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Abstract

As flash memory technologies quickly improve, flash-
memory-based storage devices are becoming a viable alter-
native as a secondary storage solution for general-purpose
computing systems such as personal computers and enter-
prise server systems. Most existing flash translation layer
(FTL) schemes are, however, ill-suited for such systems be-
cause they were optimized for storage write patterns of em-
bedded systems only. In this paper, we propose a new flash
management technique called LAST which is optimized for
access characteristics of general-purpose computing sys-
tems. By exploiting the locality of storage access patterns,
LAST reduces the garbage collection overhead significantly,
thus increasing the I/O performance of flash-based storage
devices. Our experimental results show that the proposed
technique reduces the garbage collection overhead by 54%
over the existing flash memory management techniques.

1 Introduction

Flash memory has been widely used as a storage device
for mobile embedded systems (such as MP3 players and
PDAs) because of its low-power consumption, nonvolatility,
high random access performance and high mobility. With
continuing improvements in both the capacity and the price
of flash memory, flash memory is increasingly popular in
general-purpose computing markets. For example, leading
notebook vendors recently started replacing hard disk drives
with NAND flash memory-based solid state disks (SSD).
Furthermore, as the energy efficiency of the enterprise sys-
tems becomes more critical [1], the enterprise systems are
also expected to adopt more SSDs [2]. However, several
limitations of flash memory make it difficult to replace hard
disk drives with SSDs in a straightforward fashion.

Generally, NAND flash memory consists of multiple
blocks, and each block is composed of multiple pages. Each
page is a unit of read and write operation, and each block
is a unit of erase operation. Unlike a traditional hard disk
drive, flash memory does not support overwrite operations
because of its write-once nature. When the data at a spe-
cific page is modified, the new data value is written to an-
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(a) An MP3 player
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(b) General-purpose applications

Figure 1: Logical block access patterns

other empty page and the page with the old data should be
invalidated. This special feature of flash memory requires
two storage management schemes. First, we need to pro-
vide an address mapping scheme, which maps the logical
address from the file system to the physical address in flash
memory by maintaining an address mapping table. Second,
we need a garbage collection scheme to reclaim the invali-
dated pages. The garbage collection scheme should select
a block which has many invalid pages and erase the block
to be reused after migrating the valid pages in the block to
a clean block. In order to support these two management
tasks, a flash translation layer (FTL) is commonly used be-
tween the file system and flash memory devices.

The FTL is often implemented in resource-constrained
environments and the overall I/O performance of the FTL
implementation largely depends on its garbage collection
efficiency. So, most existing FTL schemes were focusing
on reducing the garbage collection overhead using a small
address mapping table.

Although the existing FTLs perform efficiently for their
target consumer electronics devices, the efficiency of their
garbage collection scheme can be deteriorated when they
were used in general-purpose computing systems. For ex-
ample, in our experiments, we observed that the garbage
collection overhead may account for 40%-60% of the to-
tal I/O time. The main source of this inefficiency comes
from different write access patterns. As shown in Figure 1,
most write requests in an MP3 player are sequential with
only a small number of random writes. On the other hand,
in general-purpose applications, the write request pattern is
more complex with the following three characteristics. The



first difference is that there is a high temporal locality be-
cause there are many sectors which are updated frequently.
The second one is that the sequential locality is also high
(although it is not so high as in mobile consumer applica-
tions) because there are many sequential writes. The last
one is that there are many random writes which are inter-
posed between sequential writes.

In order to build a high performance FTL for general-
purpose computing systems, these three characteristics
should be taken into account. In particular, both the tem-
poral locality and sequential locality should be efficiently
exploited. To this end, we need to separate the sequen-
tial access from the random access. Therefore, the exist-
ing FTLs optimized for the access patterns of consumer de-
vices should be redesigned to exploit write access patterns
of general-purpose computing systems.

Based on this observation, we propose a new FTL
scheme using a locality-aware sector translation (LAST).
To exploit both temporal locality and sequential locality1,
we reorganize the flash memory space into two regions de-
pending on the type of locality and adopt more intelligent
garbage collection policies for each region. Experimental
results based on a trace-driven simulator show that LAST
reduces the garbage collection overhead by up to 54% over
the existing FTLs for general purpose applications.

The rest of this paper is organized as follows. In Section
2, we survey previous approaches in managing flash mem-
ory. Section 3 describes the details of the proposed LAST
scheme. Experimental results are presented at Section 4.
Section 5 concludes with a summary and directions for fu-
ture works.

2 Background and Related Work

2.1 Flash Translation Layer

Generally, FTL schemes can be classified into three
groups depending on the granularity of address mapping:
page-level, block-level, and hybrid-level FTL schemes. In
the page-level FTL scheme [3, 4, 5], a logical page num-
ber (LPN) from the file system can be mapped to a physi-
cal page number in flash memory. This mapping approach
shows a great garbage collection efficiency, but it is imprac-
tical due to its huge mapping table size. In the block-level
FTL scheme [6], only the logical block number of a logical
address is mapped to a physical block number and the page
offset in a block is not changed. By using more coarse-
grained mapping units, it can reduce a mapping table size
significantly. However, when the data of a page should be
modified into a new data, all the data in the corresponding
block as well as the new data should be written into an-
other empty block. This constraint results in high garbage

1In this paper, the sequential locality refers to the property that if an
access has been made to a particular location p, then it is likely that an
access will be made to the location (p + 1) in the near future.
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Figure 2: Three types of merge operations

collection overhead. In order to overcome these disadvan-
tages, the hybrid-level FTL scheme was proposed. Log
buffer-based FTLs [7, 8, 9] are representative hybrid-level
schemes. They show a high garbage collection efficiency
and require a small-sized mapping table.

2.2 Log buffer-based FTL schemes

In the log buffer-based FTL scheme, it distinguishes
flash memory blocks into data blocks and log blocks. Data
blocks represent the ordinary storage space, and are man-
aged by the block-level mapping. Log blocks are the in-
visible storage space to be used for storing log data, and
handled by the page-level mapping. A set of log blocks is
called a log buffer. Because only the small fixed number
of log blocks is used, the memory overhead for page-level
mapping is low. When a write request modifying the data
in a data block arrives, the log buffer-based FTL writes the
new data (log data) temporarily in the log buffer invalidat-
ing the corresponding data in the data block. So, it can re-
duce the extra operations required to maintaining the data
block’s block-level mapping information. However, all the
log blocks are exhausted, some of log data in log blocks
should be flushed into the data blocks to make free space in
the log buffer. The valid data in the data block and the log
data of the log block should be merged and rewritten into an
empty data block. We call this work as a merge operation.

Figure 2 illustrates three types of merge operations:
switch merge, partial merge and full merge. In this fig-
ure, we assume that each block is composed of four pages.
The number within the small boxes denotes a LPN of each
page and the shaded box represents a page with old data
(invalid page). The switch merge is the most cheap merge
operation. As shown in Figure 2(a), the FTL simply erases
the data block with only invalid pages and changes the log
block into a data block. Therefore, it requires only one erase
operation. The switch merge is performed only when all



the pages in the data block are sequentially updated start-
ing from the first logical page to the last logical page. The
partial merge is similar to the switch merge. But, it requires
additional copy operations, as depicted in Figure 2(b). After
all the valid pages are copied, we simply apply the switch
merge. The partial merge typically occurs when the sequen-
tial write does not fill up one block (semi-sequential). The
full merge operation is most expensive. Figure 2(c) shows
the snapshot of the full merge. There are two log blocks,
LB0 and LB1, and two data blocks, DB0 and DB1. We
assume that LB0 is selected as a victim log block. The
FTL first allocates one free block and copies all the valid
pages both from LB0 and from DB0 to the free block. Es-
pecially, the data block DB0 is called an associated data
block of LB0 because it has the corresponding invalid page
for a valid page in the victim block LB0. The number of the
associated data blocks can be increased up to the number of
pages per a single block. After copying all the valid pages,
the free block becomes a data block, and DB0 and LB0 are
erased. Therefore, the full merge requires several copy op-
erations and erase operations. The full merge is typically
required when the pages are updated in random order.

2.3 Related Work

Kim et al. have proposed a log buffer-based FTL
scheme which uses a block associative sector translation
(BAST) [7]. In the BAST scheme, one data block is as-
sociated with only one log block, i.e., a log block can have
log data only for a data block. If there is a write request,
its data is written into the corresponding log block sequen-
tially. The merge operation is triggered when there is no
associated log block for a write request and there is no free
log block. BAST provides an efficient garbage collection
for consumer devices whose access patterns are mainly se-
quential. This is because most merge operations can be per-
formed by the cheap switch merge. However, as the write
pattern becomes more random, the space utilization of the
log buffer gets worse because even a single page update of
a data block requires a whole log block. So, when a large
number of small-sized random writes are issued from the
file system, most of log blocks are selected as victim blocks
with only a small portion of the block being utilized. This
phenomenon is called a log block thrashing problem [8].
Since all the under-utilized log blocks should be merged by
the full merge, the merge cost is significantly increased.

In order to overcome this shortcoming of the BAST
scheme, a fully associative sector translation (FAST) [8]
has been proposed. In FAST, one log block can be shared
by all the data blocks, and update requests are sequentially
written in a log block irrespective of their corresponding
blocks. The garbage collection is performed only when
there is no free space in the log buffer. This approach ef-
ficiently removes the block thrashing problem, and then
increases the garbage collection efficiency for the random
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Figure 3: The overall architecture of the LAST scheme

workload. FAST also maintains a single log block, called
sequential log block, to manipulate the sequential writes.
However, FAST does not consider the multiple sequential
write streams by multiple tasks and does not efficiently han-
dle the mixture of random write request and sequential write
request. In addition, it does not exploit the temporal locality
of the random writes.

Recently, a SUPERBLOCK scheme [9] demonstrated
that the temporal locality can be exploited by allowing the
page-level mapping in a superblock which is a set of con-
secutive blocks. Then, the cold data and the hot data are
separated automatically into different blocks within a su-
perblock, thus the garbage collection efficiency is improved
by reducing the number of full merge operations. How-
ever, their approach does not efficiently distinguish the cold
pages from the hot pages. Moreover, the critical shortcom-
ing of the SUPERBLOCK scheme is that the page-level
mapping information within a superblock should be main-
tained.

3 Locality-Aware Sector Translation Scheme

3.1 Overall Architecture

As noted in Section 1, the typical workload in the gen-
eral purpose computing is a mixture of random writes and
sequential writes. Therefore, it is important to extract the
sequential writes from the mixture of different write re-
quests so that more switch merges and partial merges can
be applied. Additionally, by isolating the random writes,
we can efficiently handle the temporal locality of the ran-
dom writes. To do that, LAST partitions the log buffer into
two parts; random log buffer and sequential log buffer as
shown in Figure 3. Upon the arrival of a write request, the
locality detector identifies the type of locality of the write
request and sends it into the sequential log buffer if it has a
sequential locality. Otherwise, LAST sends it into the ran-
dom log buffer.

The sequential log buffer consists of several sequential
log blocks, and one sequential log block is associated with
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only one data block (block associative mapping) like BAST
[7]. This is because the block associative mapping is ap-
propriate for the sequential access patterns. The random
log buffer is composed of several random log blocks, and
each random log block can be associated with multiple data
blocks (fully associative mapping) like FAST [8]. The fully
associative mapping is advantageous to manage the random
access patterns, especially when they have a high temporal
locality. Additionally, LAST divides the random log buffer
into two partitions, hot and cold, and redirects the arriving
requests to either one depending on their temporal localities.
By clustering the data with high temporal locality within
the hot partition, we can reduce the merge cost of the full
merge, which mainly occurs in the random write patterns.

3.2 Detecting the Locality Type

To exploit the different locality type of each request, we
need a policy which determines the locality type of a write
request. Figure 4 shows the typical behaviors of write re-
quests which are generated by multiple tasks and are sent to
the FTL through the file system in a general-purpose com-
puting system. Since multiple I/O requests are usually inter-
leaved at the FTL due to a multi-tasking, we need to know
how the locality of each request may change.

From the observation on the characteristics of the I/O
requests gathered from the general-purpose computing sys-
tem, we found that the locality type of each request is deeply
related to its size. Figure 5(a) illustrates the relationship be-
tween the write update frequency and the size of the request
sent to the FTL. The update frequency of the request of size
s (sectors) represents the average number of update opera-
tions over all requests of size s. As shown in Figure 5(a),
small writes have high temporal localities while large writes
have lower temporal localities.

Another observation is that small writes have little se-
quential localities. Figure 5(b) shows the relationship be-
tween the size of each write request and the size of its orig-
inal request. The original request is a request issued by a
task to the file system as shown in Figure 4. The file system
may divide a long sequential write request into small write
requests and send them to the FTL, interleaving a write re-
quest from another task. So, the request size shown to the
FTL will be smaller than the original size of the write re-
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Figure 5: Characteristics of write requests

quest generated by tasks. However, as shown in Figure 5(b),
we notice that small writes almost come from small origi-
nal writes, and a large write request is likely to be a part of
a long sequential access. Since I/O clustering strengthens
the sequential property of each request in a request queue
within a device driver [10], if a write which arrives at the
FTL is small, we can assume that it is likely to have a
random access pattern. Therefore, we can presume that a
small write in general-purpose computing systems usually
has a high temporal and low sequential locality; on the other
hand, a large write has a relatively high sequential locality.

Based on these observations, we made a simple locality
detecting policy based on the request size without maintain-
ing additional information for identifying the locality type
of the write request. This policy determines the locality
type by comparing the size of each request with a threshold
value. If the size of the request is larger than the threshold
value, it is redirected to the sequential log buffer; otherwise,
it is written in the random log buffer. This threshold value
should be carefully determined. If the threshold is too small,
a large amount of small data will be frequently written in the
sequential log buffer, incurring the block thrashing prob-
lem. If the threshold is too large, sequential writes will be
forwarded to the random log buffer. Therefore, LAST may
lose many chances for the switch merge while it increases
the number of the full merges since the data written in the
random log buffer should be evicted by the full merge.

In our experiment, we found that the overall merge cost
is minimized when the threshold value is 4 KB (i.e., 8 sec-
tors), especially for write request patterns on the Microsoft
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Figure 6: Operations in the sequential log buffer

Windows XP operating system if we assume that a single
block size is 128KB.

3.3 Exploiting Sequential Locality

Figure 6(a) shows the write process in the sequential log
buffer when three sequential data streams are issued from
the file system. In this example, we assume that all the log
blocks are initially empty. The write sequence of each page
is denoted within a small circle. When all the sequential
log blocks are exhausted, LAST first searches the log block
where all the pages are valid data and do the switch merge.
If there is no such a log block, LAST selects the victim log
block using LRU replacement policy and then applies the
partial merge. Figure 6(b) shows the switch merge opera-
tion. Since all the pages in the LB0 are occupied by newly
updated data, LB0 is selected as the victim.

Usually, in general-purpose computing environments,
several sequential write streams are simultaneously issued
from the file system. By maintaining several sequential
log blocks, we can accommodate multiple sequential write
streams in the sequential log buffer. So, we can reduce the
number of the partial merges due to the contention between
multiple sequential streams. For instance, in Figure 6, if
there is only one sequential log block like FAST [8], each
sequential data stream will expel the other data stream from
the one sequential log block. So, its performance degrades
in the general-purpose computing systems.

3.4 Exploiting Temporal Locality

In the random log buffer, the full merge inevitably oc-
curs. To reduce the full merge cost, LAST utilized the tem-
poral locality. Before describing how to exploit the tempo-
ral locality, it is necessary to know which factor determines
the full merge cost.

3.4.1 Modeling the Full Merge Cost

As shown in Eq. (1), the full merge cost consists of the
page migration cost and the block erase cost. Before the
full merge, we first select the victim log block, and identify
the set of associated data blocks of the victim block. In
this paper, we define the number of associated data blocks

as an associativity degree, and denote it as Na. Each page
in an associated data block should be migrated into empty
data block from the associated block if it is valid in the data
block or from the log block if it is invalid in the data block.
Then, the number of page migrations for each associated
data block is Np when there is no free page in the data block,
where Np is the number of pages per a single block. After
copying all the valid pages, we erase associated data blocks
and the victim log block. Therefore, we can express the full
merge cost as Eq. (2) where Ce means the cost for erasing
a single block and Cc is the cost for copying a single page.

full merge cost =migration cost + erase cost (1)

=Na × {(Np × Cc) + Ce}+ Ce (2)

From Eq. (2), we can know that the overall full merge
cost deeply depends on the associativity degree Na. Conse-
quently, how to reduce the overall associativity degree is a
critical point in reducing the full merge cost.

In this paper, we use the temporal locality of random
writes as a key consideration in reducing the associativity
degree. The first approach is to cluster pages with high tem-
poral locality (hot pages) into the same log block. The hot
pages are frequently updated than other pages (cold pages),
thus make a large number of invalid pages within the ran-
dom log buffer. Then, we can increase the number of log
blocks which has no associated data blocks, and get a free
block without the page migration. The second approach is
to wait until the associativity degree of a log block is de-
creased if it has the possibility. Since the hot pages are
likely to be invalidated by the frequent writes, it is more
beneficial to select the victim among the cold blocks whose
associativity degree will rarely be changed. In the LAST
scheme, these two ideas are implemented by the random log
buffer partitioning policy and random log buffer replace-
ment policy, respectively.

3.4.2 Random Log Buffer Partitioning Policy

The random log buffer partitioning policy is proposed to ef-
ficiently remove invalid pages from the random log buffer.
We found that a large amount of invalid pages (above 50%)
occupy the random log buffer space, and most of them are
originated from hot pages whose data is updated frequently.
However, if the invalid pages are distributed into several log
blocks, a random log block will have both invalid pages and
valid pages. Then, a full merge should be performed to re-
claim such a log block.

To make the invalid pages to be generated mainly in a
small portion of log blocks, we divide the random log buffer
into two partitions, one for hot pages (hot partition) and the
other for cold ones (cold partition), and redirects arriving re-
quests into different partitions depending on their temporal
localities. Since hot pages are frequently rewritten, all the
hot pages within the same log block are likely to be invali-
dated in the near future. Since a dead block which has only
invalid pages is not associated with any data blocks (Na =
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0), only one erase operation is required during the garbage
collection. Since a lot of dead blocks are generated from the
hot partition, by aggressively evicting dead blocks, we can
reduce the full merge cost. Additionally, this also delays the
merge operation on the cold partition. This delayed merge
is usually beneficial to reduce the full merge cost. This is
because lots of pages that belong to the cold partition can
be invalidated during the extended time, thus decreasing the
overall associativity degree of the cold partition. Figure 7
shows the write processes in the random log buffer with two
partitions, and compares it with a single partition.

When partitioning the log buffer, we need to determine
which pages should be regarded as hot. As shown in Fig-
ure 7(b), LAST distinguishes the hotness of each page based
on its update interval. The update interval can be measured
by a page distance between the most recently written page
and the page with old data of the requested page. To eval-
uate whether an update interval is frequent or infrequent,
we define an index k as a criterion. If the update interval
of the requested page is smaller than k, we regard it as a
hot page; otherwise, it is regarded as a cold page. Once a
page is regarded as hot, it remains in the hot partition un-
til it is evicted. For example, in Figure 7(a), the data of
the requested page is sequentially written to the random log
buffer regardless of its hotness. On the other hand, in Fig-
ure 7(b), pages 1, 2 and 9 are treated as hot pages because
their update intervals are smaller than k, and thus clustered
into the hot partition.

The index k should be periodically adjusted depending
on the workload pattern to effectively identify the hot pages.
Moreover, we also need to redefine the size of the hot parti-
tion since as the k value changes, the amount of data to be
written in the hot partition also changes. To control them,
we refer to a space utilization of each partition (Uhot and
Ucold) and the number of dead blocks in the hot partition
(Nd). The space utilization can be formally defined as the
ratio of the valid pages in each partition.

Assuming that the hot pages are properly identified, the
size of the hot partition is changed in the following two
cases. The first case is when Nd is being increased. Be-
cause it means that too many log blocks are assigned to the
hot partition, we reduce the size of the hot partition. If Nd

is reduced while Uhot is increased, it means a large num-
ber of hot pages remain as a valid status due to the lack of
the space in the hot partition. Therefore, we increase the
hot partition size. Assuming that the size of hot partition is
large enough to accommodate the hot data, the k value can
be changed in the following cases. If Nd is being reduced
and Uhot remain relatively low, it means that a number of
cold pages are distributed in the hot partition. Therefore, we
reduce the k value. If Ucold is being reduced, it means that
a number of hot pages are written in the cold partition. So,
we increase the k value.

3.4.3 Random Log Buffer Replacement Policy

The random log buffer replacement policy is proposed to
provide a more intelligent victim block selection. The vic-
tim selection policy is composed of two steps. In the first
step, we determine a victim partition, where the victim log
block is to be selected. If there is a dead block in the hot
partition, we select the hot partition as the victim partition;
otherwise, we choose the cold partition. The rationale be-
hind this approach is to delay the eviction of the hot pages in
the hot partition as long as possible. However, when there
are pages which were hot pages but lose their temporal lo-
calities and changed into cold pages, we should evict them.
To do this, if there is a log block whose updated time is
smaller than a certain threshold time, we select the hot par-
tition as the victim partition.

The second step is to select the victim log block from
the victim partition. If the victim partition is the hot par-
tition, we select a dead block as the victim log block. If
there is no dead block, we choose a least recently updated
log block. For the cold partition, we choose the log block
with the lowest merge cost as the victim. By recycling this
block, we do the full merge at the lowest cost, and expect
log blocks with higher merge cost to remain in the random
log buffer until their full merge costs become small enough.
To do this, we need to maintain a merge cost table. Each
entry of the merge cost table keeps the associativity degree
of each log block, and only requires log2 Np bits.

After merging the victim, we need to reassign the re-
claimed log block to either partition. If the victim is a dead
block from the hot partition, it means that there are enough
dead blocks, thus give a free block to the cold partition. If
not, we give a free block to the hot partition.

Before finishing this section, we need to mention wear-
leveling issues related to the LAST scheme. Typically, each
block of NAND flash memory has a finite number of erase-
write cycles, and a block becomes unreliable after the limit.
In the LAST scheme, since hot pages are likely to be kept in



Table 1: Key parameters of the target large block NAND
flash memory

NAND flash memory
organization

Block size 128 KB
Page size 2 KB
Number of pages per block 64

Access time for each
operation

Read operation (1 page) 25 usec
Write operation (1 page) 200 usec
Erase operation (1 block) 2000 usec

the hot partition, blocks that belong to the hot partition are
intensively erased. On the other hand, blocks with cold data
are rarely updated, thus erase counts of these blocks will be
much smaller than those of other blocks. Due to this, we
need to adopt a hot-cold swapping algorithm, which tries
to balance erase cycles by periodically swapping the blocks
containing hot data with blocks having cold data.

4 Experimental Results

To evaluate the performance of the LAST scheme, we
have developed a trace-driven FTL simulator. We com-
pared LAST over three existing FTL schemes: BAST [7],
FAST [8] and SUPERBLOCK [9]. The flash memory
model used in simulation is Samsung K9WBG08U1M large
block NAND flash memory. Important parameters are listed
in Table 1. The workloads used for our experiments were
extracted from Microsoft Windows XP-based a notebook
PC and a desktop PC, running several applications, such as
documents editors, music players, web browsers and games.
In addition, we also captured storage access patterns while
running the TPC-C benchmarks to reflect the workload of
an enterprise server system. We compared the number of
copy operations and the number of erase operations during
the merge operations. The garbage collection overhead is
calculated by multiplying the number of each operation by
the corresponding time value listed in Table 1.

Figure 8 shows the normalized garbage collection over-
head for each FTL scheme when the log buffer size is 512
MB (=4096 log blocks). If we assume that the total capac-
ity of flash memory is 32 GB, the ratio of the log buffer
is less than 1.56% of total flash memory space. The se-
quential log buffer size is set as 32 MB (=256 log blocks),
and the remaining log blocks are assigned to the random
log buffer. Among all the evaluated schemes, LAST shows
the best garbage collection efficiency. LAST reduces the
garbage collection overhead by 46-67% compared with the
SUPERBLOCK scheme.

BAST shows the worst garbage collection efficiency
compared to other FTLs. This is because BAST cannot ef-
ficiently handle random write patterns. As mentioned in
Section 2, the block associativity mapping results in the
block thrashing problem for the workloads containing a
large amount of random writes. Therefore, the overall cost
of the full merge is significantly increased in BAST. Al-

0

10

20

30

40

50

60

70

80

90

100

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

B
A

S
T

FA
S
T

S
U

P
E

R
B

L
O

C
K

L
A

S
T

Application Set 1 Application Set 2 Application Set 3 TPC-C

N
o

rm
a

li
ze

d
 G

a
rb

a
g

e
 C

o
ll

e
c
ti

o
n

 O
ve

rh
e

a
d

 (
%

)

Switch Merge Partial Merge Full Merge

Figure 8: Normalized garbage collection overhead

though the LAST scheme uses the block associativity map-
ping for managing the sequential log buffer, the most of the
random writes can be filtered by the locality detector. So,
the block thrashing problem does not occur in LAST.

FAST exhibits a better garbage collection performance
than BAST by efficiently removing the block thrashing
problem. However, it cannot outperform LAST because it
does not exploit the locality of traces. First of all, it does not
exploit the temporal locality of the random writes. There-
fore, its full merge cost is the largest among all the schemes,
except for the BAST scheme. FAST also shows high par-
tial merge cost. This is because the sequential locality of
the sequential write patterns is likely to be broken by the
random write requests. As a result, it reduces the chance of
the switch merge operation, and thus increases the overall
merge cost. On the other hand, in the LAST scheme, since
the locality detector isolates the sequential writes from the
random writes, we can take advantage of the switch merge
for reducing the overall garbage collection overhead.

The SUPERBLOCK scheme exhibits more improved
garbage collection performance compared with FAST. Es-
pecially, its partial merge cost is much smaller than that of
the LAST scheme. In the LAST scheme, semi-sequential
writes are redirected into the sequential log buffer. There-
fore, when they are evicted from the sequential log buffer,
the partial merge is required for merging them. This is
why the LAST scheme yields more increased partial merge
cost than the SUPERBLOCK scheme. However, by re-
moving the semi-sequential writes from the random log
buffer, LAST can reduce the full merge cost significantly.
Consequently, due to the reduced full merge cost, LAST
can outperform SUPERBLOCK. In addition, more efficient
hot/cold separation policies used on the LAST scheme con-
tribute to reducing the full merge cost.

The LAST scheme also shows the best garbage collec-
tion efficiency in TPC-C benchmark. The workload of TPC-
C was collected while executing the undo operations on an
Oracle relational database system. The access patterns of
TPC-C are categorized into two types: random writes with
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Figure 9: The ratio of each merge operation

high temporal locality and sequential writes. Because these
two types of write requests are simultaneously issued from
the file system, they arrive at the FTL layer in mixed pat-
terns of random and sequential accesses. LAST efficiently
extracts the sequential writes from the random writes and
isolates them into the different log buffer. Due to high tem-
poral locality of the random writes, a large number of dead
blocks are generated from the random log buffer. On the
other hand, in the sequential log buffer, most of the merge
operations can be performed by the switch merge.

Figure 9 shows the ratio of each merge operation. For
the LAST scheme, we also denote the number of dead
blocks occurred during the merge operations. In the BAST
scheme, most of the merge operations are performed by the
full merge operation because of the block thrashing. In the
FAST scheme, the full merge and partial merge account for
about 50% of the total merge operations, respectively. In
the SUPERBLOCK and LAST schemes, most of the merge
operations are performed by the switch and partial merge.
However, the number of the full merges in LAST is much
smaller than that of SUPERBLOCK since a large number
of dead blocks are generated in the random log buffer.

Finally, we compare the mapping table size of each FTL
scheme. When the total capacity of flash memory is 32 GB
and the log buffer size is 512 MB, the mapping table size
of LAST (1.96 MB) is slight smaller than those of other
schemes (2.0 MB). This is because LAST handles the se-
quential log buffer using the block-level mapping instead of
the page-level mapping. Additional memory space required
for the merge cost table is quite small (3 KB).

5 Conclusion

We have proposed a new FTL scheme called LAST
which is designed to support a more efficient garbage col-
lection in general-purpose computing systems with flash
memory as a secondary storage. By exploiting both tem-
poral locality and sequential locality, LAST reduces the
garbage collection overhead by 54% over the existing FTLs.

The proposed LAST scheme can be further improved in
several directions. First, in this paper, we fixed the size of
the sequential log buffer as 32 MB. However, we observed
that the overall garbage collection overhead can be further
reduced by adjusting the size of the sequential log buffer
dynamically. Second, the proposed locality detector cannot
efficiently identify sequential writes when the small-sized
write has a sequential locality. Therefore, we are developing
a more intelligent locality detection algorithm.
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