follows: it contains hot data. In the case of the locality-unaware
1 if TPHCT > Ty approach shown in Figure 7(a), we assume that pages
a= { i}gd it Tered (1) po, p1, andp, are moved to the MLC region during idle
Trmig idle e time, butps cannot be moved because there is not enough

SLC | SLC idle time. Therefore, at timé,, there are five pages in
where Tinig = Ny - (Tivig + Terase/Sp)s () 4he 5] C region. If the value ¥, is 4, the value of
whereT7¢C is the time required to erase an SLC flash ghould decrease so that data will not accumulate in the
block which containsS; "¢ pages. As mentioned in g ¢ region. However, if we consider the locality of the

Section 4.1.17;,,, is the time interval required for one data, we can movg; instead ofp;, during idle periods,
page to migrate from the SLC region to the MLC re- a5 shown in Figure 7(b). Singa has a high locality,
gion. Thereforel’, is the migration time, which in- it is highly likely to be invalidated by,. Therefore, an
cludes the time taken to move ail, pages to the MLC nnecessary page migration for can be avoided, and
region and the time for erasing all used SLC blocks. ”only four pages remain in the SLC region. In this case,

d
Tiae. = Tmig, there is sufficient idle time for data mi- \ye need not to reduce the valueafand more data will
grations, and thus: = 1. Otherwise, the value of pe written into the SLC region.

should be reduced so that less data is written into the Using this observation, Eq. (2) can be rewritten as
SLC region, as expressed by Eq. (1). follows:

Once the value of has been determined, the dynamic
allocator tries to distribute the incoming data across the — Tinig = (N — NI - (Tirig + TohS./SSE9), (4)

whereNz’}Ot is the number of page writes for hot pages evenly across the flash medium [11, 12]. FlexFS uses
stored in the SLC region. For instance, in the above exthis approach, but also needs to support more specialized
ample,NZ’}"t is 1. Because we only need to mog wear management to cope with frequent data migrations.

- NIt pages into the MLC region, the value ®F,;, The use of FlexFS means that each block undergoes
can be reduced, allowing an increasenitior the same more erase cycles because a lot of data is temporarily
amount of idle time. written to the SLC region, waiting to move to the MLC

To exploit the locality of 1/O references, there are two region during idle time. To improve the endurance and
questions to answer. The first is to determine the localprolong the lifetime, it would be better to write data to
ity of a given data. To know the hotness of data, FlexFSthe MLC region directly, but this reduces the overall per-
uses a 2Q-based locality detection technique [10], whicformance. Therefore, there is another important trade-off
is widely used in the Linux operating system. This tech-between the lifetime and performance.
nique maintains a hot and a cold queue, each containing To efficiently deal with this trade-off, we propose a
a number of nodes. Each node contains the inode nunf?ovel wear management technique which controls the
ber of a file. Nodes corresponding to frequently accesseémount of data to be written into the SLC region depend-
files are stored on the hot queue, and the cold queue cof?g on a given storage lifetime.
tains nodes for infrequently accessed files. The locality
of a given file can easily be determined from queue in4.2.1 Explicit Endurance Metric
which the corresponding node is located.]))]

Second, the data migrator and the dynamic allocatofVe Start by introducing a new endurance metric which
should be modified so that they take the locality of datalS designed to express the trade-off between lifetime and
into account. The data migrator tries to select an sLd*€rformance. In general, the maximum lifetinig, .,
block containing cold data as a victim, and an SLC block®' flash memory depends on the capacity and the amount
containing hot data is not selected as a victim unless ver{' data written to them, and is expressed as follows:
few free blocks remain. Since a single block can con- Chotar - Eeyetes
tain multiple files which have different hotness, FlexFS Limaz = " WR ®)

calculates the average hotness of each block as the Cr\;_/herectoml is the size of flash memory, arfh.i. is

terion, and chooses a block whose hotness is lower tha{ﬁe number of erase cycles allowed for each block. The

the middle. It seems better to choose a block containing
o . riting rateW R indicates the amount of data written in
only cold pages as a victim block; if there are only afew . " . . .
unit time (e.g., per day). This formulation @f,,,,. is

bytes of hot data in a victim, this results in useless data
T . . used by many flash memory manufacturers [13] because
migrations for hot data. However, this approach incurs, e . o
. Lt clearly shows the lifetime of a given flash application
the delay in reclaiming free blocks, because even if the . :
i under various environments.

small amount of hot data is stored on a block, the block : :

Unfortunately,L,,., iS not appropriate to handle the

will not be chosen as a victim. o .
. . . trade-off between lifetime and performance because it
The dynamic allocator tries to write as much hot data o .
. oo . expresses the expected lifetime, and not the constraints to
to the SLC region as possible in order to increase th

; e met in order to improve the endurance of flash mem-
value ofNI’}"t. The dynamic allocator also calculates a P

new value ok after.V,, pages have been written and, for ory: Instead, we use an e_x_pI|C|t minimum I|fespa;_|,m,
: hot . . which represents the minimum guaranteed lifetime that
this purpose, the value @f,* for the next time window

. ; would be ensured by a file system. Since FlexFS can con-
need to be known. Similar to the approach used in our " o
: . . trol the writing ratel’’ R by adjusting the amount of data
idle time prediction, we count how many hot pages were

written into the SLC region during the previous 10 time written into the SLC region, this new endurance metric

windows, and use their average hotness valuef§%t can be expressed as follows:
for the next time window. The value dVIiwt for each Control W R by changing a wear inde¥,
window can be easily measured using an update variable, Subject to ©6)
which is incremented whenever a hot page is sent to the L A Ctotal - Ecyclesy
SLC region. WR
where/ is called the wear index. In FlexkSis propor-

; tional toW R, and thereforé can be used to control the
4.2 Improving the Endurance value of WR. If ¢ is high, FlexFS writes a lot of data
To enhance the endurance of flash memory, many flasto the SLC region; and this increasdBsR due to data
file systems adopt a special software technique calledhigrations; but if§ is low, the writing rate is reduced.
wear-leveling. In most existing wear-leveling tech- Our wear management algorithm contrélso that the
nigques, the primary aim is to distribute erase cycledifetime specified by.,,;, is to be satisfied.

SLC block SLC block
(256 KB) (256 KB)

S(;gg";;)k] blocks is 256 KB and 512 KB, respectively. Suppose

Free | valid dota that 512 KB data is written, and the data migrator moves

[
[MLC block ¥ [¥ MLC block] this data from the SLC region to the MLC region. If
[
[

512 KB has been
written

MLC block
(512 KB)

— — 0 is 1.0, as shown in Figure 8(a), 512 KB is written to
s(;g:g}knrf"faf e two SLC blocks, and then the data migrator requires one
C°'°y*w MLC block to store the data from two SLC blocks. In
WILC block] [WIC block] this case, the total amount of a writing budget used is 1.5

(512 KB)

Data migration

| |
is complete oy

A 4 A 4
MLC block

(512 KB)

SLC block SLC block
(256 KB) (256 KB)

(512 KB)

MB because three blocks have been used for writing. If

is 0.5, as shown in Figure 8(b), 1 MB of a writing budget

is used, requiring one SLC block and one MLC block.

Figure 8(c) shows the case whéis 0.0. Only 512 KB

is used because there is no data to be moved.

422 Assigning a Writing Budget This s_imple_ example suggests th_at we can generalize
the relationship between the wear index, the amount of

The proposed wear management algorithm dividesncoming data, and the amount of a writing budget actu-

the given lifetime L,,, into n time windows ally used, as follows:

(wo, w1, ..., wp_2,wy—1), and the duration of each

window is given asT,. The writing rate W R(w;) IW(wi) - (2-5+1) = OW (wi), ®)

for each time windoww; can also be expressed as whereIW (w;) is the amount of data that arrives during

WB(w;)/Ts, where WB(w;) is the amount of data e windowuw,, andOW (w;) is the amount of a writing

and represents the writing budget assigned to the t'mBudget to be used depending 6n In the example of

win(_joww.. . _ - Figure 8(b),IW(t;) is 512 KB and§ is 0.5, and thus
SinceT; is fixed, the assignment of a writing budget OW(t;) is 1 MB. IW (w;) - (2 -) is the amount of a

to each window significantly impacts the overall perfor- writing budget used by the SLC region afitV (w;) is
mance as well as the rate at which flash memory wearg,e amount of data to be written to the MLC region.
out. For example, if too large a writing budget is as- The wear index should be chosen so AV (w;) =

signed to each window, it markedly increases the ”UmbeWB(ti) and can therefore be calculated as follows:
of erase cycles for each block; on the other hand, if too

small a writing budget is allocated, it lowers the overall 5= WB(t:) — IW(wi)
performance. Therefore, we determine a writing budget 2 IW (wi)
for the windoww; as follows:

(a) 6=1.0 (b) 6=0.5 (c) 6=0.0

Figure 8: How the number of blocks used depends on

9)

The value of is calculated at the beginning ef when
(Crotar - Eeyetes) — W (t:) the exact value of W (w;) is unknown.IW (w;) is there-
n— (t:/T5) ’ () fore estimated to be the average value of the previous
three time windows. IWB(t;) < IW(w;), thend is
wheret; is the time at the start of window;, andiW(t;) 0, and therefore all the data will be written to the MLC
indicates the amount of a writing budget that has acturegion. If 7T (w;) is always larger thafil’ B(t;), it may
ally been used by;. The remaining writing budget is be hard to guarantek,,;,. However, by writing all the
(Ctotal - Eeyeres) — W(t;), and the number of remain- data to the MLC region, FlexFS can achieve a lifetime
ing windows is(n — (t;/T5)). Therefore, the remaining close to that of a pure MLC flash memory.
writing budget is shared equally between the remaining A newly determined value a¥ is only used by the dy-
windows. The writing budget is calculated at the begin-namic allocator if§ < «. Therefore, the wear manage-
ning of every time window, so as to take changes in thement algorithm is only invoked when it seems that the
workload pattern into consideration. specified lifetime will not be achieved.

WB(t;) =

42.3 Determining the Wear Index 4.3 Garbage Collection

Once the writing budget has been assigned to a time winfhe data migrator can make free blocks by moving data
dow, the wear manager adjusts the wear indesp that from the SLC region to the MLC region, but it cannot re-
the amount of a writing budget actually used approxi-claim the space used by invalid pages in the MLC region.
mates the given writing budget. The wear index is usedrhe garbage collector, in FlexFS, reclaims these invalid
by a dynamic allocator, similar to Eq. (3), to distribute pages by selecting a victim block in the MLC region, and
the incoming data across the two regions. then by copying valid pages in the victim into a different
Figure 8 shows how the number of blocks used de-MLC block. The garbage collector selects a block with
pends on the value @i The size of the SLC and MLC many invalid pages as a victim to reduce the requirement

CEoﬂlnzIe]letLr = — Table 2: Summary of the schemes used in throughput

evaluation
| Schemes | Baseline] BM | DA [LA]
Background migration X O O O
Dynamic allocation X X O O
Locality-aware X X X O

niques to reduce the overhead of data migrations. For
example, the BM scheme uses only the background mi-
gration technique, while the LA scheme uses all three
proposed techniques. In all the experimefits,;; was

set to 1 secondy, was 1024 pages, arif},;, was 15

ms. To focus on the performance implications of each
_ scheme, the wear management scheme was disabled.
Figure 9: A snapshot of the flash development board A the schemes were evaluated on three synthetic
used for experiments benchmark programstdle, Busy and Locality. They
were designed to characterize several important proper-

for additional 1/0 operations, and also utilizes idle timest'es’ such as the idleness of the system and the locality

to hide this overhead from users. Note that, it is neverQf /O references, which give significant effgct_s on the
necessary to choose a victim in the SLC region. If Coldperformance of FlexFS. Thelle benchmark mimics the

datais stored in SLC blocks, it will be moved to the MLC Vo access patterns that occu_rwhen sufficient idle time is
vailable in a system. For this purpose, tike bench-

:ﬁg:/oer; ?é;gi g ea Tta Wrﬁ;%?;zrbgl:;\?;}dﬁgh%d notto béamark writes about 4 MB of data (including metadata) to
flash memory every 25 seconds. TBasybenchmark
generates 4 MB of data to flash memory every 10 sec-

5 Experimental Results onds, which only allows the 1/O subsystem small idle
times. ThelLocality benchmark is similar t@usy ex-

In order to evaluate the efficiency of the proposed tech<ept that about 25% of the data is likely to be rewritten

niques on a real platform, we implemented FlexFS onto the same locations, so as to simulate the locality of

Linux 2.6.25.14 kernel. Our hardware system was thd/O references that occurs in many applications. All the

custom flash development board shown in Figure 9penchmarks issued write requests until about 95% of the

which is based on TI's OMAP2420 processor (runningtotal MLC capacity has been used. To speed up the eval-

at 400 MHz) with a 64 MB SDRAM. The experiments uation, we limited the capacity of flash memory to 64

were performed on Samsung’'s KFXXGH6X4M-series MB using the MTD partition manager [14].

1-GB flash memory [4], which is connected to one of Figure 10 compares the throughput of Baseline and

the NAND sockets shown in Figure 9. The size of eachBM with the Idle benchmark. The throughput of Base-

page was 4 KB and there were 128 pages in a block. line is significantly reduced close to 100 KB/s when the
To evaluate the FlexFS file system objectively, weutilization approaches 50%, because before writing the
used two types of workload. In Section 5.1, we present

experimental results from synthetic workloads. In Ser-

tion 5.2, we evaluate FlexFS using actual I/O traces ct

lected from executions of real mobile applications.

5.1 Experimentswith Synthetic Workloads
5.1.1 Overall Throughput

—-x-- Baseline
0.5 5 BM

Throughput (MB/sec

Table 2 summarizes the configurations of the fol o i S
schemes that we used for evaluating the throughput 7 14 21 27 34 41 47 54 61 67 74 81 88 94
FlexFS. In the baseline scheme, all the data is first wr Flash Memory Utilization (%)

ten into SLC blocks, and then compulsorily moved tu

MLC blocks only when fewer than five free blocks re- Figure 10: Performance comparison of Baseline and BM
main. Three other schemes, BM, DA, and LA, use tech-with the Idle benchmark

3 3
@ 25 o 25
= =
= 2 = 2
> 3
£ 1.5 g 1.5
[=: I > -
3 8
E 1 e BM £ 1] -xDA
= 4 =

0.5 —=-DA I 0.5 ——LA

0 . . : . : AR ——— 0 . . : :

7 14 21 27 34 41 47 54 61 67 74 81 88 94 7 14 21 27 34 41 47 54 61 67 74 81 88 94
Flash Memory Utilization (%) Flash Memory Utilization (%)

Figure 11: Performance comparison of BM and DA with Figure 12: Performance comparison of DA and LA with
theBusybenchmark theLocality benchmark

incoming data, the data migrator should make enougfy-1-2 Response Time

free space in the SLC region, incurring a noticeable perajihough the background migration contributes to im-
formance degradation. However, BM achieves the SamByoving the write throughput of FlexFS, it could incur

performance as SLC flash memory until the utilization, g pstantial increase in response time because /O re-
exceeds 94%. Since thele be(r)wchmark allows FlexFS qyests can be issued while the background migrator is
a lot of idle time (about 93.6% of the total execution rynning. In this subsection, to investigate the impact of

time), it should be possible to reclaim a sufficient num-¢,o background migration on the response time, we per-
ber of free blocks before new write requests arrive antgrmed evaluations with a following scenario.

require them. When the utilization reaches 94%, the per- \ve first wrote 30 MB of bulk data in order to trigger
formance of BM is significantly reduced because aimoste packground migrator. FlexFS was modified for all
all of the available blocks is ogcuplgd by valid data, and,o incoming data to be written into the SLC region, re-
fewer than 5 free blocks remain available. gardless of the amount of idle time. After writing this
Figure 11 compares the performance of BM and DAdata, we made 10 page write requests. The idle time be-
while running theBusybenchmark. In this evaluation, tween two consecutive write requests was generated us-
BM shows a better throughput than DA when the utiliza-ing a pseudo-random number generator, but this was ad-
tion is less than 67%. However, its performance quiCk|yjusted at least larger thah,.;; so that all write requests
declines because the idle time is insufficient to allow BM as randomly issued after the background migrator has
to generate enough free blocks to write to the SLC refeen initiated. To collect accurate and reliable results,
gion. DA does exhibit a stable write performance, re-we performed this scenario more than 30 times.
gardless of the utilization of flash memory. At the be- e performed our evaluation for the following four
ginning of the run, the value of is initially set to 1.0 configurations. In order to know the effect of the idle
so that all the incoming data is written to the SLC re-time utilization, we measured the response time while
gion. However, since insufficient idle time is available, yarying the idle time utilization. The configurations,
the dynamic allocator adjusts the valuecoto 0.5. DA U,,, Us,, and Uy represent when FlexFS utilizes
then writes some of the arriving data directly to the MLC 100%, 50%, and 10% of the total idle time, respectively.
region, avoiding a significant drop in performance. This idle time utilization can be easily controlled by the
Figure 12 shows the performance benefit of thevalue of7;,.;,. For example, the time required to move
locality-aware approach using th@cality benchmark. a single page from SLC to MLC is about 1.5 ms, and so
Note that_ocalityhas the same amount of idle time com- the utilization of 10% can be made usifig.;, of 15 ms.
pared as th&usybenchmark. LA achieves 7.9% more To clearly show the performance penalty from the back-
write performance than DA by exploiting the locality of ground migration, we evaluated the response time when
I/O references. The overall write throughput of LA is the background migration is disabled, which is denoted
2.66 MB/s while DA gives 2.45 MB/s. The LA scheme as OPT. The migration suspension mentioned in Section
also starts with amx value of 1.0, but that is reduced to 4.1.1 was enabled for all the configurations.
0.5 because the idle time is insufficient. However, after Figure 13 shows the cumulative distribution function
detecting a high degree of locality from 1/O references,of the response time for the four configurations. As ex-
« is partially increased to 0.7 by preventing useless datpected, OPT shows the best response time among all the
migrations of hot data, and more data can then be writteiconfigurations. However, about 10% of the total I/O re-
into the SLC region. quests requires more than 2,000 us. This response time

1= =t2 — 1200 E— e a1
=091 g7 e ,_;&—————i”"'— - E X7 0.9
% 0.8 o < 1000 L | os
P Q L
g o7 X £ 800 o
a 06 s S 0.6
© 05 e S 600 F 05
g 041 N ——OPT 3 g F 0.4
2o3 | [/ ~o-U10 5 400 X 0.3
3021/ -#- U50 5 200 X -»--Written data | 0.2
) o e

015" —»-U100 g X I 0.1

(0] T T T < 0 T T T T 0

1 2 4 8 16 32 64 128 wo wl w2 w3 w4 w5 w6 w7 w8 w9

Response Time (ms) Time window (I = 400 s)

Figure 13: A comparison of response time delays on dif-Figure 14: The changes in the size of written data and
ferent system configurations thed value

delay is caused by the writing of the metadata informa-memory is not considered.

tion. Although we wrote 4 KB of data into flash memory, Table 3 shows the amount of data (MB) written to flash
the amount of data actually written was slightly larger memory for each windowy;, and Figure 14 shows how
than 4 KB because of the metadata overhead. Consehe proposed wear management scheme adapts to chang-
quently, this results in additional page writes, incurringing write sizes while satisfying the minimum lifetime.
the delay in response time. Initially, FlexFS allocates a writing budget of 120 MB (=
Ui exhibits a longer response time than OPT for1.2 GB / 10) to each time window. This budget is large
about 10% of the total I/O requests, but it shows a fairlyenough to allow all the incoming data to be written to
good response time. On the other hand, the performanate SLC region if less than or equal to 40 MB of data
of Usp and Uy is significantly deteriorated because arrives during each window. Therefore, during the first
they utilize a lot of idle time for data migrations, increas- three windows, the value éfis set to 1.0. Duringys and
ing the probability of 1/O requests being issued while v, however, about 160 MB of data arrives, and FlexFS
the background migrator is working. Especially, whenreduces to cut the migration cost. Because only 40 MB
two tasks (the foreground task and the background miof data arrives duringus and ws, FlexFS can increase
gration task) compete for a single CPU resource, the pers to give a larger writing budget to the remaining win-
formance penalty caused by the resource contention igows. We measured the amount of data written to flash
more significant than we expect. memory, including extra overheads caused by migrations
from the SLC region to the MLC region. FlexFS writes
about 1.2 GB of data to flash memory, and thus achieving
the specified minimum life span of 4,000 seconds.
We evaluated our wear management scheme using a e also counted the number of erase operations per-
workload scenario in which the write patterns changeformed on each block while running FlexFS with and
over a relatively long time. We set the size of flash mem-yithout the wear management scheme using the same
ory, Ciotar, to 120 MB, and the number of erase cycles\orkload scenario. A wear-leveling policy was disabled
allowed for each blockZccics, was 10, allowinga max- \yhen the wear management scheme was not used. Fig-
imum of 1.2 GB to be written to flash memory. We set yre 15 shows distributions of block erase cycles, and Ta-

the minimum lifetime, L., to 4,000 seconds, and our ple 4 summarizes the results relevant to a wear-leveling.
wear management scheme was invoked every 400 sec-

onds. So, there are 10 time windows,, ..., wg, and the

duration of each7’%, is 400 seconds. To focus our eval-
uation on the effect of the wear management scheme
performance, the system was given enough idle time
write all the data to the SLC region if the lifetime of flash

5.1.3 Endurance

18
16
14
12

Erase count
Erase count

N Ao

o

1 32 64 96 128 160 192 224 256 1 32 64 96 128 160 192 224 256

Block number Block number

Table 3: The amount of data (MB) arrives for each win

dow during the evaluation of wear management policy. (a) Without wear management (b) With wear management

Time window

wWo W1 W2 W3 W4 Ws We W7 Ws W9

Size (MB)

40 40 40 80 80 20 20 40 40 4

D

Figure 15: Distributions of block erase cycles

Table 4: Summary of results relevant to a wear-levelingTable 6: A performance comparison of Flexn&: and

| | Avg. erase cycles| Std.Dev. | FlexFSy.c under mobile workloads
w/ wear management 9.23 1.20 Response time Throughput
wo/ wear management 10.73 2.43 Read | Write Write
(us) (us) (MB/s)
FlexFSsLc 34 334 3.02
These results clearly indicate that with the wear manage-| FlexFSwc 37 345 2.93
ment scheme FlexFS gives a good wear characteristic JFFS2 36 473 2.12

the maximum erase cycle of each block is effectively lim-
ited to less than or equal to 10, and the block erase op-

erations are evenly distributed across the flash memor§3,000 read and write requests. About 5.7 MB was read
medium. from flash memory and about 39 MB was written.

5.2 Experimentswith Mobile Workloads 5.2.2 Evaluation Results

5.2.1 Generating Mobile Workloads In order to find out whether FlexFS can achieve SLC-
N))) like performance, we evaluated the performance of

In addition to the synthetic workloads discussed in Secyyg FlexFS configurations, FlexkSc and FlexFSr.c.
tion 5.1, which were designed to evaluate one aspect Off—'|eXFS/1Lc is the proposed FlexFS configuration us-
FlexFS at a time, we evaluated FlexFS using I/O trace:«,;ng both SLC and MLC programming, while Flex&S:
collected from a real-world mobile platform to assess thepimics SLC flash memory by using only SLC program-
performance of FlexFS with mobile applications. ~ ming. To know the performance benefits of FlexiS,
~ To collect and replay 1/O traces from real applica- ye evaluated JFFS2 file system on the same hardware. In
tions, we developed a custom mobile workload gen+his subsection, we will focus on the performance aspect
eration environment based on the Qtopia Phone Edigpy, since the capacity benefit of FlexfS is clear.
tion [15], which includes representative mobile appli- gq, FlexFSirc, Tirig Was set to 15 ms), to 1024
catipns such as PIMS, SMS, and media players. Thi%ages, and’,,;; to 1 second. We assumed a total ca-
environment includes three tools: a usage pattern 9€Msacity of 512 MB, a maximum of 10,000 erase cycles for
erator, an I/O tracer, and a replayer. The usage patterg p|ock, and a minimum lifetime of 3 years. The wear
generator automatically executes mobile applications afanagement policy was invoked every 10 minutes.
?f the user is actually interacting with applications dur- tapje 6 compares the response time and the through-
ing runtime. The I/O trace_r captqres I/O_ system caIIsput of FlexFSur., FlexFS.c, and JFFS2. The response
(e.g., fopen, fread, and fwrite) while running the usageyjme \as an average over all the I/O requests in the trace
pattern generator on the Qtopia platform, and then storegye ¢ the throughput was measured when writing a
c_ollected traces in a log file. The replayer uses this quarge amount of data, such as MP3 files. Compared to
file to replay the I/Q requests in our development board.‘]FFsz, FlexFSr.c achieves 28% smaller I/O response
Note that th|s_log file allows us to_repea_\t the same Usag§me and 28% higher 1/0 throughput. However, the per-
patterns for d|ﬁergnt system configurations. , formance difference between Flexfrs: and JFFS2 is

For the evaluation, we executed the several mobile apysticeably reduced compared to the difference shown in
plications shown in Table 5 on our workload generationrapie 1 pecause of computational overheads introduced
environment for 30 minutes. We followed a represen-py each file system. JFFS2 as well as FlexES re-
tative usage profile of mobile users reported in [16] ex-q jres a lot of processing time for managing internal data
cept that more multimedia data was written in order gy ctyres, such as block lists, a metadata, and an error
simulate data downloading scenario. The trace 'ncmdeﬁetecting code, which results in the reduction of the per-

formance gap between two file systems.
The performance of Flexkg,c is very close to that

Table 5: Applications used for evaluations of FlexFSrc. The response times of FlexgSc are
| Application | Description | 10% and 3.2% slower for reads and writes, compared
SMS Send short messages with FlexFSsp.c. The I/O throughput of FlexRgLc is
Address book| Register / modify / remove addresses 3.4% lower than that of Flexkg¢. This high 1/O perfor-
Memo Write a short memo mance of FlexF§1,c can be attributed to the sufficiency
Game Play a puzzle game of idle time in the trace. Therefore, Flexfz§ can write
MP3 player | Download 6 MP3 files (total 18 MB most incoming data into the SLC region, improving the
Camera Take 9 pictures (total 18 MB) overall /O performance.

~~ SLCblock - MLC block —3 ple, if a flash device has 16 GB MLC flash memory and

the minimum lifetime is set to 3 years, the writing bud-
get per day is about 146 GB. Therefore, it may safely be
assumed that the endurance problem would be mitigated
Loz © without a significant performance degradation.

Number of block
3

6 Redated Work

183C

Many file systems for NAND flash memory have been
Time (second) studied in recent years. JFFS2 [5] and YAFFS [7] are
]) representative, and are both the log-structured file sys-
Figure 16: The changes in the number of SLC and MLCiems [6], which write data sequentially to NAND flash
blocks with a mobile workload in Flexkg.c memory. JFFS2 was originally developed for NOR flash
memory, and later extended to NAND devices. JFFS2
stores metadata and regular data together. YAFFS is sim-
ilar to JFFS2 exceptthat metadata is stored in a spare area

FlexFSuro achieves 1/O efficiency. We counted the of each page to promote fast mounting of the file system.

number of eac_h type of block every 30 seconds. In theI'hey are both designed for the homogeneous flash mem-
graph, the regions around 840 seconds clearly demon-

strate the effectiveness of the proposed techniques.—Star(%ry media, 3”0' dq not support _the heterogeneous flash
) . memory devices discussed in this paper.

ing from 750 seconds, many MP3 files of about 18 MB R v th h b | efforts t bi
are intensively written into flash memory. Flexir&: botheginc ;/n q l\e/lrl_eC f?;seh n?g;jfveéﬁaﬁ OertZI Oscomesltnz
can write all this data into the SLC region because the Y- 9 - Sugy

idle time predictor in the dynamic allocator predicts thereSOI('f'St"’lte s/:i'éwu'.ch |slc;ompr§)_lse(|10fka St'n?Ie SLC c:np
will be enough idle time, which allows aggressive writes 2% Many chips [17], while Park et al. present a

. flash translation layer for mixed SLC-MLC storage sys-
to the SLC region. o .
. . . tems [18]. The basic idea of these two approaches is
From our observations on the representative mobil

workloads, there are two distinctive characteristics@ |/ eto store frequently updated data in the small SLC flash

. . memory while using the large MLC flash memory for
access patterns. First, many mobile embedded systems _ . - A

)) storing bulk data. This brings the overall response time
such as mobile phones and smart phones are likely t

Rlose to that of SLC flash memory while keeping the cost
have sufficient idle time; the average idle time accounts y ping

. : er bit as low as MLC flash memory. However, these ap-
for about 89% of the total execution time. Second, mos{;roaches cannot break down whenya large amount of dzta
?irarf: :i tIQ:\?QISI\,/Aeslytr\:ver 'tetinetgrﬂa;ﬂarﬂzrgag str']tg\'; ?lee r)](cl):rtshas to be written quickly, because they only use the small
. ; e P . . ' . ~SLC flash memory so as to achieve their cost benefit. In
is effectively designed for dealing with such characteris-

. . this situation, the overall I/0O throughput will be limited
tics, and thus can achieve the 1/0 performance close t(t)0 the throughput of MLC flash memory. But FlexFS can
SLC flash memory. :

™ Il perf it of El | handle this case efficiently by flexibly increasing the size
e small performance penalty of Flexir results of the SLC region, and therefore combines the high per-

f“’”? ensuring the given minimum lifetime. As Shown 5\ 2nce of SLC flash memory with the high capacity of
in Figure 16, at around 1,200 seconds the wear managgy - fiash memory

ment policy reduces the value ®fo 0.5, which degrades The hybrid hard disk [19, 20] is another heteroge-

thg write performance gf FIexI{VﬁC.I However,bthls ?e— i neous storage system which uses flash memory as a non-
cision was necessary because a arge num»oer ot Writeg, 10 cache for a hard disk. In a hybrid hard disk, flash
to the SLC region for storing several MP3 files rEducedmemory is used to increase the system responsiveness,

th? ngmpe.r of erﬁfi.cydﬁ mgr;lflcar:tlyéc')l;(/) mfet(;t tzetreénd to extend battery lifetime. However, this approach
quired minimurm ifeime, Fex-> wrote o ofthe dala i yifterent from our study in which it does not give any

to the MLC region diregtly. This result indicates that the considerations on optimizing the storage system by dy-

poor wear characteristic of MLC flash memory could benamically changing its organization.

a hurdle for FlexFS to achieve its performance benefit.
However, it must be noted that 512 MB of flash ca-

pacity used in our evaluation is very small compared to7 Conclusions

commercial flash applications. Actually, many flash de-

vices already employ several GB of flash memory andFlexFS is a file system that takes advantage of flexible

its capacity doubles every two or three years. For examprogramming of MLC NAND flash memory. FlexFS is

The graph in Figure 16 shows in more detail how

designed to maximize I/O performance while making the[5]
maximum capacity of MLC flash memory available. The
novel feature of FlexFS is migration overhead reduction[e]
techniques which hide the incurred migration overhead
from users. FlexFS also includes a novel wear manage-

D. Woodhouse, “JFFS : The Journalling Flash File Sys-
tem,” In Proceedings of the Linux Symposiuialy 2001.

M. Rosenblum and J. Ousterhout, “The Design and Imple-
mentation of a Log-Structured File SysterACM Trans-
actions on Computer Systemsl. 10, no. 1, 1992.

ment technigue which mitigates the effect of the data mi{7] Aleph One, “YAFFS: Yet Another Flash File System,”

gration on the lifetime of flash memory. Experimental
results show that FlexFS achieves 90% and 96% of thgg)
read and write performance of SLC flash memory with
real-world mobile workloads.

There are a few areas where FlexFS can be further im-
proved. First, even though the background migration i§9]
effective in hiding the migration overhead, it is less effi-
cient from the energy consumption perspective because
it reduces the probability that the system enters a low-

http://lwww.yaffs.net/2002.

L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of
Design Techniques for System-level Dynamic Power Man-
agement,1EEE Transactions on VLSI Systerasl. 8, no.

3, 2000.

E. Chan, K. Govil, and H. Wasserman, “Comparing Algo-
rithms for Dynamic Speed-setting of a Low-power CPU,”
In Proceedings of the Conference on Mobile Computing
and Networking (MOBICOM '95)November 1995.

power state. In order to better handle both the perfor{10] E. O'Neil, P. O'Neil, and G. Weikum, “The LRU-K Page

mance and energy consumption simultaneously, we are
developing a dynamic allocation policy that takes into ac-
count an energy budget of a system. Second, for FlexFS

Replacement Algorithm for Database Disk Buffering,” In
Proceedings of the Conference on Management of Data
(SIGMOD '93) May 1993.

to be useful on a wide range of systems, the poor weall1] H. Kim and S. Lee, “An Effective Flash Memory Man-

characteristic of MLC flash memory should be addressed
properly. To handle this problem, we are also investigat-
ing a wear management policy for a storage architecture

ager for Reliable Flash Memory Space Managemdht,”
ICE Transactions on Information and Systeral. E85-D,
no. 6, 2002.

in which SLC flash memory is used as a write buffer for [12] L. Chang and T. Kuo, “Efficient Management for Large-

MLC flash memory.

8 Acknowledgements

This work was supported by the Korea Science and En-

Scale Flash-Memory Storage Systems with Resource Con-
servation,” ACM Transactions on Storageol. 1, no. 4,
2005.

[13] SanDisk, “Longterm Data Endurance (LDE) for Client

SSD,” http://www.sandisk.com/Assets/File/pdf/oem/LDE
White Paper.pdf2008.

gineering Foundation (KOSEF) grant funded by the Ko-[14] mMemory Technology Device (MTD)http:/Aww.linux-

rea government (No. ROA-2007-000-20116-0) and the

Brain Korea 21 Project in 2009. This work was also [15] Nokia Corp.,

supported by World Class University (WCU) program

through KOSEF funded by the Ministry of Education, [16] H. Verkasalo and H. Hammainen

Science and Technology (No. R33-2008-000-10095-0).
Samsung Electronics partially supported our FlexFS re-

mtd.infradead.org/doc/general.html

“Qtopia Phone
http://www.qtsoftware.com/products/

Edition 4.1.2
“Handset-Based Mon-
itoring of Mobile Subscribers,” InProceedings of the
Helsinki Mobility RoundtableJune 2006.

search and the ICT at Seoul National University providedi; 71 | p chang, “Hybrid Solid-State Disks: Combining Het-

research facilities for this study.

References

erogeneous NAND Flash in Large SSDs,”Rroceedings
of the Conference on Asia and South Pacific Design Au-
tomation (ASP-DAC '08)January 2008.

[18] S. Park, J. Park, J. Jeong, J. Kim, and S. Kim, “A Mixed

[1] F. Roohparvar, “Single Level Cell Programming in a Mul-
tiple Level Cell Non-volatile Memory Device,” Itunited
States Patent, No 11/298,013007.

M. Bauer, “A Multilevel-Cell 32 Mb Flash Memory,” In
Proceedings of the Solid-State Circuits Confererkabru-
ary 1995.

P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory
Cells - An Overview,” InProceedings of the IEERol. 85,
no. 8, 1997.

Samsung Electronics Corp., “Flex-OneNAND* Specifica-
tion,” http://www.samsung.com/global/system/business/
semiconductor/product/2008/2/25/867323dsxgh6x4m
_rev10.pdf

(2]

(3]

[4]

Flash Translation Layer Structure for SLC-MLC Com-
bined Flash Memory System,” lroceedings of the Work-
shop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability (SPEED '0&ebru-
ary 2008.

[19] R. Panabaker, “Hybrid Hard Disk and ReadyDrive Tech-

nology: Improving Performance and Power for Windows
Vista Mobile PCs,” InProceedings of the Microsoft Win-
HEC, May 2006.

[20] Y. Kim, S. Lee, K. Zhang, and J. Kim, “I/O Performance

Optimization Technique for Hybrid Hard Disk-based Mo-
bile Consumer Devices|EEE Transactions on Consumer
Electronics vol. 53, no. 4, 2007.

