Reward-Based Voltage Scheduling for Hard Real-Time
Systems with Energy Constraints

Han-Saem Yun and Jihong Kim

School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea
{hsyun, jihong@davinci.snu.ac}kr

Abstract. Reward-based schedulifas been investigated for flexible applica-
tions in which an approximate but timely result is acceptable. Meanwhile, signif-
icant research efforts have been madevoltage schedulingvhich exploits the
tradeoff between the processor speed and the energy consumption. In this paper,
we address the combined scheduling problem of maximizing the total reward of
hard real-time systems with a given energy budget for the general task model. We
present aroptimal off-linealgorithm and an efficiendn-line algorithm for jobs

with their own release-times/deadlines. Our work is the first significant result for
the general task model.

1 Introduction

Reward-based schedulirig] has been introduced to handle overloaded real-time sys-
tems, for which it is not possible to meet all the timing constraints unless some tasks
are allowed to be skipped entirely or executed partially. In the reward-based scheduling
framework, the workload of each task is divided into a mandatory part and an optional
part. The mandatory part of a task should be completed by its deadline while the op-
tional part can be selectively executed before the deadline. The optional part is assumed
to follow the mandatory part in sequence and can be interrupted at any time. A non-
decreasing concave reward function is associated with each optional part; the more the
optional part is executed, the higher the reward is. The reward-based framework can
model various real-time applications that allow approximate results such as image and
speech processing, multimedia, robot control/navigation systems, information gather-
ing, real-time heuristic search [2]. We call these applicatftsmgble applicationg13].

The goal of reward-based scheduling is to find optional parts that maximizes the total
reward while meeting all the deadlines of the tasks composed of the fixed mandatory
parts and the optional parts computed.

Recently, the energy consumption has been one of the most important design con-
straints, especially for mobile devices that operate with a limited energy source such as
batteries. Because the dynamic energy consumption, which dominates the total energy
of CMOS circuits, is quadratically dependent on the supply voltage, lowering the supply
voltage is effective in reducing the energy consumption. However, lowering the supply
voltage also decreases the clock speed [17]. When a given application does not require

* This research was supported by University IT Research Center Project

the peak performance of a VLSI system, in order to save the energy, the clock speed
(and its corresponding supply voltage) can be dynamically adjusted to the lowest level
that still satisfies the required performance. This is the key principleltdge schedul-

ing technigue. With a recent explosive growth of the portable embedded system mar-
ket, several commercial variable-voltage processors were developed (e.gXatallg

AMD’s K6-2+, and Transmeta'’€rusoeprocessors.) Targeting these processors, vari-
ous voltage scheduling algorithms have been developed. The goal of voltage scheduling
is to find an energy-efficient voltage schedule with all the stringent timing constraints
satisfied. A voltage schedule is a function that associates each time unit with a voltage
level (i.e., a clock frequency).

As flexible applications are executed on variable voltage processors, the combined
problem of reward-based scheduling and voltage scheduling, which we call the reward-
based voltage scheduling problem, has been investigated [15, 16]. The reward-based
voltage scheduling problem can be viewed as being obtained by adding one more di-
mension to the solution space of either the reward-based scheduling problem or the
voltage scheduling problem; for the former, the processor speed as a function of time
is additionally computed along with the optional workloads, while for the latter the
optional workload of each task is determined along with the voltage schedule.

The reward-based voltage scheduling involves two-dimensional objectives, maxi-
mizing the total reward (from the reward-based scheduling) and minimizing the energy
consumption (from the voltage scheduling), and can be defined as duals; maximizing
the total reward within a given energy budget or minimizing the energy consumption
while providing the acceptable quality defined by reward functions. By considering dif-
ferent values of the constraint and solving the corresponding problem, designers can
obtain Pareto-optimal points which represent the exact trade-off between the solution
quality and the amount of energy required. Without loss of generality, in this paper, we
consider the problem of maximizing the total reward subject to energy constraints.

1.1 Previous Work

Reward-based execution model [2] has its origin inlBélmprecise Computatigri4,
12] andIRIS (Increasing Reward with Increasing Senji¢g] models. In the IC model,
an optional part is associated witllacreasing lineafunction that indicates the preci-
sion error, and the goal is to minimize the weighted sum of the errors. Several optimal
off-line algorithms have been proposed for aperiodic IC tasks [18]. Note that an IC
model can be transformed into a reward-based model by substituting increasing linear
reward functions for the decreasing error functions. The IRIS model corresponds to
the special case of the reward-based model without mandatory parts. In [5], an optimal
off-line algorithm and an on-line algorithm for the IRIS aperiodic tasks are presented.
Aydin et al. proposed the generalized reward-based execution model and developed
an optimal off-line algorithm for periodic tasks with concave reward functions [2]. Con-
cave functions (including linear functions) can model the output quality of several flex-
ible applications such as multimedia applications, real-time heuristic search, pattern
recognition, and database query processing [2]. They also proved that the problem for
convex reward functions is NP-hard [2]. For firm real-time applications, of which re-

ward is given by step functions, the reward-based scheduling problem is NP-complete
[18].

\oltage scheduling for variable-voltage processors has recently been extensively
studied targeting various system models. Voltage scheduling algorithms are classified
into off-line and on-line algorithms. Off-line algorithms compute static voltage sched-
ules with the assumption that timing parameters of each job is constant and known a
priori while on-line algorithms dynamically adjust the processor speed along with the
supply voltage based on the execution history.

For static job sets where each job has its own release time, deadline, and workload
known offline!, Yao et al. proposed an optimal off-line voltage scheduling algorithm
assuming EDF scheduling policy [20]. The off-line scheduling problem for the static
job model with arbitrary priority assignment (including RM (Rate-Monotonic) or DM
(deadline-monotonic) assignment) was proved to be NP-hard, and a fully polynomial
time approximation scheme (FPTAS) for the problem was presented [21]. Several on-
line voltage scheduling algorithms have been developed for both EDF periodic tasks [1,
7,8, 14] and fixed-priority periodic tasks [6, 9, 14, 19]. Quantitative evaluation of exist-
ing on-line algorithms are presented in [10].

Reward-based voltage scheduling was first addressed by &uaslu[15, 16]. In
[16], off-line solutions for frame-based task sets (where all the jobs tareical re-
lease times and deadlines) and periodic EDF task sets with concave reward functions
are considered. They showed that the problem for periodic EDF task sets can be reduced
to the problem for the frame-based task sets. For tasks with identical power functions
(i.e., the same switching activity), they proved that all the tasks run at the same speed
under the optimal schedule. Thus, the problem is simply reduced to the reward-based
scheduling problem solved in [2]. They also developed an efficient off-line heuristic
for tasks with different power functions. The reward-based voltage scheduling problem
for frame-based task sets with 0/1 reward functions (i.e., no reward is given unless the
optional part is completely executed.) is proved to be NP-hard and a heuristic for the
problem is presented in [15]. The reward-based voltage scheduling remains relatively
unexplored partly due to the complexity caused by multidimensional solution space
(i.e., one dimension from voltage scheduling and the other from reward-based schedul-

ing).

1.2 Contributions

In this paper, we consider reward-based voltage scheduling fayetheraltask model

used in [20, 21] unlike the restricted task model (e.g., frame-based task sets used in the
previous work [15, 16]). First, we describe aptimal off-linealgorithm under the as-
sumption that the amount of workload (i.e., mandatory part and optional part) of each
job is fixed and known a priori. Second, we present an effi@arinealgorithm which
leverage the workload variation to increase the reward within energy budget. Experi-
mental results show that the on-line algorithm is sufficiently efficient; the quality of so-

1 Note that the typical periodic task model can be transformed into the static job model by
considering all the task instances within a hyperperiod of periodic tasks.

lution (i.e., the total reward) computed by the on-line algorithm is @y13%worse

than that of the theoretical optimal solution obtained by the optimal off-line algorithm.
The rest of the paper is organized as follows. We formulate the problem in Section

2. The optimal off-line algorithm is described in Section 3 while the on-line algorithm

is presented in Section 4. In Section 5, the experimental results are discussed. Section 6

concludes with a summary and directions for future work.

2 Problem Formulation

We consider a sef = {J1,J,---,J|y} of priority-ordered jobs with); being the job
with the highest priority. A jol; € J is associated with the following attributes, which
are assumed to be known off-line:

ri andd; : the release time and the deadline.

m;: the mandatory workload expressed in execution cycles.

— u;: the sum ofm; and the upper bound of the optional workload. (i.e., the optional
workload (resp. the total workload) is selected betwi€en — my] (resp.[m, Ui]).)

fi: the reward given as a function of the total workload.

The job model can be directly applicable to a periodic real-time system by considering
all the task instances within the hyperperiod. We assume that the jgbfgkdws the
EDF priority as in [20 Note that, for the on-line scheduling problem,andy; are the
worst-case values and the actual mandatory workload and upper bound of the optional
workload vary within(0, m] and (0, u; — m] during runtime.

The total workload of}; (i.e., the sum of the mandatory and optional workloads
of J) is denoted byo; and is selected betweém, u;] , i.e., m < o < u; . From now
on, we callo; ando = {01,0y, - ,om} by the workload of}, and the workload tuple,
respectively. Associated with each optional worklaads a reward functionf;(o;),
which is assume to be nondecreasing, concave, and continuously differentiable over the
interval [my, u;] as in [2, 16]. The derivative of; is denoted byf/.

Given a workload tupl® = {01,02,---,0/4/} , the total rewardr, our optimization

goal, is given byF(0) = iU:|1 fi(o) . For a given workload tuple, the workload ofj;

is addressed by [0] , or brieflyo; when no confusion arises. Given two workload tuples
01 andoy , we write 01 < 0y if gj[01] < gi[op] forall 1 <i < |J|. Note that, for such
01 andoz , F(01) < F(02) . Particularly, we usen andu to denote(my, mp, -+, my|)
and(ug, Uy, -+, Uy|), respectively. Note thah andu is the lower and upper bounds for
0 . The solution space given lyis written by O , i.e., O={o|m <o<u} . Forog
andoy , 01 — 02 is defined byoi[01 — 02] = 0i[01] — 0i[02] (1 <i<|]]).

Since there is a one-to-one correspondence between the processor speed and the
supply voltage, we us&(t), the processor speed, to denote the voltage schedule. Given
a workload tupleo, a voltage schedulg(t) is said to befeasiblefor o if S(t) gives
each johJ; the required number of cyclego] between its release tinteand deadline
di. (The exact condition for the feasibility is explained later.) As with other related

2Ajob setJ is said to be an EDF job set if for ay<i < j < |7],di < dj ordj <r;.

4

work [20, 21], we assume that the processor speed can be varied contifuwiibly

a negligible overhead both in time and power. Furthermore, we model that the power
P, energy consumed per unit time, is a function of the processor speed; given a voltage
schedules(t), the power can be written as a function of timeR(5 (t)). For simplicity,

we assume that all the jobs have the same switching activity ani thdependent only

on the processor speed.

The energy-optimal schedule fois defined to be a schedu$ét) feasible foro that
minimizesE(S) = fttsf P(S(t)) dt wherets andt; are the lower and upper limits of release
times and deadlines of the jobs nrespectively. The energy-optimal voltage schedule,
written $[0], is unique and can be obtained by Yao’s algorithm [20] in polynomial time.

From the fact that each job runs at the constant speed under an energy-optimal volt-
age schedule [20, 21], we can easily establish a one-to-one correspondence between
S(t) and the the allowed execution tiragallocated to each € J. Given a feasible volt-
age schedulg, the corresponding tuple of the allowed execution titf@gsay, - - -, a5|)
is uniquely determined. Conversely, givan= (a;,a,---,a4|), the corresponding off-
line voltage schedulga can be uniquely constructed by assigning the constant exe-
cution speed;/a to Ji. A is said to befeasibleif the corresponding voltage schedule
S is feasible. For an EDF job sgt A = (ay,a,---,ayy)) is feasible if and only if the
following condition is satisfied (See [21] for a proof.):

Condition | (EDF Feasibility Condition).

Foranyri <dj (1<,] <|7]), > o oa < di-ri.
k/[r,dk]<[ri,dj]

The energy consumption of the voltage schedule in term& f given byE(A) =

i‘i‘l a -P(0i/a) . For a fixed workload tuple, the energy-optimal voltage scheduling
problem is stated as maximiziri§(A) subject to Condition I, and can be optimally
solved by Yao’s algorithm. Given a workload tuglgthe corresponding energy-optimal
voltage schedule in terms #fis denoted byA[o] = (a1[0], a2[0], -,y [0]).4

Now, the reward-based voltage scheduling problem is formulated as follows:

Find a workload tupl® € O such that the total rewarfel(0) is maximized subjeg
to E(A [0]) < Ebudget-

—

The main source of difficulty is thaA[o] is not explicitly represented in terms of
0= {01,02,---,04 }, Wwhich makes it difficult to explore the solution space given by
0. In Section 3, we present how to efficiently search the optimal solution of the reward-
based voltage scheduling problem by exploiting the properties of energy-optimal volt-
age schedules.

3 The results in this paper can be easily extended to a processor model with a limited number of
voltage levels using the result of [11].

4 1n the rest of the paper, we uséo] andA[o] interchangeably to denote the energy-optimal
voltage schedule fao.

3 Optimal Off-Line Algorithm

In this section, we present an optimal off-line algorithm for the problem. Before de-
scribing the algorithm, since the solution space giveo sjimplicitly represented by a
condition in which its corresponding energy-optimal voltage schedule is involved (i.e.,
E(A[o]) < Epudge), We characterize some useful properties of energy-optimal voltage
schedules, which provide a basis of later proofs.

3.1 Characterization of Energy-Optimal Voltage Schedules

We first introduce notations which represent attributes of energy-optimal voltage sched-
ules. In the following, notations are defined for an arbitrary but fixed workload tuple
and its corresponding energy-optimal voltage schegdlié (equivalently,A[o]). s[o]

and |;[o] denote the (constant) speedJpfind the union of intervals in which is exe-

cuted undess[o] , respectively, i.e}li[0]|| = aj[o] ands[0] = o;[0]/a;[0] . We call I;[0]

the execution intervabf J . gj[o] is used to denotE’(s[o])/f/(0i[0]) whereP’ is the
derivative ofP, and is called thgradientof J; .

J[o] represents the set of jobs scheduled atittfeiteration in Yao's algorithm,
andog[o] denotes the constant speed allocated to jolgk[o) . Note thatoy[o] is non-
increasing with respect th. itj[o] is used to denote the iteration numtkesuch that
Ji € k(o] , i.e.,Ji € Jy(g[0] . The union of execution intervals of jobs (o] is de-
noted byl[o] , and called thexecution intervadf %[o] , i.e., Ik[0] = Ujc4qli[0] and
[1k[0]]l = ¥ 5e40 @ 0] - The relation~ g on 7 is defined by

Ji~dp iff 3k 3,9 € K[o] .

The relation~y is an equivalence relation and gives rise to a partitiorf ,ofvritten
Glo] ,i.e.,Glo] = {4[o] |k=1,2,---} . In Figure 1, Yao's algorithm is described by
the symbols defined so far.

J[o] is partitioned into%0[o] and 4" [0] such that a jold; € % o] belongs tof0[o] if
0i[0] = m and, otherwise, it belongs " [o] , i.e.,

def

= {Jealo|alo]=m} and jflo] =

Ko = {J € Jlo] | m <aifo] (Su)} .

For jobs in4f[o] , the smallest value and the largest gradient are denotegy]
andUg[o], respectively, i.e.,

de

pklo] & min{f/(ai[0]) | 4 € 5 [o] }
def

Oglo] = max{gi[o] | J € 4"[o] } = P'(ak[o])/px[0] -

When 5,/ [0] is empty, px[o] and Ok[o] are set to beo and 0. Ui[o] is called the
gradientof %Jo] . OJo] denotes the largest one amony|o], Jz[0],- -, i.e.,

Ofo] £ max{Oy[o] |k=1,2,--} = max{gi[0] | 4 € U1 57[0] } -

procedure ENERGY_OPTIMAL "V OLTAGE_SCHEDULING(J, 0)

1 7=179
2: | = Ul‘i‘l [ri,di] /*the whole execution interval */
3: ki=1 [* the iteration number */
4; while (7' #0)
5: Ty :={ri,di|J € 7'}
6: Findr,d € 7, (r <d) such thatoy g = %w is maximized.
/* Ties are broken by preferring the largebt-r ana then the smallest */
7: Jklo] := {Jil[ri,di] C[r,d]} /*the set of jobs scheduled at tketh iteration */
8: 0k[0] == 0} g) I* the constant speed allocated to jobsJijo] */
9: foreach (J € 7,[0])
10: s[0] := ok[0] I* the constant speed allocated}d"/
11: a[o] :=0j[0]/s[o] [/*the execution time allocated th */
12: li[0] := the union of intervals in whiclj; is executed under the EDF policy
13: end foreach
14: 9" = 9 — 9¢[0]
15: I :=1—]rd]
16: ki=k+1
17: end while
18: return (ay[o],a[o],---,a 4[0]) /* S[o] can be directly computed from[o]. */

end procedure

Fig. 1. Yao’s algorithm to compute an energy-optimal voltage schedule.

7. [o] represents the subset gf [0] that consists of jobs with the smallet value
(equivalently, the largest gradient), i.e.,

1o € {3 € 5700 | H(ailo]) =plo] } = {4 €54 (0] | gilo] = Oufo] } -
For a gradieng , G(g)[o] represents the subset gfo] that consists of job sets with
gradientg, i.e.,
def
G(@)lo] = {4ilo] € Glo] | Olo] = g} -

For workload tuples; andoy , we writeo; ~ 0z if G[o1] = g[oz].5 For sucho;
and oy, the shapes[o](t) and S[og](t) are similar in that the speeds rise and sink
at the same time points. Becaul§go,j[01] = liyj0,)[02] for ajobJi € 7, Alop] =
(au[0z],---,ay5[02]) can be expressed in terms@f andA[o1] = (a1[01], - -+, ay5/[01])
as follows.

. ZJJ‘ e klo1] & [01]

o] = ailod 3 Jjeslos) 0il02]

1
=0j[0p] —— herek=itjo1] . (1
(=olod: gy) wherek=itiou .
The relation is an equivalence relation and forms an (infinite) partitioafGener-
ally, Afo] is not explicitly represented in terms of However, ifA[0] is available for

5 G[o1] = G[oz] does not always implyj[o1] = %[0z] for all k> 1. However, there exists a
permutationtt such that%[01] = Iy [02] forall k> 1.

somed’ such thao’ ~ 0, the analytic expression @f[o] can be obtained from Eq.(1).
Our algorithm in 3.2 exploits this property in searching the optimal solution.

Now, we describe useful properties that characterize the relation between some at-
tributes of energy-optimal voltage schedules for different workload tuples. The mono-
tonicity of the speeds[o] and and the gradierg;[o] of a job J; with respect to the
workload tupleo is stated in the following lemma.

Lemma 1. For oando’ such thato< o',
s[o] < s[0] and gi[o] < g[o] forall 1<i<]|J|.

Proof. For1 < j <|J], leto; be defined by

1 _ Jonfo] h<j
Oh[oj]_{o:[o’] h>j.

Itis easy to verify that, fopj andoj;1 (1< j < |7]),

V3 € J st iti[oj] > itj11[0j], S[0j41] =

V€ g st itoj] <itj41[0j], s[0j+1] >
It immediately follows that

s[o] = sfoy] < sfog] < -+ < s[oy] = §[0] .
Furthermore, from the convexity & and the concavity of, we have

o Plsl) _ Ps) _ PO _
99 = Fo0) = Flal) = ooy 9 °

Note that the converse of Lemma 1 does not always holdsile. < s[0'] (1<i<|J])
does not implyo < o' . However, it preserves the orderjio] as follows.

Lemma 2. For o ando’ such that
v1i<i<l|g|, slo < sfo],
Vt, S[oj(t) < s[o](t) and E(S[0]) < E(S[0]) .

Proof. To find the explicit representation of[o](t) (resp.S[0](t)) in terms ofs|[0]
(resp.s[0']), we first prove that

Vi<i<[|g], Vri<t<d, S[o](t) > so] .)

Suppose to the contrary that for somes, , to andAt (wherer; <tp < to+At < d;), we

haveVip <t <to+At, S[0](t) =s < S[0] . LetS(t) be defined by

S(t) = {m (<sfo]) to<t<to+At v telio],
S[oj(t) otherwise.

Then, it is easy to check thatt) is feasible foro andE(S) < E(S[0]) . Thus,S[o] is
not the energy-optimal voltage schedule égra contradiction.
Furthermore, from the definition af[o], we have

Sloj(t) € {s[o][ri<t<d]} . ©)
From Eq.(2) and Eq.(3)§[0](t) can be expressed in termssio] as follows:
S[oj(t) = max{sfo] [ri <t<d} .
Similarly, S[0'] t) is given by
S[o](t) = max{s[0] i <t <di} > max{s[o] |r <t<d} = S[o|(t) .

It immediately follows thaE(S[o]) < E(S[0]) . 0

3.2 The Optimal Algorithm

The algorithm starts by computing the energy-optimal voltage sche®lulefor the
workload tupleu. If E(A[u]) < Epudget, the algorithm returna as the optimal solution
sinceA[u] satisfies the energy constraint (as well as timing constraintsydod is
the upper bound of the total reward. Otherwise, the algorithmostetsi and decreases
o iteratively (but not beyonan) until E(A[o]) reachesEpyqdget, as with the general
descent method used for numerical optimization problems [3]. The challenges are how
to determine the descent direction which varies continuously during search and how to
make the search complete in polynomial time while guaranteeing the optimality.

A natural choice for the descent direction is the one that minimizes the decrease in
F (o) per unit decrease iB(A[0]) (equivalently, the one that maximizes the decrease in
E(AJo]) per unit decrease iR (0)). However, the difficulty lies in the fact that[o] is
not usually expressed explicitly in terms afthus making it difficult to compute the
differential of E(A[0]) in closed form. Furthermore, it is not obvious that tireedy
gradient-based search always converges to the global optimal solution in our problem.
The complicated solution space implicitly described by a condition in whifdj is
involved also makes it difficult to determine the step size that yields a polynomial bound
on the running time while still keeping the optimality.

To tackle the difficulties, we use the properties of energy-optimal voltage schedules
described in Section 3.1. The gradient defined for alj@ind a job sefi[0] corresponds
to the energy decrease per unit reward decrease, and plays an important role in our algo-
rithm. The procedur® AxiMIZE _REWARD in Figure 2 describes the overall processing
steps of our algorithm. The search is guided byghlubal gradientg . Initially, g is ini-
tially set toO[u] , the largest gradient among those of jobsig.1 4 [u] . At each
iteration,g is decreased to the level determined by NexT_GRADIENT procedure.

The corresponding workload tupdég) is initially set tou and is iteratively adjusted
to the lower level by the procedulEECREASE WORKLOADS (Figure 3) such that each
gi[o(g)] does not exceed the decreage(Note thai;[0] decreases withby Lemma 1.)

procedure MAXIMIZE _-REWARD

1: E = E(S[u])
2. g = max{gi[u]ld € U I U]} (= D[u))
3: o{g) :=u
4: while (E > Epydged
5: 0 := 0(g)
6: gs =g
7: g := NEXT_-GRADIENT(0(9), Q)
8: g := max({g}U{x[o] | Di[o] < Oi[o]})
9: 0(g) ;= DECREASEWORKLOADS(0(@), 9)
10: E = E(S[o@)])
11: end while

/* The optimal solution is betweenyg) ando. */
12: Solve the simultaneous equations given by

Eq.(7) forall Jxo] € G{gs)[o] and
zjk[o]EG@sHO]P(ZJiEJ\Tr:”yl(hk)> Al + ZJk[o]el?[o]f(i@s)[o]P(izjiem[:‘]‘q[0]> Mkl = Ebudget-

13: foreach (Jj € 7)
14: it (Jiy[o] € G@s)[0])
15: o = Vi(hyo)
16: else
17: 0 = 0j[0]
18: end if
19: end foreach

* E(S[(01,02,"-+,0,4)]) = Emax and z!i‘lf(oi) is maximum. */
20: return (ol,oz,m,om)

end procedure

Fig. 2. The optimal off-line reward-based voltage scheduling algorithm.

After each invoke of the procedul2ECREASEWORKLOADS, the following invariant
ono(g) is preserved, which concisely describes the behavior of our algorithm:

‘ _ Joailo(g)] gi[o(g)] < g Vv afo(g)]=m ,
ooio—00) = {0001 ao Blo@] o 1 claglom
whereAg is a sufficient small number anflo;’s (> 0) satisfy
gilo(g—Ag)] = g—Ag foralli st.go(g)] > g A alo@]>m . (4)

Note thatg;i[0o(g — Ag)] is not generally given as an analytic expression which is nec-
essary in solving Eq.(4). Informallpo = (Ao, A0y, - --,A0)4)) (A0; is set toO for all i
such thati[o{(g)] < g or oj[0{g)] = m;.) satisfying Eq.(4) represents the search direction
at o(g) that results in the biggest decrease in the energy per unit decrease in the total
reward.

Let us assume that/g— Ag) ~ 0(g) , i.e., G[o{g— Ag)] = G[o(g)] . Then, we can
obtain an analytic expression fgifo] in terms ofA[o(g)] andAo = {A0y,---,A0/y} .

10

procedure DECREASEWORKLOADS(0, Q)
/* The procedureNEXT_GRADIENT guarantee® ~ o(g). */
(01,02.,~-~,0m) =0
foreach (Jx[o] € G(@)[0])
Solve the equation given by Eq.(7).
foreach (J € 7,[0])
0 = yi(he)
end foreach
end foreach
return (ol,oz,n-,om)
end procedure

Fig. 3. The algorithm to decrease the workload tuple for a given global gradient.

From Eq.(1)s[o{g— Ag)] is given by

3 3;c5(0j[0(g)] — Doj)
Yyer 8j[0(9)]

andgi[o(g— Ag)] is given in terms o [0(g — Ag)] by

. _ P(s[o(g—Ag)])
gilo(g—Ag)] = T(oolg)] —20) °)

s[o(g—Ag)] = where 7' = Ji(0([0(9)]

which is an explicit expression d@o. Therefore, we can compuf® by solving Eq.(4)
either numerically or analytically. By repeating this process, we can obtgjrfor all
0 < g< O[u] , however, it requires infinitely many steps becafigds assumed to be
arbitrarily small.

To bring the number of steps down to a polynomial, we exploit the fact that an equiv-
alence class under the relatiencovers sufficiently large range of i.e., {o{(g) | 0 <
g < O[u]} is partitioned into a polynomial number of rang@g Os, - - -, On:

{og) |0<g <O} = UL10 = UL{olg) |g-1<9<a} .

wherego = 0 andg, = O[u] . We callgs, g2, - - -, On—1 Separatinggradients. For the time
being, assume that the number of separating gradients is bounded by a polynomial and
that each one can be found in polynomial time. (We will prove these assumptions later
in this section.) Then, ib(g) can be found for alfy _1 < g < g in polynomial time, we
can obtairo(g) for all 0 < g < O[u] in polynomial time.

For a giveno(g,), we describe how to computeg) for g1 < g<g . From the
definition ofg_; andg,, we haveo(g|) ~ 0(g) , i.e., G[o(gi)] = G[o(g)] . Without loss
of generality, we assume thago(g;)] = J[o(g)] for all k> 1. Then, we have

Io(@)] =1fo(g)] and afola)] = Y alofg)]
o ‘ J|€J§<)] | J&ﬂ%()]

For brevity, %, I and ||1«|| are used to denoté[o(g)] , 1k[0(g1)] and ¥ 3¢ jo(g)) &0(A1)]
respectively. For each € J , its workloado;[0(g)] is set to be an explicit expression

11

of hy (hk represents the decrease in the reward per unit decrease in the workload):

0i[o(g)] = vi(hx) wherey; is the function defined by (6)

Ui 0<x< f/(u) ,
Vi(x) = { f100 f(u) <x< f{(m) ,
m x> f/(m) .
hy satisfies the following equation that corresponds to Eq.(4):

P'(Zaes Vi(he) / [[Tkll)
hk

Because the left-hand side of Eq.(7) is a strictly decreasing functidq (ffom the
concavity off;), hg is uniquely determined, and so ago(g)]'s. The procedur®Ee-
CREASEWORKLOADS takes as inputse(g;) andg such thao(g;) ~ o(g) and returns
0(g). The following lemma captures the heart of the proce@#eREASE WORKLOADS.

=9. (7)

Lemma 3. Forg-1 <g<g, let o(g) be defined by Eq.(6) and Eq.(7). Then,

dE(A[o(9)])
dF(o(g))
Proof. Let Ox(g) denote the sum of workloads of jobs jk undero(g) , i.e., Ox(g) =

Y3es 0i[0(0)] . Let F(g) and Ex(g) denote the sum of rewards and the energy
consumption of jobs inf under A[o(g)] , respectively, i.e.,

= g forall g_1<g<g .

(@) = 3 f(aloi@)) and Eda) = P(T) I -

3 [Tkl
Forajob J € % such thatm < 0;[0(g)] < u; , we have from Eq.(6):
m <vi(he) <u , whichimplies yi(h) = f/1(h¢) and then
fi(afo(g)]) = f(vi(ha) = f(f~*(h)) = he .

Therefore,
dR(g) _ dR(g) dafo(g)] ™ ~daifo(g)]
dOc(g) J%kdq[o@] dodg) JiGJkAmi;)i[o(gﬂ@i f/(ci[o(g)]) dOdg)
o dafo(g)] _ . dO(9) _
o Jiejk/\m;)i[0<g>]<ui d0(9) K dO(g) . ®
Furthermore,
dB(@) _ 1 (O(@) 11 - (k9
sy = ma P () =P (i) ©
From Eq.(8) , Eq.(9) and Eq.(7), we have
dE(g) _ dO(g) dE(9) _ 1 (k@) _
e = drg daig ~ n (T (10

12

Finally, from Eq.(10), it follows that

dE(Alo(@)]) _ < dE(9) Z(dE(g) dR(9))
dF(o(g)) & dF(0(g) & k>1dFK(@J) “dF(o(g))

(

-3 (59 dR(g)) 05 dF(o{g))

K>1 \K>1 dF(o(g)) dF(o(g))

Based on the invariant described by Lemma 3, we prove in Section 3.8(thatlways

passes through the optimal solution, i.e., the optimal solutigpis given byo(gopt)
wheregopt is the unique gradient satisfyirA[0(Jopt)]) = Ebudget-

=g. O

To show that our algorithm runs in polynomial time, we now describe how to com-
pute each separating gradient in polynomial time and prove that the number of sepa-
rating points is bounded by a polynomial. Let us consider necessary conditions for a
global gradieng to be a separating gradient. Suppose thet a separating gradient.
Then,

(a) jobs in %, [o(g+¢€)] andj,[0(g+ €)] are merged intgi[o(g—¢€)] , or
(b) jobs in j[o(g+¢)] is divided into, [0(g — €)] andj,[0(g — €)]

wheree is the infinitesimal. Both cases may occur simultaneously.
The necessary condition for the case (a) to occur is given by
lim oy,[0(g+¢)] = lim oy,[o(g+e)] , which implies
E— E—

i oi[o(g+€ , oi[o(g+¢
lim 23 €%k, [0(g+8€)] I[(>] — iim 2 €y [0{g+8)] I[< ” . (11)
€0 ZJie]kl [o(g+e)] & [0(g+¢)] €0 Z]ieﬂkz [o(g+e)] & [0(g+¢)]

The second case is more complicated. For aJob %[o(g+¢)] , letl{ denotel [o(g+
g)]Nri,d] and letJ, q denote{J € %k[o(g+¢€)] | If C [r,d]} . Then the necessary
condition for the case (b) is given by

lerw() oy, [0(g—¢)] = lerw() Ok,[0(g—¢€)] , which implies
Jr,d € {minl], maxl{ | J € %k[o(g+¢€)]} ,
ZJi E][r‘d] 0i [0<g+ €>] . ZJi ejk[0<g+s>]—j[, d) Oi [O(g—f— E)]
= | u (12
I Tdolg+enmd] — &% Tidolg+ &)~ Mdolg+ el nrdy "2

Provided that the separating gradieg{sgn_1,- - -, are identified, the next lower sep-
arating gradieng_1 can be found by the following procedure:

(@) Replace ZJiejkl[o<g+s]ai[(9+¢)] and 2J.ejk2[0<g+£>]ai[o<g+s>] in Eq.(11) by
zJiejkl[o@I)]a;[o(go} and Zjlejkz og) &lo{an)] , respectively. (Note that the latter
two are known values, sinag is already known.)

(b) Replacd[o(g+¢)] in Eq.(12) bylk[o(g)] (Note that the latter is already known.)

(c) Removeim operators from Eq.(11) and Eq.(12) and replacee by g.

(d) Return the larged (< g)) that satisfies the simultaneous equations Eq.(6), Eq.(7)
and Eq.(11), or the equations Eq.(6), Eq.(7) and Eq.(12).

13

The above procedure makes good use of the propertydfgat~ o(g;) forall g_1 <

g<g ando(g) = limg_o0(g +¢€) . Ateach iteration, the procedueXT_GRADIENT
computes the next lower separating gradient in this way. It remains to show that the
number of separating gradients is bounded by a polynomial. In proving this property,
we exploit the fact that the order on speed levels of jobs is not changed too frequently.

Lemma 4. The number of separating gradients withih 0[u]] is bounded by-| 7|2 .

Proof. Leta; (1<i<|J]|) be the functions o0, O[u]] defined by

o _ JO ofo(@)]>m ,
ai(g) = {Z-IJ oo(g)]=m .

Furthermore, for andj such thafr;,d;) N (rj,dj) #0, letB;; (1<i<j<|J|) bethe
functions on(0, O[u]] defined by

0 (slu>silul 1 slo(g)] > siofg))
v (slu] < siu] 1 s[o(g)] < sjlo(g))
v (slu] = siul slo(g)] = sjlo(g))

5 = |1 (51> sl A sfolg)] = siolg))
g v (slu] < siu 7 s[o(g)] = jlo(g))
v (slu] = siul 1 slo(g)] # sjlo(g))

2 (slu] > 5ilu] / s[ofg)] < sofg))

v (slul < siu] A slo(g)] > sjlo(g)]) -

Finally, letd(g) = z!i‘lai(g) + 3 (r.d)n(ry.dp)0Pii (9) - It can be easily verified that
for each separating gradiemj , d(g +¢€)+1<9d3(g —¢), i.e., 0 strictly increases
around g, . However, because(0[u]) = 0 and &(g) is bounded by4-|7|? , the
number of separating gradient withi@, 0[u]] is bounded by4-|7|? . O

3.3 Optimality Proof

In this section, we prove that the algorithm described in Section 3.2 always computes
the optimal solution. Before presenting the optimality proof, we define additional nota-
tions and prove some miscellaneous properties.

In Section 3.2p(g) was used to search the solution space givefdjyn <o<u} .
For the optimality proof, we consider a restricted solution space givdmbgn’ <o <
u} wherem < m’ . Note that the lower bound is increased fromto m’ . o{(g)(m’)
is used to denotg’s corresponding workload tuple when the algorithm in Section 3.2
takesm’ instead ofm as input. From the definitiom(g) (m) = o(g) for all g.

Lemma 5. Givenm’ (m <m’) and o[m’] < x< u; , let gi(x,m’) denote the unique
g that satisfiem;[o(g)(m’)] = x. Then, foro; ando, such thatm < 0; < 0, < u and
0i[02] < % < uj, we havey;(x;,01) < gi(%,02) .

Proof. Let oy andoj denoteo(g;(x,01))(01) ando(gi(xi,02))(0z) , respectively. Then,
it suffices to show thas [og] < s[0j] sincegi(xi,01) = P'(s[og])/f{ (%) andgi(x,02) =

14

P'(si[og])/ i (%) - To find explicit representations eflog] ands [0y, we first definens
andoy as follows:

X J =i

U fi(uj) > f/(x) ,
%0 = Yofo] oo < T/

fJ.’*l(fi’(xi)) otherwise.

X J =

U fi(uj) > f/(x) ,
0j[04] = o; [02] fj-’(o; [02]) < f/(x) ,

fj’*l(fi’(xi)) otherwise.

The definition ofog ando, impliesog < 04, since ifj # i and fj(uj) < f/(x) we have
ojfos] = max{oj[o], f{*(f/(x))} < max{ojlog], f{ " ({(x))} = oj[o] . (13)
Sinceo;j[0y] < X < u;, we have for som& andk':

J € Klogl (€ Glog]) and J € fe[os] (€ Glog]) .

We would like to show that

vJ; € klog] , oj[og] = oj[os (14)
Jj € Un<kJn[0g] , 0j[0g] < 0j0s] , and (15)
VJj € Un>kJh[0g] , Oj[0g] > 0j[0g] . (16)

ForJ; € %[og] , 0j[0g] is given byoj[og] = max{0j[o1], fj’*l(fi’(xi))} = 0oj[o3] .
For the case thalj € Jn[og] where h <k, we have

oj[og] = ojo1] or ojlog] < fiTH(F (%)) (ie, fi(ojlog)) > f (%)) ,

since otherwise

P'(silog]) _ P'(s[og])
fj(oj[og)) f (%)

0i(%i,01) = Ohlog] = gjlog] = = 0i(X,01) ,

a contradiction. Therefore, we have
0j[og] < max{ojod], fi (f/(x))} < oj[og] .

Finally, for the case thal; € Jn[0og] where h >k, J; must also be included if}, [og] .
Therefore,
P'(sjlog]) _ P'(sj[og])

f],(oj[og]) = gi(Xi,Ol) = P/(S[Og]) 'fi,(xi) S fll(xl>)

which implieso;[og] > fj”l(fi’(xi)) . Furthermore, since we ha¥g(uj) (< fj(oj[og])

f/(x) , it follows thatoj[os] = max{oj[o1], fj’*l(fi’(xi))} < 0j[og] . Thus, (14)-(16)
hold, which impliess[og] = 0k[0g] = Oy [03] = s[03] .

By applying the same argumentdf andoy, we haves [og] = s[04], and consequently,
from (13) and Lemma I5[0g] = 03] < s04] = s[0g] . O

IN

15

Lemma 6. Form <m’and 0 < g < O[u],
vi<i<li|, sfolg)(m)] < sfo(g)(m’)] .
Proof. To begin with, we prove that

Vi<i<|g], Va(am]m) < g < gi(u,m),
s[o(g)(m)] < so{gy(m)] , 17)

which is a weakened version of the lemma. Suppose to the contrary that foi aoche
gi(o[m’],m’) < g < gi(u,m’), s[o(g)(m)] > so(g)(m’)] .

For the case that;(m,m) < g < gi(u;,m), J isincluded in both
Uniolgy(m)l=g Kk [0(9)(M)] and U jo(g) (mv)=g J [0(g)(m")] , that is,

/

gifo(g)(m)] = g = gi[o(g)(m")] , which implies

From the assumption, we have

ai[o{g)(m)] < aifo(g)(m’)] (i-e., f(ai[o{g)(m)]) > f/(ai[o{g)(m)])

a contradiction. (Recall thagi(o;[m’'],m’) < g < gi(u,m’) and gi(m,m) < g <
gi(u,m).)

For the other case, |eg> gi(ui,m) (Note thatgi(ui,m) < gi(a[m’],m’]).) ,
is included in Up,jo(g)(m))—g J [0(d >()] » but not in U, o(g)(myj=g J [0(@)(M')]
Therefore,

Pislolgm)) _, _ Psloigim)
fi (ailo(g)(m)]) fi(oi[o(g)(m")])
u = oifo(g)(m)] < aifo(g)(m)] < ui ,

which implies

a contradiction. Thus, Eq.(17) is proved.

Based on Eq.(17), we extend the result to the case of arbiirarg < O[u] . Sup-
pose that for someand0 < g < O[u] , s[o(g)(m)] > s[o{(g)(m’)] . Then, we have
eitherg > gi(u;,m’) org < gi(oi[m’],m’) .

For the case thag > g;(u;, m’), from Lemma 5, we have

gi(u,m’) > gi(u,m) and oifo(g)(m’)] = aio(g)(m)] = u;

and, from Lemma 15[o(g)(m’)] < s[o{g)(m)] < s]u] . Therefore, for somey > g
andk such thaty € 4%[o(g')(m’)] (€ Glo(g)(m')])

J € 57 lod)(m)] — A [o(d)(m)] , A [ol@)(m)] #0 and (18)
sfo(g)(m")] < so{d)(m)] < s[u] . (19)

16

Note thato;[o{g)()] = aifo(g’)(m)] = u; . LetJ; be a job ing' [o(g)(m’)] . Since
gj(0j[d],m’) < ¢ < gj(uj,m’) , we have from Eq.(17),
sjlo(g')(m)] < sj[o{g)(m")] = ok[o(g)(m")]

= sfo(g)(m)] < slo(d)(m)] , (fromEq.(19)) (20)

SinceJ;,J; € 4fo(d)(m’)], Eq.(20) impliesy; = 0;[0o(g')(m)] = 0, a contradiction.

By applying the same argument to the case ghat; (0;[0'], m’) , we can prove that
the assumption leads to a contradiction. Therefore, Eq.(17) also holds for an arbitrary
0<g<0Ou. O

Lemma?7. For m<m’ and 0 < e<E(S[u]), letgi(e) andgy(e) be defined by
E(S[o(gu(e))(m)]) = E(S[o(gz(€))(m)]) = e,

respectively. Then,

F(o{g1(e))(m)) = F(o{gz(e))(m)) .

Proof. For brevity, letF;(g) d:EfF(o<g>(m)) and F(g):e F(o{g)(m’)) , respectively,

and let Ex(g) © E(s[o(g)(m)]) and Ez(g) ©'E(s[o(g)(m'))) . Note that Fy(g) ,
F(9) , Ei(g) and Ez(g) are continuous and nondecreasinggnand E;(gi(e)) =
E2(g2(€)) = e. SinceE; * is nondecreasing arfeh (gz2(€)) < Ex(gz2(€)) by Lemmas 6
and 2, we have

92(¢) = E; Y(Ea(02(e)) < E;'(Ea(2(e) = E;'(e) = au(e) . (21)
From Lemma 3, we have

dR(g) dR(g 1
dEi(g) dEx(g) g

It immediately follows that

(S[u))
Fi(ou(e)) = F(u) — AES giX) dx and
E(s[u])
(@) = Fu) - [k.
From Eq.(21), we finally havE;(gi(e)) > Fx(gz(e)) . O

Now, we can prove the optimality of our algorithm.
Theorem 1. The proceduréM AXIMIZE _-REWARD always returns the optimal solution.

Proof. Note that the proceduid AXIMIZE _-REWARD returnso(gp) (m) such tha&(S[o(go)(m)]) =

Epudget Suppose to the contrary that there ex@tg 0(go)(m) such that

E(S[0]) = Ebudget (= E(S[0(go)(m)])) and F(d)) > F(o(go)(m)) . (22)
Sinced = o(J[0])(0') andm < o, from Lemma 7, we have

F(0) = F(o(O[0])(0)) < F(o(go)(m)) ,
which contradicts Eq.(22). O

17

4 On-Line Algorithm

On-line reward-based voltage scheduling differs from on-line voltage scheduling in that
the energy consumption is not given as an optimization goal, but as a constraint. Further-
more, the optimization goal is to maximize the total rewards associated with optional
workloads. Therefore, our on-line algorithm managesrgy slaclas well as slack time.

Informally, the energy slack is the residual energy reserved by an unexpected lower
speed or idle time. For example, assume that the energy required by an off-line schedule
within the interval[0,t] is given byE(t) and the energy actually used at runtime is given
by E’(t) whereE'(t) < E(t). Then, the amount of energy slack reserved at tinse
defined to beE(t) — E/(t). The energy slack is much easier to manage than slack time
because it can be directly detected and distributed among jobs executing next while for
the slack time the preemption driven by the priority makes the analysis complicated.

With regard to slack time management, conventional voltage scheduling consists of
two parts: slack time estimation and slack distribution. The goal of the slack estimation
part is to identify as much slack time as possible while the goal of the slack distribution
part is to distribute the slack time so that the resulting voltage schedule is as flat as
possible. We adopt the existing slack time estimation method. However, in distributing
the slack, we consider both the energy slack and the slack time, and try to increase the
reward as much as possible by fully utilizing the energy slack as well as slack time.

In distributing two kinds of slacks, we exploits two properties that a maximum-
reward voltage schedule exhibits. First, the voltage schedule (as a function of time)
should be as flat as possible, as in an energy-optimal voltage schedule. Note that the
optimality proof in Section 3.3 implies that the maximum-reward schedule for a given
energy budget is also the energy-optimal schedule among those with the same reward.
Second, the gradients of jobs, i.E.(s)/f/ should also be as flat as possible. Note that
the optimal off-line algorithm tries to keep the gradient level as uniform as possible.

Assume that the slack tinft and the energy slackE are available atand can be
distributed among job§,,J,, - -, Ji, in the ready queue. Let, andsj be the allowed
execution time and the speed, respectively, determined by the off-line scheduler. Then,
the on-line scheduler tries to obtain an approximate solution for the following problem:

FindAg; andAs; for j = 1,2,---,nsuch that

P'(s; +As;)
fi/j((sj JFAS])'(aij +Aaij))

(23)

is as uniform as possible subject to

n n
At > ZAaj and AE > 3 P(s; +A4s))- (a; +48a;) —P(s))-a; . (24)
j= =1

From the convexity oP and concavity off, the gradient ofl;; given by Eq.(23) in-
creases both Withxa;j and WithASj. Thus, it is natural to assign highAaij andAsj
to a job with lower gradient. Our on-line algorithm first distributssby increasing
Aaj’s iteratively untilz’j‘zlAa;j reaches the available slack tideand then increases

18

As;’s to distribute the remaining energy slack. Although this policy is very simple, it is
sufficiently efficient as shown in the next section.

5 Experimental Results

In order to evaluate the performance of the proposed on-line algorithm in Section 4,
we performed several experiments against the optimal off-line algorithm described in
Section 3. For a comparison, the optimal off-line algorithm computes the theoretical
optimal solution with the complete execution trace information. We used logarithmic
functions of the type; - 1og(Bi - 0i + 1) where the coefficients; and; were randomly
chosen from uniform distributions withifi, 10] and[1,50], respectively. We also per-
formed experiments using linear reward functions of the typeo; where a uniform
distribution within[1,10] was used for the coefficientg. We performed experiments
using synthesized job sets with the varying number of jobs f&@nto 160Q In the
experiments, the on-line algorithm was sufficiently efficient; the result obtained by the
on-line algorithm is only8 ~ 13%worse than the theoretical optimal solution computed
by the optimal off-line algorithm.

6 Conclusion

We investigated the problem of reward-based voltage scheduling for the general task
model where each job has its own release time and deadline. With the increasing im-
portance of battery-operated embedded systems and flexible applications, considerable
research efforts have been made on both voltage scheduling and reward-based schedul-
ing. However, the combined scheduling problem of maximizing the total reward subject
to energy constraints has been relatively unexplored.

First, we present a polynomial-time optimal off-line algorithm for the problem.

In order to search the complicated solution space efficiently, we exploit properties of
energy-optimal voltage schedules. Second, we propose a low-overhead on-line algo-
rithm based on the observations from the optimal off-line algorithm. Despite its sim-
plicity, the on-line algorithm is sufficiently efficient. Experimental results show that the
quality of solution computed by the on-line algorithm is oBly 13%worse than that

of the theoretically optimal off-line solution.

The proposed algorithms can be further extended in several directions. As our im-
mediate future work, we are interested in a more realistic processor model with a limited
number of voltage levels and transition overheads in time and energy. In addition, we
plan to develop off-line and on-line algorithms for fixed-priority real-time systems.

References

1. H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez. Dynamic and Aggressive Scheduling
Techniques for Power-Aware Real-Time System$ioc. of Real-Time Systems Symposium
2001.

2. H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez. Optimal Reward-Based Scheduling for
Periodic Real-Time TaskdEEE Transactions on Computeis0(2):111-130, 2001.

19

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

A. Ben-Tal and A. NemirovskiLectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Application§IAM, 2001.

. J.-Y. Chung, J.W.-S. Liu, and K.-J. Lin. Scheduling Periodic Jobs that Allow Imprecise

Results.IEEE Transactions on Computei39(9):1156-1173, 1990.

. J.K. Dey, J. Kurose, and D. Towsley. On-Line Scheduling Policies for a Class of IRIS (In-

creasing Reward with Increasing Service) Real-Time TadKSE Transactions on Comput-
ers 45(7):802-813, 1996.

. F. Gruian. Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS

Processors. IfProc. of International Symposium on Low Power Electronics and Design
pages 46-51, 2001.

. 1. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis Techniques for Low-Power

Hard Real-Time Systems on Variable Voltage ProcessorsPrde. of Real-Time Systems
Symposiumpages 178-187, 1998.

. W.Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm for Dynamic-Priority

Hard Real-Time Systems Using Slack Time Analysis.Phoc. of Design, Automation and
Test in Europe2002.

. W. Kim, J. Kim, and S. L. Min. Dynamic Voltage Scaling Algorithm for Fixed-Priority Real-

Time Systems Using Work-Demand Analysis.Rroc. of International Symposium On Low
Power Electronics and Desig2003.

W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance Comparison of Dynamic
Voltage Scaling Algorithms for Hard Real-Time Systems.Phoc. of Real-Time and Em-
bedded Technology and Applications Symposk00?2.

W.-C. Kwon and T. Kim. Optimal Voltage Allocation Techniques for Dynamically Variable
Voltage Processors. Rroc. of Design Automation Conferengages 125-130, 2003.

K.-J. Lin, S. Natarajan, and J.W.-S. Liu. Imprecise Results: Utilizing Partial Computations
in Real-Time Systems. IRroc. of Real-Time Systems Symposipages 210-217, 1987.
W.-S. Liu. Real-Time System®&rentice Hall, 2000.

P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded
Operating Systems. IRroc. of ACM Symposium on Operating Systems Pringi2i@g1.

C. Rusu, R. Melhem, and D. Mass Maximizing the System Value While Satisfying Time
and Energy Constraints. Proc. of Real-Time Systems Symposipages 246—255, 2002.

C. Rusu, R. Melhem, and D. MassMaximizing Rewards for Real-Time Applications with
Energy Constraints ACM Transactions on Embedded Computing Syst@@y:537-559,
2003.

T. Sakurai and A. Newton. Alpha-power Law MOSFET Model and Its Application to CMOS
Inverter Delay and Other FormulardEEE Journal of Solid State Circuit25(2):584—-594,
1990.

W.-K. Shih, J.W.-S. Liu, and J.-Y. Chung. Algorithms for Scheduling Imprecise Computa-
tions with Timing ConstraintsSIAM Journal on Computin@0(3):537-552, 1991.

Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-Time Sys-
tems. InProc. of Design Automatioin Conferengeages 134-139, 1999.

F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Enei@sndn

of IEEE Annual Foundations of Computer Scienuages 374—-382, 1995.

H.-S. Yun and J. Kim. On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-
Time SystemsACM Transactions on Embedded Computing Syst&(83:393-430, 2003.

20

