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Abstract. Reward-based schedulinghas been investigated for flexible applica-
tions in which an approximate but timely result is acceptable. Meanwhile, signif-
icant research efforts have been made onvoltage schedulingwhich exploits the
tradeoff between the processor speed and the energy consumption. In this paper,
we address the combined scheduling problem of maximizing the total reward of
hard real-time systems with a given energy budget for the general task model. We
present anoptimal off-linealgorithm and an efficienton-line algorithm for jobs
with their own release-times/deadlines. Our work is the first significant result for
the general task model.

1 Introduction

Reward-based scheduling[2] has been introduced to handle overloaded real-time sys-
tems, for which it is not possible to meet all the timing constraints unless some tasks
are allowed to be skipped entirely or executed partially. In the reward-based scheduling
framework, the workload of each task is divided into a mandatory part and an optional
part. The mandatory part of a task should be completed by its deadline while the op-
tional part can be selectively executed before the deadline. The optional part is assumed
to follow the mandatory part in sequence and can be interrupted at any time. A non-
decreasing concave reward function is associated with each optional part; the more the
optional part is executed, the higher the reward is. The reward-based framework can
model various real-time applications that allow approximate results such as image and
speech processing, multimedia, robot control/navigation systems, information gather-
ing, real-time heuristic search [2]. We call these applicationsflexible applications[13].
The goal of reward-based scheduling is to find optional parts that maximizes the total
reward while meeting all the deadlines of the tasks composed of the fixed mandatory
parts and the optional parts computed.

Recently, the energy consumption has been one of the most important design con-
straints, especially for mobile devices that operate with a limited energy source such as
batteries. Because the dynamic energy consumption, which dominates the total energy
of CMOS circuits, is quadratically dependent on the supply voltage, lowering the supply
voltage is effective in reducing the energy consumption. However, lowering the supply
voltage also decreases the clock speed [17]. When a given application does not require
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the peak performance of a VLSI system, in order to save the energy, the clock speed
(and its corresponding supply voltage) can be dynamically adjusted to the lowest level
that still satisfies the required performance. This is the key principle ofvoltage schedul-
ing technique. With a recent explosive growth of the portable embedded system mar-
ket, several commercial variable-voltage processors were developed (e.g, Intel’sXscale,
AMD’s K6-2+, and Transmeta’sCrusoeprocessors.) Targeting these processors, vari-
ous voltage scheduling algorithms have been developed. The goal of voltage scheduling
is to find an energy-efficient voltage schedule with all the stringent timing constraints
satisfied. A voltage schedule is a function that associates each time unit with a voltage
level (i.e., a clock frequency).

As flexible applications are executed on variable voltage processors, the combined
problem of reward-based scheduling and voltage scheduling, which we call the reward-
based voltage scheduling problem, has been investigated [15, 16]. The reward-based
voltage scheduling problem can be viewed as being obtained by adding one more di-
mension to the solution space of either the reward-based scheduling problem or the
voltage scheduling problem; for the former, the processor speed as a function of time
is additionally computed along with the optional workloads, while for the latter the
optional workload of each task is determined along with the voltage schedule.

The reward-based voltage scheduling involves two-dimensional objectives, maxi-
mizing the total reward (from the reward-based scheduling) and minimizing the energy
consumption (from the voltage scheduling), and can be defined as duals; maximizing
the total reward within a given energy budget or minimizing the energy consumption
while providing the acceptable quality defined by reward functions. By considering dif-
ferent values of the constraint and solving the corresponding problem, designers can
obtain Pareto-optimal points which represent the exact trade-off between the solution
quality and the amount of energy required. Without loss of generality, in this paper, we
consider the problem of maximizing the total reward subject to energy constraints.

1.1 Previous Work

Reward-based execution model [2] has its origin in theIC (Imprecise Computation) [4,
12] andIRIS(Increasing Reward with Increasing Service) [5] models. In the IC model,
an optional part is associated with adecreasing linearfunction that indicates the preci-
sion error, and the goal is to minimize the weighted sum of the errors. Several optimal
off-line algorithms have been proposed for aperiodic IC tasks [18]. Note that an IC
model can be transformed into a reward-based model by substituting increasing linear
reward functions for the decreasing error functions. The IRIS model corresponds to
the special case of the reward-based model without mandatory parts. In [5], an optimal
off-line algorithm and an on-line algorithm for the IRIS aperiodic tasks are presented.

Aydin et al.proposed the generalized reward-based execution model and developed
an optimal off-line algorithm for periodic tasks with concave reward functions [2]. Con-
cave functions (including linear functions) can model the output quality of several flex-
ible applications such as multimedia applications, real-time heuristic search, pattern
recognition, and database query processing [2]. They also proved that the problem for
convex reward functions is NP-hard [2]. For firm real-time applications, of which re-
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ward is given by step functions, the reward-based scheduling problem is NP-complete
[18].

Voltage scheduling for variable-voltage processors has recently been extensively
studied targeting various system models. Voltage scheduling algorithms are classified
into off-line and on-line algorithms. Off-line algorithms compute static voltage sched-
ules with the assumption that timing parameters of each job is constant and known a
priori while on-line algorithms dynamically adjust the processor speed along with the
supply voltage based on the execution history.

For static job sets where each job has its own release time, deadline, and workload
known offline1, Yao et al. proposed an optimal off-line voltage scheduling algorithm
assuming EDF scheduling policy [20]. The off-line scheduling problem for the static
job model with arbitrary priority assignment (including RM (Rate-Monotonic) or DM
(deadline-monotonic) assignment) was proved to be NP-hard, and a fully polynomial
time approximation scheme (FPTAS) for the problem was presented [21]. Several on-
line voltage scheduling algorithms have been developed for both EDF periodic tasks [1,
7, 8, 14] and fixed-priority periodic tasks [6, 9, 14, 19]. Quantitative evaluation of exist-
ing on-line algorithms are presented in [10].

Reward-based voltage scheduling was first addressed by Rusuet al. [15, 16]. In
[16], off-line solutions for frame-based task sets (where all the jobs haveidentical re-
lease times and deadlines) and periodic EDF task sets with concave reward functions
are considered. They showed that the problem for periodic EDF task sets can be reduced
to the problem for the frame-based task sets. For tasks with identical power functions
(i.e., the same switching activity), they proved that all the tasks run at the same speed
under the optimal schedule. Thus, the problem is simply reduced to the reward-based
scheduling problem solved in [2]. They also developed an efficient off-line heuristic
for tasks with different power functions. The reward-based voltage scheduling problem
for frame-based task sets with 0/1 reward functions (i.e., no reward is given unless the
optional part is completely executed.) is proved to be NP-hard and a heuristic for the
problem is presented in [15]. The reward-based voltage scheduling remains relatively
unexplored partly due to the complexity caused by multidimensional solution space
(i.e., one dimension from voltage scheduling and the other from reward-based schedul-
ing).

1.2 Contributions

In this paper, we consider reward-based voltage scheduling for thegeneraltask model
used in [20, 21] unlike the restricted task model (e.g., frame-based task sets used in the
previous work [15, 16]). First, we describe anoptimal off-linealgorithm under the as-
sumption that the amount of workload (i.e., mandatory part and optional part) of each
job is fixed and known a priori. Second, we present an efficienton-linealgorithm which
leverage the workload variation to increase the reward within energy budget. Experi-
mental results show that the on-line algorithm is sufficiently efficient; the quality of so-

1 Note that the typical periodic task model can be transformed into the static job model by
considering all the task instances within a hyperperiod of periodic tasks.
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lution (i.e., the total reward) computed by the on-line algorithm is only3∼ 13%worse
than that of the theoretical optimal solution obtained by the optimal off-line algorithm.

The rest of the paper is organized as follows. We formulate the problem in Section
2. The optimal off-line algorithm is described in Section 3 while the on-line algorithm
is presented in Section 4. In Section 5, the experimental results are discussed. Section 6
concludes with a summary and directions for future work.

2 Problem Formulation

We consider a setJ = {J1,J2, · · · ,J|J |} of priority-ordered jobs withJ1 being the job
with the highest priority. A jobJi ∈ J is associated with the following attributes, which
are assumed to be known off-line:

– r i anddi : the release time and the deadline.
– mi : the mandatory workload expressed in execution cycles.
– ui : the sum ofmi and the upper bound of the optional workload. (i.e., the optional

workload (resp. the total workload) is selected between[0,ui −mi ] (resp.[mi ,ui ]).)
– fi : the reward given as a function of the total workload.

The job model can be directly applicable to a periodic real-time system by considering
all the task instances within the hyperperiod. We assume that the job setJ follows the
EDF priority as in [20].2 Note that, for the on-line scheduling problem,mi andui are the
worst-case values and the actual mandatory workload and upper bound of the optional
workload vary within(0,mi ] and(0,ui −mi ] during runtime.

The total workload ofJi (i.e., the sum of the mandatory and optional workloads
of Ji) is denoted byoi and is selected between[mi ,ui ] , i.e., mi ≤ oi ≤ ui . From now
on, we calloi ando = {o1,o2, · · · ,o|J |} by the workload ofJi and the workload tuple,
respectively. Associated with each optional workloadoi is a reward functionfi(oi),
which is assume to be nondecreasing, concave, and continuously differentiable over the
interval[mi ,ui ] as in [2, 16]. The derivative offi is denoted byf ′i .

Given a workload tupleo = {o1,o2, · · · ,o|J |} , the total rewardF , our optimization

goal, is given byF(o) = ∑|J |
i=1 fi(oi) . For a given workload tupleo, the workload ofJi

is addressed byoi [o] , or brieflyoi when no confusion arises. Given two workload tuples
o1 ando2 , we write o1 ≤ o2 if oi [o1]≤ oi [o2] for all 1≤ i ≤ |J | . Note that, for such
o1 ando2 , F(o1) ≤ F(o2) . Particularly, we usem andu to denote(m1,m2, · · · ,m|J |)
and(u1,u2, · · · ,u|J |), respectively. Note thatm andu is the lower and upper bounds for
o . The solution space given byo is written byO , i.e.,O = {o | m ≤ o≤ u} . For o1

ando2 , o1−o2 is defined byoi [o1−o2] = oi [o1]−oi [o2] (1≤ i ≤ |J |) .
Since there is a one-to-one correspondence between the processor speed and the

supply voltage, we useS(t), the processor speed, to denote the voltage schedule. Given
a workload tupleo, a voltage scheduleS(t) is said to befeasiblefor o if S(t) gives
each jobJi the required number of cyclesoi [o] between its release timer i and deadline
di . (The exact condition for the feasibility is explained later.) As with other related

2 A job setJ is said to be an EDF job set if for any1≤ i < j ≤ |J |, di ≤ d j or d j ≤ r i .

4



work [20, 21], we assume that the processor speed can be varied continuously3 with
a negligible overhead both in time and power. Furthermore, we model that the power
P, energy consumed per unit time, is a function of the processor speed; given a voltage
scheduleS(t), the power can be written as a function of time byP(S(t)). For simplicity,
we assume that all the jobs have the same switching activity and thatP is dependent only
on the processor speed.

The energy-optimal schedule foro is defined to be a scheduleS(t) feasible foro that
minimizesE(S) =

∫ tf
ts P(S(t)) dt wherets andtf are the lower and upper limits of release

times and deadlines of the jobs inJ , respectively. The energy-optimal voltage schedule,
writtenS [o], is unique and can be obtained by Yao’s algorithm [20] in polynomial time.

From the fact that each job runs at the constant speed under an energy-optimal volt-
age schedule [20, 21], we can easily establish a one-to-one correspondence between
S(t) and the the allowed execution timeai allocated to eachJi ∈ J . Given a feasible volt-
age scheduleS , the corresponding tuple of the allowed execution times(a1,a2, · · · ,a|J |)
is uniquely determined. Conversely, givenA = (a1,a2, · · · ,a|J |), the corresponding off-
line voltage scheduleSA can be uniquely constructed by assigning the constant exe-
cution speedoi/ai to Ji . A is said to befeasibleif the corresponding voltage schedule
SA is feasible. For an EDF job setJ , A = (a1,a2, · · · ,a|J |) is feasible if and only if the
following condition is satisfied (See [21] for a proof.):

Condition I (EDF Feasibility Condition).

For anyr i < d j (1≤ i , j ≤ |J |) , ∑
k/[rk,dk]⊆[r i ,d j ]

ak ≤ d j − r i .

The energy consumption of the voltage schedule in terms ofA is given byE(A) =
∑|J |

i=1 ai ·P(oi/ai) . For a fixed workload tupleo, the energy-optimal voltage scheduling
problem is stated as maximizingE(A) subject to Condition I, and can be optimally
solved by Yao’s algorithm. Given a workload tupleo, the corresponding energy-optimal
voltage schedule in terms ofA is denoted byA[o] = (a1[o],a2[o], · · · ,a|J |[o]).4

Now, the reward-based voltage scheduling problem is formulated as follows:

Find a workload tupleo∈ O such that the total rewardF(o) is maximized subject
to E(A[o]) ≤ Ebudget.

The main source of difficulty is thatA[o] is not explicitly represented in terms of
o = {o1,o2, · · · ,o|J |}, which makes it difficult to explore the solution space given by
o. In Section 3, we present how to efficiently search the optimal solution of the reward-
based voltage scheduling problem by exploiting the properties of energy-optimal volt-
age schedules.

3 The results in this paper can be easily extended to a processor model with a limited number of
voltage levels using the result of [11].

4 In the rest of the paper, we useS [o] andA[o] interchangeably to denote the energy-optimal
voltage schedule foro.
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3 Optimal Off-Line Algorithm

In this section, we present an optimal off-line algorithm for the problem. Before de-
scribing the algorithm, since the solution space given byo is implicitly represented by a
condition in which its corresponding energy-optimal voltage schedule is involved (i.e.,
E(A[o]) ≤ Ebudget), we characterize some useful properties of energy-optimal voltage
schedules, which provide a basis of later proofs.

3.1 Characterization of Energy-Optimal Voltage Schedules

We first introduce notations which represent attributes of energy-optimal voltage sched-
ules. In the following, notations are defined for an arbitrary but fixed workload tupleo
and its corresponding energy-optimal voltage scheduleS [o] (equivalently,A[o]). si [o]
and Ii [o] denote the (constant) speed ofJi and the union of intervals in whichJi is exe-
cuted underS [o] , respectively, i.e.,‖Ii [o]‖= ai [o] andsi [o] = oi [o]/ai [o] . We call Ii [o]
theexecution intervalof Ji . gi [o] is used to denoteP′(si [o])/ f ′i (oi [o]) whereP′ is the
derivative ofP, and is called thegradientof Ji .

Jk[o] represents the set of jobs scheduled at thei-th iteration in Yao’s algorithm,
andσk[o] denotes the constant speed allocated to jobs inJk[o] . Note thatσk[o] is non-
increasing with respect tok. it i [o] is used to denote the iteration numberk such that
Ji ∈ Jk[o] , i.e., Ji ∈ Jit i [o][o] . The union of execution intervals of jobs inJk[o] is de-
noted byIk[o] , and called theexecution intervalof Jk[o] , i.e., I k[o] = ∪Ji∈Jk[o]Ii [o] and
‖Ik[o]‖= ∑Ji∈Jk[o] ai [o] . The relation∼[o] on J is defined by

Ji ∼[o] Jj iff ∃ k, Ji ,Jj ∈ Jk[o] .

The relation∼[o] is an equivalence relation and gives rise to a partition ofJ , written
G [o] , i.e.,G [o] = {Jk[o] | k = 1,2, · · ·} . In Figure 1, Yao’s algorithm is described by
the symbols defined so far.

Jk[o] is partitioned intoJ 0
k [o] andJ +

k [o] such that a jobJi ∈ Jk[o] belongs toJ 0
k [o] if

oi [o] = mi and, otherwise, it belongs toJ +
k [o] , i.e.,

J 0
k [o] def= {Ji ∈ Jk[o] | oi [o] = mi} and J +

k [o] def= {Ji ∈ Jk[o] |mi < oi [o] (≤ ui)} .

For jobs inJ +
k [o] , the smallestf ′i value and the largest gradient are denoted byρk[o]

and∇k[o], respectively, i.e.,

ρk[o] def= min{ f ′i (oi [o]) | Ji ∈ J +
k [o] }

∇k[o] def= max{gi [o] | Ji ∈ J +
k [o] } ≡ P′(σk[o])/ρk[o] .

When J +
k [o] is empty, ρk[o] and ∇k[o] are set to be∞ and 0 . ∇k[o] is called the

gradientof Jk[o] . ∇[o] denotes the largest one among∇1[o],∇2[o], · · · , i.e.,

∇[o] def= max{∇k[o] | k = 1,2, · · · } ≡ max{gi [o] | Ji ∈ ∪k≥1 J +
k [o] } .
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procedure ENERGY OPTIMAL VOLTAGE SCHEDULING(J , o)
1: J ′ := J
2: I := ∪|J |i=1 [r i ,di ] /* the whole execution interval */
3: k := 1 /* the iteration number */
4: while ( J ′ 6= /0 )
5: TJ ′ := {r i ,di |Ji ∈ J ′}
6: Findr,d ∈ TJ ′ (r < d) such thatσ[r,d] =

∑i/[r i ,di ]⊆[r,d] oi [o]
‖I ∩ [r,d]‖ is maximized.

/* Ties are broken by preferring the largestd− r and then the smallestr. */
7: J k[o] := {Ji |[r i ,di ]⊆ [r,d]} /* the set of jobs scheduled at thek-th iteration */
8: σk[o] := σ[r,d] /* the constant speed allocated to jobs inJ k[o] */
9: foreach (Ji ∈ J k[o])

10: si [o] := σk[o] /* the constant speed allocated toJi */
11: ai [o] := oi [o]/si [o] /* the execution time allocated toJi */
12: Ii [o] := the union of intervals in whichJi is executed under the EDF policy
13: end foreach
14: J ′ := J ′− J k[o]
15: I := I − [r,d]
16: k := k+1
17: end while
18: return (a1[o],a2[o], · · · ,a|J |[o]) /* S [o] can be directly computed fromA[o]. */
end procedure

Fig. 1. Yao’s algorithm to compute an energy-optimal voltage schedule.

J>k [o] represents the subset ofJ +
k [o] that consists of jobs with the smallestf ′ value

(equivalently, the largest gradient), i.e.,

J>k [o] def= {Ji ∈ J +
k [o] | f ′i (oi [o]) = ρk[o] } ≡ {Ji ∈ J +

k [o] | gi [o] = ∇k[o] } .

For a gradientg , G〈g〉[o] represents the subset ofG [o] that consists of job sets with
gradientg, i.e.,

G〈g〉[o] def= {Jk[o] ∈ G [o] | ∇k[o] = g} .

For workload tupleso1 ando2 , we writeo1 ≈ o2 if G [o1] ≡ G [o2].5 For sucho1

and o2, the shapesS [o1](t) and S [o2](t) are similar in that the speeds rise and sink
at the same time points. BecauseI it i [o1][o1] ≡ I it i [o2][o2] for a job Ji ∈ J , A[o2] =
(a1[o2], · · · ,a|J |[o2]) can be expressed in terms ofo2 andA[o1] = (a1[o1], · · · ,a|J |[o1])
as follows.

ai [o2] = oi [o2] ·
∑Jj∈Jk[o1] a j [o1]

∑Jj∈Jk[o1] o j [o2]

(
= oi [o2] · 1

si [o2]

)
where k = it i [o1] . (1)

The relation≈ is an equivalence relation and forms an (infinite) partition ofO . Gener-
ally, A[o] is not explicitly represented in terms ofo. However, ifA[o′] is available for

5 G [o1] ≡ G [o2] does not always implyJk[o1] ≡ Jk[o2] for all k≥ 1 . However, there exists a
permutationπ such thatJk[o1]≡ Jπ(k)[o2] for all k≥ 1 .
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someo′ such thato′ ≈ o , the analytic expression ofA[o] can be obtained from Eq.(1).
Our algorithm in 3.2 exploits this property in searching the optimal solution.

Now, we describe useful properties that characterize the relation between some at-
tributes of energy-optimal voltage schedules for different workload tuples. The mono-
tonicity of the speedsi [o] and and the gradientgi [o] of a job Ji with respect to the
workload tupleo is stated in the following lemma.

Lemma 1. For o ando′ such thato≤ o′ ,

si [o] ≤ si [o′] and gi [o] ≤ gi [o′] for all 1≤ i ≤ |J | .

Proof. For1≤ j ≤ |J | , let o j be defined by

oh[o j ] =
{

oh[o] h≤ j
oh[o′] h > j .

It is easy to verify that, foro j ando j+1 (1≤ j < |J |),

∀Ji ∈ J s.t. it i [o j ] > it j+1[o j ] , si [o j+1] = si [o j ] and

∀Ji ∈ J s.t. it i [o j ]≤ it j+1[o j ] , si [o j+1] ≥ si [o j ] .

It immediately follows that

si [o] = si [o1] ≤ si [o2] ≤ ·· · ≤ si [o|J |] = si [o′] .

Furthermore, from the convexity ofP and the concavity off , we have

gi [o] =
P′(si [o])
f ′i (oi [o])

≤ P′(si [o′])
f ′i (oi [o])

≤ P′(si [o′])
f ′i (oi [o′])

= gi [o′] . ut

Note that the converse of Lemma 1 does not always hold, i.e.,si [o]≤ si [o′] (1≤ i ≤ |J |)
does not implyo≤ o′ . However, it preserves the order inS [o] as follows.

Lemma 2. For o ando′ such that

∀ 1≤ i ≤ |J | , si [o] ≤ si [o′] ,

∀ t , S [o](t) ≤ S [o′](t) and E(S [o]) ≤ E(S [o′]) .

Proof. To find the explicit representation ofS [o](t) (resp.S [o′](t)) in terms ofsi [o]
(resp.si [o′]), we first prove that

∀ 1≤ i ≤ |J | , ∀ r i ≤ t ≤ di , S [o](t) ≥ si [o] . (2)

Suppose to the contrary that for somei , s0 , t0 and∆t (wherer i ≤ t0 < t0+∆t ≤ di), we
have ∀ t0 ≤ t ≤ t0 +∆t, S [o](t) = s0 < si [o] . Let S(t) be defined by

S(t) =





oi [o]+so ·∆t
ai [o]+∆t

(< si [o]) t0 ≤ t ≤ t0 +∆t ∨ t ∈ Ii [o] ,

S [o](t) otherwise.
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Then, it is easy to check thatS(t) is feasible foro andE(S) < E(S [o]) . Thus,S [o] is
not the energy-optimal voltage schedule foro , a contradiction.
Furthermore, from the definition ofsi [o], we have

S [o](t) ∈ {si [o] | r i ≤ t ≤ di} . (3)

From Eq.(2) and Eq.(3),S [o](t) can be expressed in terms ofsi [o] as follows:

S [o](t) = max{si [o] | r i ≤ t ≤ di} .

Similarly, S [o′](t) is given by

S [o′](t) = max{si [o′] | r i ≤ t ≤ di} ≥ max{si [o] | r i ≤ t ≤ di} = S [o](t) .

It immediately follows thatE(S [o]) ≤ E(S [o′]) . ut

3.2 The Optimal Algorithm

The algorithm starts by computing the energy-optimal voltage scheduleA[u] for the
workload tupleu. If E(A[u])≤ Ebudget, the algorithm returnsu as the optimal solution
sinceA[u] satisfies the energy constraint (as well as timing constraints) andF(u) is
the upper bound of the total reward. Otherwise, the algorithm setso to u and decreases
o iteratively (but not beyondm) until E(A[o]) reachesEbudget , as with the general
descent method used for numerical optimization problems [3]. The challenges are how
to determine the descent direction which varies continuously during search and how to
make the search complete in polynomial time while guaranteeing the optimality.

A natural choice for the descent direction is the one that minimizes the decrease in
F(o) per unit decrease inE(A[o]) (equivalently, the one that maximizes the decrease in
E(A[o]) per unit decrease inF(o) ). However, the difficulty lies in the fact thatA[o] is
not usually expressed explicitly in terms ofo, thus making it difficult to compute the
differential of E(A[o]) in closed form. Furthermore, it is not obvious that thegreedy
gradient-based search always converges to the global optimal solution in our problem.
The complicated solution space implicitly described by a condition in whichA[o] is
involved also makes it difficult to determine the step size that yields a polynomial bound
on the running time while still keeping the optimality.

To tackle the difficulties, we use the properties of energy-optimal voltage schedules
described in Section 3.1. The gradient defined for a jobJi and a job setJk[o] corresponds
to the energy decrease per unit reward decrease, and plays an important role in our algo-
rithm. The procedureMAXIMIZE REWARD in Figure 2 describes the overall processing
steps of our algorithm. The search is guided by theglobal gradientg . Initially, g is ini-
tially set to ∇[u] , the largest gradient among those of jobs in∪k≥1 J +

k [u] . At each
iteration,g is decreased to the level determined by theNEXT GRADIENT procedure.

The corresponding workload tupleo〈g〉 is initially set tou and is iteratively adjusted
to the lower level by the procedureDECREASE WORKLOADS (Figure 3) such that each
gi [o〈g〉] does not exceed the decreasedg. (Note thatgi [o] decreases witho by Lemma 1.)
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procedure MAXIMIZE REWARD

1: E := E(S [u])
2: g := max{gi [u]|Ji ∈ ∪k≥1 J +

k [u]} (= ∇[u])
3: o〈g〉 := u
4: while (E > Ebudget)
5: o := o〈g〉
6: gs := g
7: g := NEXT GRADIENT( o〈g〉, g)
8: g := max({g}∪{∇k′ [o] | ∇k′ [o] < ∇k[o]})
9: o〈g〉 := DECREASE WORKLOADS( o〈g〉, g)

10: E := E(S [o〈g〉])
11: end while

/* The optimal solution is betweeno〈g〉 ando. */
12: Solve the simultaneous equations given by

Eq.(7) for all J k[o] ∈ G〈gs〉[o] and

∑ J k[o]∈G〈gs〉[o]P

( ∑Ji∈J k[o] γi(hk)

‖I k‖
)
· ‖I k‖ + ∑ J k[o]∈G [o]−G〈gs〉[o]P

( ∑Ji∈J k[o] oi [o]

‖I k‖
)
· ‖I k‖ = Ebudget.

13: foreach (Ji ∈ J )
14: if (J it i [o] ∈G〈gs〉[o])
15: oi := γi(hit i [o])
16: else
17: oi := oi [o]
18: end if
19: end foreach

/* E(S [(o1,o2, · · · ,o|J |)]) = Emax and ∑|J |i=1 f (oi) is maximum. */
20: return (o1,o2, · · · ,o|J |)
end procedure

Fig. 2. The optimal off-line reward-based voltage scheduling algorithm.

After each invoke of the procedureDECREASE WORKLOADS, the following invariant
ono〈g〉 is preserved, which concisely describes the behavior of our algorithm:

oi [o〈g−∆g〉] =
{

oi [o〈g〉] gi [o〈g〉] < g ∨ oi [o〈g〉] = mi ,
oi [o〈g〉]−∆oi gi [o〈g〉] = g ∧ oi [o〈g〉] > mi .

where∆g is a sufficient small number and∆oi ’s ( > 0 ) satisfy

gi [o〈g−∆g〉] = g−∆g for all i s.t. gi [o〈g〉] ≥ g ∧ oi [o〈g〉] > mi . (4)

Note thatgi [o〈g−∆g〉] is not generally given as an analytic expression which is nec-
essary in solving Eq.(4). Informally,∆o = (∆o1,∆o2, · · · ,∆o|J |) (∆oi is set to0 for all i
such thatgi [o〈g〉] < g or oi [o〈g〉] = mi .) satisfying Eq.(4) represents the search direction
at o〈g〉 that results in the biggest decrease in the energy per unit decrease in the total
reward.

Let us assume thato〈g−∆g〉 ≈ o〈g〉 , i.e.,G [o〈g−∆g〉] ≡ G [o〈g〉] . Then, we can
obtain an analytic expression forgi [o] in terms ofA[o〈g〉] and∆o = {∆o1, · · · ,∆o|J |} .
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procedure DECREASE WORKLOADS( o, g)
/* The procedureNEXT GRADIENT guaranteeso≈ o〈g〉. */

1: (o1,o2, · · · ,o|J |) := o
2: foreach (J k[o] ∈ G〈g〉[o])
3: Solve the equation given by Eq.(7).
4: foreach (Ji ∈ J k[o])
5: oi := γi(hk)
6: end foreach
7: end foreach
8: return (o1,o2, · · · ,o|J |)

end procedure

Fig. 3. The algorithm to decrease the workload tuple for a given global gradient.

From Eq.(1),si [o〈g−∆g〉] is given by

si [o〈g−∆g〉] =
∑Jj∈J ′(o j [o〈g〉]−∆o j)

∑Jj∈J ′ a j [o〈g〉] where J ′ = Jit i [o〈g〉][o〈g〉] ,

andgi [o〈g−∆g〉] is given in terms ofsi [o〈g−∆g〉] by

gi [o〈g−∆g〉] =
P′(si [o〈g−∆g〉])
f ′i (oi [o〈g〉]−∆oi)

, (5)

which is an explicit expression of∆o. Therefore, we can compute∆o by solving Eq.(4)
either numerically or analytically. By repeating this process, we can obtaino〈g〉 for all
0 < g < ∇[u] , however, it requires infinitely many steps because∆g is assumed to be
arbitrarily small.

To bring the number of steps down to a polynomial, we exploit the fact that an equiv-
alence class under the relation≈ covers sufficiently large range ofo, i.e.,{o〈g〉 | 0 <
g≤ ∇[u]} is partitioned into a polynomial number of rangesO1,O2, · · · ,On:

{o〈g〉 | 0 < g≤ ∇[u]} = ∪n
l=1Ol = ∪n

l=1{o〈g〉 | gl−1 < g≤ gl} .

whereg0 = 0 andgn = ∇[u] . We callg1,g2, · · · ,gn−1 separatinggradients. For the time
being, assume that the number of separating gradients is bounded by a polynomial and
that each one can be found in polynomial time. (We will prove these assumptions later
in this section.) Then, ifo〈g〉 can be found for allgl−1 < g≤ gl in polynomial time, we
can obtaino〈g〉 for all 0 < g < ∇[u] in polynomial time.

For a giveno〈gl 〉, we describe how to computeo〈g〉 for gl−1 < g≤ gl . From the
definition ofgl−1 andgl , we haveo〈gl 〉 ≈ o〈g〉 , i.e.,G [o〈gl 〉]≡ G [o〈g〉] . Without loss
of generality, we assume thatJk[o〈gl 〉]≡ Jk[o〈g〉] for all k≥ 1 . Then, we have

Ik[o〈gl 〉]≡ I k[o〈g〉] and ∑
Ji∈Jk[o〈gl 〉]

ai [o〈gl 〉] = ∑
Ji∈Jk[o〈g〉]

ai [o〈g〉] .

For brevity,Jk , Ik and‖Ik‖ are used to denoteJk[o〈gl 〉] , Ik[o〈gl 〉] and∑Ji∈Jk[o〈gl 〉] ai [o〈gl 〉] ,
respectively. For eachJi ∈ Jk , its workloadoi [o〈g〉] is set to be an explicit expression
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of hk (hk represents the decrease in the reward per unit decrease in the workload):

oi [o〈g〉] = γi(hk) whereγi is the function defined by (6)

γi(x) =





ui 0 < x < f ′i (ui) ,

f ′−1
i (x) f ′i (ui)≤ x≤ f ′i (mi) ,

mi x > f ′i (mi) .

hk satisfies the following equation that corresponds to Eq.(4):

P′(∑Ji∈Jk
γi(hk) / ‖I k‖)
hk

= g . (7)

Because the left-hand side of Eq.(7) is a strictly decreasing function ofhk (from the
concavity of fi), hk is uniquely determined, and so areoi [o〈g〉]’s. The procedureDE-
CREASE WORKLOADS takes as inputso〈gl 〉 andg such thato〈gl 〉 ≈ o〈g〉 and returns
o〈g〉. The following lemma captures the heart of the procedureDECREASE WORKLOADS.

Lemma 3. For gl−1 < g≤ gl , let o〈g〉 be defined by Eq.(6) and Eq.(7). Then,

dE(A[o〈g〉])
dF(o〈g〉) = g for all gl−1 < g≤ gl .

Proof. Let Ok(g) denote the sum of workloads of jobs inJk undero〈g〉 , i.e., Ok(g) =
∑Ji∈Jk

oi [o〈g〉] . Let Fk(g) and Ek(g) denote the sum of rewards and the energy
consumption of jobs inJk under A[o〈g〉] , respectively, i.e.,

Fk(g) = ∑
Ji∈Jk

fi(oi [o〈g〉]) and Ek(g) = P

(
Ok(g)
‖Ik‖

)
· ‖I k‖ .

For a job Ji ∈ Jk such thatmi < oi [o〈g〉] < ui , we have from Eq.(6):

mi < γi(hk) < ui , which implies γi(hk) = f ′−1
i (hk) and then

f ′i (oi [o〈g〉]) = f ′i (γi(hk)) = f ′i ( f ′−1
i (hk)) = hk .

Therefore,

dFk(g)
dOk(g)

= ∑
Ji∈Jk

dFk(g)
doi [o〈g〉]

doi [o〈g〉]
dOk(g)

= ∑
Ji∈Jk ∧mi<oi [o〈g〉]<ui

f ′i (oi [o〈g〉]) · doi [o〈g〉]
dOk(g)

= hk · ∑
Ji∈Jk ∧mi<oi [o〈g〉]<ui

doi [o〈g〉]
dOk(g)

= hk · dOk(g)
dOk(g)

= hk . (8)

Furthermore,

dEk(g)
dOk(g)

=
1
‖I k‖ ·P

′
(

Ok(g)
‖Ik‖

)
· ‖I k‖ = P′

(
Ok(g)
‖I k‖

)
. (9)

From Eq.(8) , Eq.(9) and Eq.(7), we have

dEk(g)
dFk(g)

=
dOk(g)
dFk(g)

· dEk(g)
dOk(g)

=
1
hk
·P′

(
Ok(g)
‖Ik‖

)
= g . (10)
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Finally, from Eq.(10), it follows that

dE(A[o〈g〉])
dF(o〈g〉) = ∑

k≥1

dEk(g)
dF(o〈g〉) = ∑

k≥1

(
∑
k≥1

dEk(g)
dFk(g)

· dFk(g)
dF(o〈g〉)

)

= ∑
k≥1

(
∑
k≥1

g· dFk(g)
dF(o〈g〉)

)
= g · dF(o〈g〉)

dF(o〈g〉) = g . ut

Based on the invariant described by Lemma 3, we prove in Section 3.3 thato〈g〉 always
passes through the optimal solution, i.e., the optimal solutionoopt is given byo〈gopt〉
wheregopt is the unique gradient satisfyingE(A[o〈gopt〉]) = Ebudget.

To show that our algorithm runs in polynomial time, we now describe how to com-
pute each separating gradient in polynomial time and prove that the number of sepa-
rating points is bounded by a polynomial. Let us consider necessary conditions for a
global gradientg to be a separating gradient. Suppose thatg is a separating gradient.
Then,

(a) jobs inJk1[o〈g+ ε〉] andJk2[o〈g+ ε〉] are merged intoJk[o〈g− ε〉] , or
(b) jobs inJk[o〈g+ ε〉] is divided intoJk1[o〈g− ε〉] andJk2[o〈g− ε〉]
whereε is the infinitesimal. Both cases may occur simultaneously.

The necessary condition for the case (a) to occur is given by

lim
ε→0

σk1[o〈g+ ε〉] = lim
ε→0

σk2[o〈g+ ε〉] , which implies

lim
ε→0

∑Ji∈Jk1
[o〈g+ε〉] oi [o〈g+ ε〉]

∑Ji∈Jk1
[o〈g+ε〉] ai [o〈g+ ε〉] = lim

ε→0

∑Ji∈Jk2
[o〈g+ε〉] oi [o〈g+ ε〉]

∑Ji∈Jk2
[o〈g+ε〉] ai [o〈g+ ε〉] . (11)

The second case is more complicated. For a jobJi ∈ Jk[o〈g+ε〉] , let I ′i denoteI k[o〈g+
ε〉]∩ [r i ,di ] and letJ[r,d] denote{Ji ∈ Jk[o〈g+ ε〉] | I ′i ⊆ [r,d]} . Then, the necessary
condition for the case (b) is given by

lim
ε→0

σk1[o〈g− ε〉] = lim
ε→0

σk2[o〈g− ε〉] , which implies

∃ r , d ∈ {minI ′i , maxI ′i | Ji ∈ Jk[o〈g+ ε〉] } ,

lim
ε→0

∑Ji∈J[r,d]
oi [o〈g+ ε〉]

‖Ik[o〈g+ ε〉]∩ [r,d]‖ = lim
ε→0

∑Ji∈Jk[o〈g+ε〉]−J[r,d]
oi [o〈g+ ε〉]

‖Ik[o〈g+ ε〉]‖−‖Ik[o〈g+ ε〉]∩ [r,d]‖ .(12)

Provided that the separating gradientsgn,gn−1, · · · ,gl are identified, the next lower sep-
arating gradientgl−1 can be found by the following procedure:

(a) Replace ∑Ji∈Jk1
[o〈g+ε〉] ai [o〈g+ ε〉] and ∑Ji∈Jk2

[o〈g+ε〉] ai [o〈g+ ε〉] in Eq.(11) by

∑Ji∈Jk1
[o〈gl 〉] ai [o〈gl 〉] and ∑Ji∈Jk2

[o〈gl 〉] ai [o〈gl 〉] , respectively. (Note that the latter
two are known values, sincegl is already known.)

(b) ReplaceIk[o〈g+ ε〉] in Eq.(12) byIk[o〈gl 〉] (Note that the latter is already known.)
(c) Removelim operators from Eq.(11) and Eq.(12) and replaceg+ ε by g .
(d) Return the largestg (< gl ) that satisfies the simultaneous equations Eq.(6), Eq.(7)

and Eq.(11), or the equations Eq.(6), Eq.(7) and Eq.(12).
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The above procedure makes good use of the property thato〈g〉 ≈ o〈gl 〉 for all gl−1 <
g≤gl ando〈gl 〉 ≡ limε→0o〈gl +ε〉 . At each iteration, the procedureNEXT GRADIENT

computes the next lower separating gradient in this way. It remains to show that the
number of separating gradients is bounded by a polynomial. In proving this property,
we exploit the fact that the order on speed levels of jobs is not changed too frequently.

Lemma 4. The number of separating gradients within(0,∇[u]] is bounded by4· |J |2 .

Proof. Let αi (1≤ i ≤ |J |) be the functions on(0,∇[u]] defined by

αi(g) =
{

0 oi [o〈g〉] > mi ,
2· |J | oi [o〈g〉] = mi .

Furthermore, fori and j such that(r i ,di)∩ (r j ,d j) 6= /0 , let βi, j (1≤ i < j ≤ |J |) be the
functions on(0,∇[u]] defined by

βi, j(g) =





0 (si [u] > sj [u] ∧ si [o〈g〉] > sj [o〈g〉])
∨ (si [u] < sj [u] ∧ si [o〈g〉] < sj [o〈g〉])
∨ (si [u] = sj [u] ∧ si [o〈g〉] = sj [o〈g〉])

1 (si [u] > sj [u] ∧ si [o〈g〉] = sj [o〈g〉])
∨ (si [u] < sj [u] ∧ si [o〈g〉] = sj [o〈g〉])
∨ (si [u] = sj [u] ∧ si [o〈g〉] 6= sj [o〈g〉])

2 (si [u] > sj [u] ∧ si [o〈g〉] < sj [o〈g〉])
∨ (si [u] < sj [u] ∧ si [o〈g〉] > sj [o〈g〉]) .

Finally, letδ(g) = ∑|J |
i=1 αi(g) +∑(r i ,di)∩(r j ,d j )6= /0 βi, j(g) . It can be easily verified that

for each separating gradientgl , δ(gl + ε)+ 1≤ δ(gl − ε) , i.e., δ strictly increases
around gl . However, becauseδ(∇[u]) = 0 and δ(g) is bounded by4 · |J |2 , the
number of separating gradient within(0,∇[u]] is bounded by4 · |J |2 . ut

3.3 Optimality Proof

In this section, we prove that the algorithm described in Section 3.2 always computes
the optimal solution. Before presenting the optimality proof, we define additional nota-
tions and prove some miscellaneous properties.

In Section 3.2,o〈g〉was used to search the solution space given by{o |m≤ o≤ u} .
For the optimality proof, we consider a restricted solution space given by{o |m′ ≤ o≤
u} wherem ≤ m′ . Note that the lower bound is increased fromm to m′ . o〈g〉(m′)
is used to denoteg’s corresponding workload tuple when the algorithm in Section 3.2
takesm′ instead ofm as input. From the definition,o〈g〉(m)≡ o〈g〉 for all g.

Lemma 5. Givenm′ (m ≤m′) and oi [m′] < x < ui , let gi(x,m′) denote the unique
g that satisfiesoi [o〈g〉(m′)] = x . Then, foro1 ando2 such thatm ≤ o1 ≤ o2 ≤ u and
oi [o2] < xi < ui , we havegi(xi ,o1) ≤ gi(xi ,o2) .

Proof. Let og ando′g denoteo〈gi(xi ,o1)〉(o1) ando〈gi(xi ,o2)〉(o2) , respectively. Then,
it suffices to show thatsi [og]≤ si [o′g] sincegi(xi ,o1) = P′(si [og])/ f ′i (xi) andgi(xi ,o2) =
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P′(si [o′g])/ f ′i (xi) . To find explicit representations ofsi [og] andsi [o′g], we first defineo3

ando4 as follows:

o j [o3] =





xi j = i
u j f ′j(u j) > f ′i (xi) ,

o j [o1] f ′j(o j [o1]) < f ′i (xi) ,

f ′−1
j ( f ′i (xi)) otherwise.

o j [o4] =





xi j = i
u j f ′j(u j) > f ′i (xi) ,

o j [o2] f ′j(o j [o2]) < f ′i (xi) ,

f ′−1
j ( f ′i (xi)) otherwise.

The definition ofo3 ando4 implieso3 ≤ o4, since if j 6= i and f ′j(u j)≤ f ′i (xi) we have

o j [o3] = max{o j [o1], f ′−1
j ( f ′i (xi))} ≤ max{o j [o2], f ′−1

j ( f ′i (xi))} = o j [o4] . (13)

Sinceoi [o2] < xi < ui , we have for somek andk′:

Ji ∈ Jk[og] (∈ G [og]) and Ji ∈ Jk′ [o3] (∈ G [o3]) .

We would like to show that

∀Jj ∈ Jk[og] , o j [og] = o j [o3] (14)
∀Jj ∈ ∪h<kJh[og] , o j [og] ≤ o j [o3] , and (15)
∀Jj ∈ ∪h>kJh[og] , o j [og] ≥ o j [o3] . (16)

ForJj ∈ Jk[og] , o j [og] is given byo j [og] = max{o j [o1], f ′−1
j ( f ′i (xi))} = o j [o3] .

For the case thatJj ∈ Jh[og] where h < k , we have

o j [og] = o j [o1] or o j [og] ≤ f ′−1
j ( f ′i (xi)) ( i.e., f ′j(o j [og]) ≥ f ′i (xi) ) ,

since otherwise

gi(xi ,o1) = ∇h[og] = g j [og] =
P′(sj [og])
f ′j(o j [og])

>
P′(si [og])

f ′i (xi)
= gi(xi ,o1) ,

a contradiction. Therefore, we have

o j [og] ≤ max{o j [o1], f ′−1
j ( f ′i (xi))} ≤ o j [o3] .

Finally, for the case thatJj ∈ Jh[og] where h> k , Jj must also be included inJ>h [og] .
Therefore,

f ′j(o j [og]) =
P′(sj [og])
gi(xi ,o1)

=
P′(sj [og])
P′(si [og])

· f ′i (xi) ≤ f ′i (xi) ,

which implieso j [og] ≥ f ′−1
j ( f ′i (xi)) . Furthermore, since we havef ′j(u j) (≤ f ′j(o j [og] ) ≤

f ′i (xi) , it follows thato j [o3] = max{o j [o1], f ′−1
j ( f ′i (xi))} ≤ o j [og] . Thus, (14)-(16)

hold, which impliessi [og] = σk[og] = σk′ [o3] = si [o3] .
By applying the same argument too′g ando4, we havesi [o′g] = si [o4], and consequently,
from (13) and Lemma 1,si [og] = si [o3] ≤ si [o4] = si [o′g] . ut
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Lemma 6. For m≤m′ and 0 < g≤ ∇[u] ,

∀ 1≤ i ≤ |J | , si [o〈g〉(m)] ≤ si [o〈g〉(m′)] .

Proof. To begin with, we prove that

∀ 1≤ i ≤ |J | , ∀ gi(oi [m′],m′) ≤ g ≤ gi(ui ,m′) ,

si [o〈g〉(m)] ≤ si [o〈g〉(m′)] , (17)

which is a weakened version of the lemma. Suppose to the contrary that for somei and
gi(oi [m′],m′) ≤ g ≤ gi(ui ,m′) , si [o〈g〉(m)] > si [o〈g〉(m′)] .

For the case thatgi(mi ,m) ≤ g ≤ gi(ui ,m) , Ji is included in both
∪∇k[o〈g〉(m)]=g J>k [o〈g〉(m)] and ∪∇k[o〈g〉(m′)]=g J>k [o〈g〉(m′)] , that is,

gi [o〈g〉(m)] = g = gi [o〈g〉(m′)] , which implies

P′(si [o〈g〉(m)])
f ′i (oi [o〈g〉(m)])

=
P′(si [o〈g〉(m′)])
f ′i (oi [o〈g〉(m′)])

.

From the assumption, we have

oi [o〈g〉(m)] < oi [o〈g〉(m′)] ( i.e., f ′i (oi [o〈g〉(m)]) > f ′i (oi [o〈g〉(m′)] ) ,

a contradiction. (Recall thatgi(oi [m′],m′) ≤ g ≤ gi(ui ,m′) and gi(mi ,m) ≤ g ≤
gi(ui ,m) .)

For the other case, i.e.,g > gi(ui ,m) (Note thatgi(ui ,m) ≤ gi(oi [m′],m′]).) , Ji

is included in ∪∇k[o〈g〉(m)]=g J>k [o〈g〉(m)] , but not in ∪∇k[o〈g〉(m′)]=g J>k [o〈g〉(m′)] .
Therefore,

P′(si [o〈g〉(m)])
f ′i (oi [o〈g〉(m)])

< g =
P′(si [o〈g〉(m′)])
f ′i (oi [o〈g〉(m′)])

, which implies

ui = oi [o〈g〉(m)] < oi [o〈g〉(m′)] ≤ ui ,

a contradiction. Thus, Eq.(17) is proved.
Based on Eq.(17), we extend the result to the case of arbitrary0 < g≤ ∇[u] . Sup-

pose that for somei and0 < g≤ ∇[u] , si [o〈g〉(m)] > si [o〈g〉(m′)] . Then, we have
eitherg > gi(ui ,m′) or g < gi(oi [m′],m′) .

For the case thatg > gi(ui ,m′), from Lemma 5, we have

gi(ui ,m′) > gi(ui ,m) and oi [o〈g〉(m′)] = oi [o〈g〉(m)] = ui

and, from Lemma 1,si [o〈g〉(m′)] < si [o〈g〉(m)] ≤ si [u] . Therefore, for someg′ ≥ g
andk such thatJi ∈ Jk[o〈g′〉(m′)] ( ∈ G [o〈g′〉(m′)] )

Ji ∈ J +
k [o〈g′〉(m′)] − J>k [o〈g′〉(m′)] , J>k [o〈g′〉(m′)] 6= /0 and (18)

si [o〈g′〉(m′)] < si [o〈g′〉(m)] ≤ si [u] . (19)
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Note thatoi [o〈g′〉(m′)] = oi [o〈g′〉(m)] = ui . Let Jj be a job inJ>k [o〈g′〉(m′)] . Since
g j(o j [o′],m′) < g′ < g j(u j ,m′) , we have from Eq.(17),

sj [o〈g′〉(m)] ≤ sj [o〈g′〉(m′)] = σk[o〈g′〉(m′)]
= si [o〈g′〉(m′)] < si [o〈g′〉(m)] , (from Eq.(19).) (20)

SinceJi ,Jj ∈ Jk[o〈g′〉(m′)] , Eq.(20) impliesui = oi [o〈g′〉(m)] = 0 , a contradiction.
By applying the same argument to the case thatg< gi(oi [o′],m′) , we can prove that

the assumption leads to a contradiction. Therefore, Eq.(17) also holds for an arbitrary
0 < g≤ ∇[u] . ut
Lemma 7. For m≤m′ and 0 < e≤ E(S [u]) , let g1(e) andg2(e) be defined by

E(S [o〈g1(e)〉(m)]) = E(S [o〈g2(e)〉(m′)]) = e ,

respectively. Then,

F(o〈g1(e)〉(m)) ≥ F(o〈g2(e)〉(m′)) .

Proof. For brevity, let F1(g) def= F(o〈g〉(m)) and F2(g) def= F(o〈g〉(m′)) , respectively,

and let E1(g) def= E(S [o〈g〉(m)]) and E2(g) def= E(S [o〈g〉(m′)]) . Note that F1(g) ,
F2(g) , E1(g) and E2(g) are continuous and nondecreasing ing and E1(g1(e)) =
E2(g2(e)) = e . SinceE−1

1 is nondecreasing andE1(g2(e)) ≤ E2(g2(e)) by Lemmas 6
and 2, we have

g2(e) = E−1
1 (E1(g2(e))) ≤ E−1

1 (E2(g2(e))) = E−1
1 (e) = g1(e) . (21)

From Lemma 3, we have

dF1(g)
dE1(g)

=
dF2(g)
dE2(g)

=
1
g

.

It immediately follows that

F1(g1(e)) = F(u) −
∫ E(S [u])

e

1
g1(x)

dx and

F2(g2(e)) = F(u) −
∫ E(S [u])

e

1
g2(x)

dx .

From Eq.(21), we finally haveF1(g1(e)) ≥ F2(g2(e)) . ut
Now, we can prove the optimality of our algorithm.

Theorem 1. The procedureMAXIMIZE REWARD always returns the optimal solution.

Proof. Note that the procedureMAXIMIZE REWARD returnso〈g0〉(m) such thatE(S [o〈g0〉(m)]) =
Ebudget. Suppose to the contrary that there existso′ 6= o〈g0〉(m) such that

E(S [o′]) = Ebudget ( = E(S [o〈g0〉(m)]) ) and F(o′) > F(o〈g0〉(m)) . (22)

Sinceo′ ≡ o〈∇[o′]〉(o′) andm≤ o′, from Lemma 7, we have

F(o′) = F(o〈∇[o′]〉(o′)) ≤ F(o〈g0〉(m)) ,

which contradicts Eq.(22). ut

17



4 On-Line Algorithm

On-line reward-based voltage scheduling differs from on-line voltage scheduling in that
the energy consumption is not given as an optimization goal, but as a constraint. Further-
more, the optimization goal is to maximize the total rewards associated with optional
workloads. Therefore, our on-line algorithm managesenergy slackas well as slack time.

Informally, the energy slack is the residual energy reserved by an unexpected lower
speed or idle time. For example, assume that the energy required by an off-line schedule
within the interval[0, t] is given byE(t) and the energy actually used at runtime is given
by E′(t) whereE′(t) < E(t). Then, the amount of energy slack reserved at timet is
defined to beE(t)−E′(t). The energy slack is much easier to manage than slack time
because it can be directly detected and distributed among jobs executing next while for
the slack time the preemption driven by the priority makes the analysis complicated.

With regard to slack time management, conventional voltage scheduling consists of
two parts: slack time estimation and slack distribution. The goal of the slack estimation
part is to identify as much slack time as possible while the goal of the slack distribution
part is to distribute the slack time so that the resulting voltage schedule is as flat as
possible. We adopt the existing slack time estimation method. However, in distributing
the slack, we consider both the energy slack and the slack time, and try to increase the
reward as much as possible by fully utilizing the energy slack as well as slack time.

In distributing two kinds of slacks, we exploits two properties that a maximum-
reward voltage schedule exhibits. First, the voltage schedule (as a function of time)
should be as flat as possible, as in an energy-optimal voltage schedule. Note that the
optimality proof in Section 3.3 implies that the maximum-reward schedule for a given
energy budget is also the energy-optimal schedule among those with the same reward.
Second, the gradients of jobs, i.e.,P′(si)/ f ′i should also be as flat as possible. Note that
the optimal off-line algorithm tries to keep the gradient level as uniform as possible.

Assume that the slack time∆t and the energy slack∆E are available att and can be
distributed among jobsJi1,Ji2, · · · ,Jin in the ready queue. Letai j andsi j be the allowed
execution time and the speed, respectively, determined by the off-line scheduler. Then,
the on-line scheduler tries to obtain an approximate solution for the following problem:

Find ∆ai j and∆si j for j = 1,2, · · · ,n such that

P′(si j +∆si j )
f ′i j

((si j +∆si j ) · (ai j +∆ai j ))
(23)

is as uniform as possible subject to

∆t ≥
n

∑
j=1

∆ai j and ∆E ≥
n

∑
j=1

P(si j +∆si j ) · (ai j +∆ai j )−P(si j ) ·ai j . (24)

From the convexity ofP and concavity off , the gradient ofJi j given by Eq.(23) in-
creases both with∆ai j and with∆si j . Thus, it is natural to assign higher∆ai j and∆si j

to a job with lower gradient. Our on-line algorithm first distributes∆t by increasing
∆ai j ’s iteratively until∑n

j=1 ∆ai j reaches the available slack time∆t and then increases
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∆si j ’s to distribute the remaining energy slack. Although this policy is very simple, it is
sufficiently efficient as shown in the next section.

5 Experimental Results

In order to evaluate the performance of the proposed on-line algorithm in Section 4,
we performed several experiments against the optimal off-line algorithm described in
Section 3. For a comparison, the optimal off-line algorithm computes the theoretical
optimal solution with the complete execution trace information. We used logarithmic
functions of the typeαi · log(βi ·oi +1) where the coefficientsαi andβi were randomly
chosen from uniform distributions within[1,10] and[1,50], respectively. We also per-
formed experiments using linear reward functions of the typeηi · oi where a uniform
distribution within[1,10] was used for the coefficientsηi . We performed experiments
using synthesized job sets with the varying number of jobs from50 to 1600. In the
experiments, the on-line algorithm was sufficiently efficient; the result obtained by the
on-line algorithm is only3∼ 13%worse than the theoretical optimal solution computed
by the optimal off-line algorithm.

6 Conclusion

We investigated the problem of reward-based voltage scheduling for the general task
model where each job has its own release time and deadline. With the increasing im-
portance of battery-operated embedded systems and flexible applications, considerable
research efforts have been made on both voltage scheduling and reward-based schedul-
ing. However, the combined scheduling problem of maximizing the total reward subject
to energy constraints has been relatively unexplored.

First, we present a polynomial-time optimal off-line algorithm for the problem.
In order to search the complicated solution space efficiently, we exploit properties of
energy-optimal voltage schedules. Second, we propose a low-overhead on-line algo-
rithm based on the observations from the optimal off-line algorithm. Despite its sim-
plicity, the on-line algorithm is sufficiently efficient. Experimental results show that the
quality of solution computed by the on-line algorithm is only3∼ 13%worse than that
of the theoretically optimal off-line solution.

The proposed algorithms can be further extended in several directions. As our im-
mediate future work, we are interested in a more realistic processor model with a limited
number of voltage levels and transition overheads in time and energy. In addition, we
plan to develop off-line and on-line algorithms for fixed-priority real-time systems.
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