
Dynamic Voltage Scaling Algorithm for Fixed-Priority
Real-Time Systems Using Work-Demand Analysis

Woonseok Kim∗ Jihong Kim† Sang Lyul Min
School of Computer Science and Engineering

Seoul National University ENG4190, Seoul, Korea, 151-742
wskim@archi.snu.ac.kr, jihong@davinci.snu.ac.kr, symin@dandelion.snu.ac.kr

ABSTRACT
Dynamic Voltage Scaling (DVS), which adjusts the clock speed
and supply voltage dynamically, is an effective technique in re-
ducing the energy consumption of embedded real-time systems.
Unlike dynamic-priority real-time scheduling for which highly
effective DVS algorithms are available, existing fixed-priority
DVS algorithms are less effective in energy efficiency because
they are based on inefficient slack estimation methods. This
paper describes an efficient on-line slack estimation heuristic
for the rate-monotonic (RM) scheduling. The proposed heuris-
tic estimates the slack times using the short term work-demand
analysis. The DVS algorithm based on the proposed heuristic
is also presented. Experimental results show that the proposed
DVS algorithm reduces the energy consumption by 25∼42%
over the existing rate-monotonic DVS algorithms.

Categories and Subject Descriptors: D.4.9 [Operating
Systems]: Systems Programs and Utilities

General Terms: Algorithms.

Keywords: Dynamic voltage scaling, low-power systems, real-
time systems.

1. INTRODUCTION
Dynamic Voltage Scaling (DVS), which adjusts the supply

voltage and its corresponding clock frequency dynamically, is
an effective low-power design technique for embedded real-time
systems. Since the energy consumption of CMOS circuits has a
quadratic dependency on the supply voltage, lowering the sup-
ply voltage is one of the most effective techniques for reducing
the energy consumption.
Since lowering the supply voltage also decreases the maxi-

mum achievable clock speed [1], various DVS algorithms for
hard real-time systems try to reduce the supply voltage dynam-
ically to the lowest possible level while satisfying the systems’

∗
This work was supported in part by the Ministry of Education under
the BK21 program, and by the Ministry of Science and Technology under
the National Research Laboratory program. The ICT at Seoul National
University provides research facilities for this study.
†
This work was supported by grant No. R01-2001-00360 from the Korea
Science & Engineering Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

�

���

���

���

���

���

���

��	

��

���

�

� � �
 �� �� �� ��

Number of Tasks

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsEDF ccEDF laEDF DRA AGR lpSHE

�
���������������������

(a) EDF DVS algorithms

�

���

���

���

���

���

���

��	

��

���

�

� � �
 �� �� �� ��

Number of Tasks

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsRM ccRM

Theoretical Lower Bound

(b) RM DVS algorithms

Figure 1: Energy efficiency of state-of-art DVS algo-
rithms.

timing constraints. To guarantee the timing requirements of
real-time tasks even in the worst case, dynamic voltage scal-
ing can utilize only slack times (or idle times) when adjusting
voltage levels. Therefore, the energy efficiency of a DVS algo-
rithm largely depends on how accurately these slack times are
estimated.
Slack time analysis has been extensively investigated in real-

time server systems in which aperiodic (or sporadic) tasks are
jointly scheduled with periodic tasks [2, 3]. In these systems,
the purpose of slack time analysis is to improve the response
times of aperiodic tasks or to increase their acceptance ratio.
However, since the existing slack analysis methods [2, 3] usually
incur high time and/or space overheads, they are not applicable
to mobile embedded systems where resources are constrained.
For this reason, most existing on-line DVS algorithms for em-
bedded systems use simple heuristics in estimating slack times.
For dynamic-priority hard real-time systems, slack times are

efficiently identified with a moderate overhead, contributing to
higher energy efficiency of DVS algorithms. For example, the
DVS algorithms for the earliest-deadline first (EDF) scheduling
policies described in [4, 5, 6] are known to be very effective in
reducing the energy consumption. Figure 1(a) shows that the
energy efficiency of these DVS algorithms, DRA, AGR [4], and
lpSHE [6], is quite close to the theoretical lower bound1 [9].
On the other hand, state-of-art DVS algorithms for fixed-

priority real-time tasks perform less efficiently, leaving more
rooms for better DVS algorithms. Figure 1(b) shows that
there is a large gap between the energy efficiency of the rate-
monotonic (RM) DVS algorithms [5, 10] and the theoretical
lower bound. The poor energy efficiency of existing RM DVS
algorithms can be attributed to two factors. First, RM DVS
scheduling has been less extensively investigated compared to

1
The theoretical lower bounds were computed with the complete execu-
tion trace information using Yao’s algorithm [7] and Quan’s algorithm
[8] for EDF and RM scheduling policies, respectively.

396

EDF DVS scheduling. We were able to identify two RM DVS
algorithms only from existing literatures.
Second, it is more difficult to develop energy-efficient RM

DVS algorithms compared to that of EDF DVS scheduling.
For example, the priority-based slack-stealing method is widely
used for EDF DVS algorithms in accurately estimating avail-
able slack times [4, 6]. The priority-based slack-stealing method
is based on a simple heuristic: the unused times of completed
higher-priority tasks are utilized by the following lower-priority
tasks. However, since each task instance always has the same
fixed priority in RM scheduling, this technique does not work
as effectively as in EDF scheduling. (In EDF scheduling, the
dynamically changing task priorities serve as an efficient slack
distributor among the tasks.) Higher-priority tasks tend to
have less slack times than lower-priority tasks in RM schedul-
ing. It is likely that the higher the task priority is, the faster
the task execution speed is. This unbalance in the execution
speeds generally results in the poor energy efficiency.
In this paper, we focus on improving the on-line slack estima-

tion part of an RM DVS algorithm. Based on the analysis re-
sults of the existing RM DVS algorithms, we propose a dynamic
slack estimation method based on the short term work-demand
analysis method (which significantly improves the efficiency of
the slack estimation) and describe a new DVS algorithm for pe-
riodic RM real-time tasks. Experimental results show that the
proposed DVS algorithm can reduce the energy consumption
by 25∼42% over the existing RM DVS algorithms.

2. MOTIVATION
2.1 System model
This paper focuses on a preemptive hard real-time system

in which periodic real-time tasks are scheduled under the RM
scheduling policy where the shorter the period task, the higher
the priority. The target variable voltage processor can scale its
supply voltage and clock speed continuously within its opera-
tional ranges, [vmin, vmax] and [fmin, fmax], respectively. The
clock speed is assumed to be adjusted along with the corre-
sponding voltage level at each scheduling point.
A set of n periodic tasks is denoted by T = {τ1, τ2, · · · , τn},

where tasks are assumed to be mutually independent. τi has a
shorter period (i.e., a higher priority) than τj if i < j. Each task
τi has its own period pi and worst case execution time (WCET)
wi. The relative deadline di of τi is assumed to be equal to
its period pi. Each task activates (or releases) its instance
periodically, and the j-th instance of τi is denoted by τi,j . The
first task instance of each task is assumed to be activated at
t = 0. A task instance is denoted by a single subscript such as
τααα when no confusion arises. Each task instance τααα has its own
arrival time rααα and absolute deadline dααα. We denote α < β if
i < k where α ≡ i, j and β ≡ k, l.

2.2 Motivational example
Consider a periodic task set T specified in Table 1. In ad-

dition to periods and WCETs, Table 1 shows the average case
execution time (ACET) of each task.2 Figure 2(a) shows the
execution schedule under the worst case workload using fmax

in the first hyperperiod.
Suppose that T is scheduled under the ccRM algorithm [5].

This algorithm consists of two phases, off-line and on-line phases.
In the off-line phase, using the schedulability condition for RM
scheduling [11], ccRM computes the maximum constant speed
fmcs for the given task set, which is the lowest possible clock
speed that guarantees the feasible schedule of the task set [10].

2
We assume that tasks’ execution times are based on the maximum clock
frequency.

Table 1: An example real-time task set T .
period (pi) WCET (wi) ACET (ai)

τ1 3 1.0 0.5

τ2 4 1.0 0.5

τ3 6 2.0 1.0

1
2

0 9876 11 121054321

0 9876 11 121054321

task 1
task 2
task 3 time

(a)

0 9876 11 121054321
time

sp
ee

d fmcs

0 9876 11 121054321

(b)

(c)
time

sl
ac

k

time

sp
ee

d fmcs

(d)

Figure 2: A voltage scheduling example

However, in the case of T in Table 1, fmcs is computed to be
1.0 × fmax.
In the on-line phase, under ccRM, slack times exist if the ear-

liest arrival time of the next task instance is later than the
worst-case completion time of the currently activated task in-
stances. When the slack time exists, the clock speed is adjusted
so that the activated task instances complete their execution
just before the arrival time of the next task.
Figure 2(b) shows the speed schedule under the ccRM algo-

rithm for the example task set T assuming that the actual
execution time of each task is equal to its ACET. This ex-
ample illustrates that the ccRM’s slack estimation heuristic is
overly conservative. When the first scheduled task instance τ1,1

completes its execution at t = 0.5 with fmcs, there is a slack
time of 0.5 time units, which can be used to lower the execu-
tion speed for the next scheduled task instance τ2,1. Under the
ccRM algorithm, however, τ2,1 is scheduled with fmcs, because

the amount of imposed work at t = 0.5 is 3 (=
w2,1+w3,1

1.0
),

which is larger than the length of the interval between t = 0.5
and the next task arrival time (NTA = a1,2 = 3). When τ2,1 is
completed and τ3,1 is scheduled at t = 1.0, there exists a slack
time of 1 time unit. However, τ3,1 cannot be scheduled with
a lower speed than fmcs because the arrival time of the next
task instance τ1,2 is earlier than the worst case completion time
of τ3,1. Similarly, all other task instances, except for two task
instances τ2,2 and τ1,4, cannot be scheduled with a speed lower
than fmcs.
The inability of using lower speeds for the example task set T

under ccRM results from an inefficient slack estimation method
used in this algorithm. As shown in Figure 2(c), there ex-
ist slack times at most scheduling points. To improve the
efficiency of slack estimation in RM scheduling, we may ex-
tend the ccRM algorithm by adopting the priority-based slack
stealing method [4, 6]. However, this method may not work
well either in RM scheduling where the priority of a task is
fixed. Since each task instance takes its slack time mainly
from completed higher-priority tasks under the priority-based
slack stealing method, high-priority tasks have less sources for
slack times than low-priority tasks. Thus, there exist a large
unbalance in slack usage among tasks. Consequently, such an
unbalance in slack usage results in an uneven voltage sched-
ule, further limiting the energy efficiency in RM scheduling.
Figure 2(d) shows the speed schedule when the priority-based
slack stealing method is used for the slack estimation in RM

397

scheduling for the same example. As shown in the figure, the
highest-priority task, which has no high-priority task, runs with
high speeds in three instances (out of four activations).
The main goal in this paper is to devise an efficient and accu-

rate slack estimation method for RM scheduling. Our key ob-
servation leading to the new slack estimation technique is that,
for RM scheduling, the priority-based slack stealing method
should be augmented with the work-demand analysis for solv-
ing the uneven slack source problem.

3. BASIC IDEA
At time t, the slack (or laxity) of a task τi,j with deadline at

di,j is equal to di,j − t − wi,j [12]. If additional work wother

from other tasks should be done before di,j , the slack time of
τi,j is reduced by wother.
In order to accurately estimate the slack time, wother should

be computed correctly. However, as shown in [2, 3], identifying
the exact wother values requires to consider all the timing con-
straints of subsequent task instances in a hyperperiod. Since
such a procedure incurs high time and space overhead, it cannot
be used for the on-line slack estimation. Instead, we calculate
wother approximately. The goal of short-term work-demand
analysis is to enlarge the available slack time of the scheduled
task by delaying the schedule of lower-priority tasks in near
future as late as possible.
Suppose that there are n periodic tasks, and τi,j (1 < i < n)

is scheduled at t. The required work to be processed before di,j

can be classified into the following three types:

• wi,j : the work required by the scheduled task itself.

• Hi,j(t) : the work required by the higher-priority tasks
that are activated during [t, di,j]. (Hi,j(t) should be pro-
cessed before di,j because these tasks will preempt τi,j .)

• Li,j(t) : the work required by the lower-priority tasks
that were activated before t or will be activated during
[t, di,j]. (Li,j(t) includes part of work from the lower-
priority tasks.)

Once Hi,j(t) and Li,j(t) are estimated, the available execution
time for the scheduled task τi,j can be computed.
Consider the example task set in Table 1 again. When the

first scheduled task instance τ1,1 completes its execution at
t = 0.5, τ2,1 begins its execution at t = 0.5. Since the higher-
priority task τ1,2 will be activated at t = 3 (i.e., H2,1(0.5) =
w1,2 = 1), 2 time units of work (w2,1 + H2,1(0.5)) should be
scheduled during [0.5, 4]. In addition, since τ3,1 cannot have 2
time units of available execution time during [4, 6] (due to τ2,2),
part (i.e., 1 time unit) of w3,1 should be processed before d2,1

(i.e., L2,1(0.5) = 1). Thus, total of 3 time units of work must
be processed before d2,1 (i.e., during [0.5, 4]). In other words,
1.5 time units are available to τ2,1, so that τ2,1 can be scheduled
with lowered clock speed 1

1.5
fmax as shown in Figure 3(a).

When τ2,1 completes its execution at t = 1.25 and τ3,1 is
scheduled, 4 time units of work are required to be processed
before d3,1. That is, during [1.25, 6], 2 time units for w2,1 and
2 time units for H3,1(1.25) should be allocated, respectively.
Thus, 2.75 time units are available for τ3,1, and τ3,1 can also
be scheduled with a lowered clock speed 2

2.75
fmax as shown in

Figure 3(b).
The remaining task instances can be scheduled in a similar

manner. The final voltage schedule is shown in Figure 3(c).
Assuming that the power consumption is proportional to the
square of the clock speed, the schedule in Figure 3(c) consumes
30% less energy than the schedule in Figure 2(b) under the ccRM
algorithm.
As shown in Figure 3(c), the slack times are more evenly dis-

tributed under the proposed method (cf., Figure 2(d)). Under

fmax

0 9876 11 121054321

fmax

0 9876 11 121054321

fmax

0 9876 11 121054321

time

sp
ee

d

time

sp
ee

d

(a)

(b)

(c)
time

sp
ee

d

Figure 3: A voltage scheduling example.

the priority-based slack stealing method, more slack times are
given to low-priority tasks than to high-priority tasks. How-
ever, in the proposed method, slack times are more evenly dis-
tributed to all tasks. For a high-priority task τh, small slack
times are inherited from higher-priority tasks but few tasks
preempt the allocated time interval for the task τh. On the
other hand, for a low-priority tasks τl, large slack times are
passed over to τl from higher-priority tasks. However, τl’s allo-
cated interval is frequently preempted by higher-priority tasks.
Therefore, we can expect an even slack distribution, compared
to the voltage schedule from the priority-based slack stealing
method.
In this example, the required work needed to be processed

before the scheduled task’s deadline is estimated by examin-
ing tasks in the future on instance-by-instance basis. Although
such a procedure might be easy to compute in this simple ex-
ample, it becomes complex as the number of task instances
increases. Therefore, we present a heuristic for this slack esti-
mation procedure in the following section.

4. VOLTAGE / CLOCK SCALING USING SHORT
TERM WORK DEMAND ANALYSIS

In describing the slack analysis method using the short term
work-demand analysis, the following three notations are de-
fined:

• wrem
α (t) : the remaining WCET of τα at t.

• loadα(t) : the amount of work required to be processed
in [t, dα].

• Aα(t) : the available execution time of τα which is sched-
uled at t.

The goal is to estimate the available execution time Aα(t) for
the task τα scheduled at t by identifying loadα(t).
We assume that a real-time scheduler has two queues: wait-

Queue and readyQueue. The waitQueue and the readyQueue
contain the completed tasks and the currently activated tasks,
respectively. All the tasks are initially queued in waitQueue.
When a task is activated, the task is moved from waitQueue to
readyQueue, and the remaining WCET of τα is set to wα, i.e.,
wrem

α (t) = wα.
Among the tasks in readyQueue, the active task τα with the

shortest period is scheduled to run under the RM scheduling
policy. As τα executes, its wrem

α (t) decreases and consumes its
available execution time. When τα completes its execution, its
wrem

α (t) is reset to 0.
Suppose that there are n periodic tasks (τ1 and τn have the

highest priority and the lowest priority, respectively). When
τα is executed at t, if loadα(t) amount of work should be com-
pleted before dα, the slack time slackα(t) can be computed
as dα − t − loadα(t). In this equation, loadα(t) consists of
three types of work: (1) wrem

α (t) for τα itself, (2) Hα(t) from
the higher-priority tasks, and (3) Lα(t) from the lower-priority
tasks. While wrem

α (t) is the known value at each scheduling

398

point, both Hα(t) and Lα(t) should be computed from a com-
plex analysis. In the proposed heuristic, we compute approx-

imate estimates of Hα(t) and Lα(t), H̃α(t) and L̃α(t), where

H̃α(t) ≥ Hα(t) and L̃α(t) ≥ Lα(t) for a safe estimation on
available slack times. Based on the periodicity of tasks, we

compute H̃α(t) as follows:

H̃α(t) = H̃
past
α (t) + H̃future

α (t), (1)

where H̃past
α (t) represents the work required by uncompleted

higher-priority tasks activated before t and H̃future
α (t) repre-

sents the work required by higher-priority tasks activated dur-

ing [t, dα]. H̃
past
α (t) and H̃future

α (t) are computed as follows:

H̃past
α (t) =

∑
τκ∈T ACT

β
(t)

wrem
κ (t)

and
H̃future

α (t) =

α−1∑
i=1

(�dα − ε
pi

� −
 t+ ε
pi

�+ 1) · wi,

where
T ACT

β (t) = {τκ|κ < β and τκ ∈ readyQueue(t)}
and ε is the infinitesimal.
In Equation 1, since H̃α(t) is computed based on the task

arrival times, it is obvious that H̃α(t) ≥ Hα(t).
3

For a correct estimation of Lα(t), it is necessary to estimate
how much of works from lower-priority tasks can be delayed
beyond dα. Unfortunately, such an estimation requires to ex-
amine all the lower-priority task instances in the future. In the
proposed heuristic, we approximately estimate Lα(t) by exam-
ining only the current or next instance of each periodic task,
reducing the computational complexity to a reasonable level.
First, in order to set the analysis scope, we compute the

upcoming deadline udκ of each task τκ as follows:

udκ(t) =

{
 t+ε
pκ

�pκ if τα is active at t

(
 t+ε
pκ

�+ 1)pκ otherwise.

The task instances which are active or activated during
[t,max{udκ(t)}] will be examined for slack estimation. For
instance, suppose that there are three periodic tasks and their
periods are 5, 6, and 8, respectively. If WCETs of tasks are 1,
1, and 2 time units, respectively, Figure 4(a) shows the worst
case execution schedule of these tasks. When τ1,1 is scheduled
at t = 0, the latest upcoming deadline at t = 0 is 8, and we
will examine task instances which are active in [0,8].
Next, we choose task τβ which has the earliest upcoming

deadline among tasks whose priorities are lower than that of
τα, e.g., τ2,1 in Figure 4(a). For τβ, the amount of work required
to be processed before τβ’s upcoming deadline udβ(t) can be
expressed as

l̃oadβ(t) = w
rem
β (t) + H̃β(t) + L̃β(t).

Once l̃oadβ(t) is computed, we can estimate l̃oadα(t) as fol-
lows. We separate two cases, when udβ(t) > dα (case I) and
when udβ(t) ≤ dα (case II).

Case I : When udβ(t) is later than dα, l̃oadβ(t) is greater

than wrem
α (t) + H̃α(t), i.e., the work in wrem

α (t) + H̃α(t) is

the subset of the work in l̃oadβ(t). Defining ∆ = l̃oadβ(t) −
wrem

α (t)− H̃α(t), if ∆ ≤ udβ(t)−dα, ∆ amount of work can be

3
If all the higher-priority tasks τk,l arrives before dα − wk,l or after dα,

H̃α(t) is equal to Hα(t). Otherwise, H̃α(t) ≥ Hα(t). For example, when
the arrival time rk,l of a higher-priority task τk,l is earlier than dα and
rk,l + wk is later than τα, only part of wk can preempt the execution
of τα. Moreover, when such higher-priority tasks arrive simultaneously,
the degree of overestimation increases.

τ1

τ1

5 100 time

2015 time25

(a)

(c)

analysis scope

50 time

load1

load2

load3

(d)

50 time

load1

load2

load3

(b)∆

τ3

τ2

τ3

τ2

Figure 4: Short-term work-demand analysis example:
(a) and (c) show RM scheduling examples at t = 0 and t = 13,
respectively. (b) and (d) show the load estimation of each task at
t = 0 and t = 13, respectively. (the gray-boxes mean the amount
of work from higher or same priority tasks, and the black-boxes
mean the amount of work from lower priority tasks.)

processed in [dα, udβ(t)], and only wrem
α (t) + H̃α(t) is required

to be processed before dα. Otherwise, ∆−(udβ(t)−dα) amount
of work should be processed before dα. That is,

L̃α(t) = max(0, l̃oadβ(t)− wrem
α (t)− H̃α(t)− (udβ(t)− dα)),

l̃oadα(t) = w
rem
α (t) + H̃α(t) + L̃α(t),

and
slackα(t) = dα − t− l̃oadα(t). (2)

The remaining problem in estimating l̃oadα(t) is how to com-

pute l̃oadβ(t); Lβ(t) is still unknown. L̃β(t) can be estimated

by the same procedure as L̃α(t). First, we identify a task τγ
which has the earliest upcoming deadline among tasks whose

priorities are lower than that of τβ. If τγ is τn, l̃oadγ(t) is equal
to

l̃oadγ(t) = w
rem
γ (t) + H̃γ(t)

because there is no lower-priority tasks to consider. Otherwise

l̃oadγ(t) is given by:

l̃oadγ(t) = w
rem
γ (t) + H̃γ(t) + L̃γ(tc).

Above procedure is recursively repeated until there is no lower-

priority task to consider. Consequently, L̃β(t) can be computed
as

L̃β(t) = max




0,

l̃oadγ(t)− wrem
β (t)− H̃β(t)

−(udγ(t)− udβ(t)).

Since L̃α(t) is estimated based on H̃β(t), it is also true that

L̃α(t) ≥ Lα(t). Further, the available execution time for the
scheduled task τα can be estimated as

Aα(t) = max(0, slackα(t)) + w
rem
α (t). (3)

Since slackα(t) is estimated through the computation of H̃α(t)

and L̃α(t), slackα(t) may have a negative value when H̃α(t)

and L̃α(t) are highly overestimated. In this case, we set the
slackα(t) as zero, and schedule τα with fmax.
Consider the example shown in Figure 4(a). When τ1,1

is scheduled at t = 0, there is no high-priority task which
can preempt τ1,1’s execution. Even if τ1,1 fully utilizes the
time interval [0,5] for its execution, it does not violate its tim-
ing constraint. However, in order to guarantee the feasible
schedule of the lower-priority tasks, we should estimate how
much lower-priority work should be done before ud1,1 = 5.
In order to determine L1,1(0), the proposed heuristic exam-
ines the lower-priority tasks in a top-down fashion from τ2,1 to

399

τ3,1, and computes L3,1(0) and L2,1(0) in a bottom-up fash-
ion from τ3,1 to τ2,1. Figure 4(b) shows the computed re-

sults. In the case of τ3,1, l̃oad3,1(0) is set to the sum of w3,1

and H̃3,1(0),
4 which is shown in the gray box of Figure 4(b);

6 time units are required to be processed before ud3,1 = 8.
In the case of τ2,1, only 3 time units of work should be pro-
cessed before ud2,1 = 6 for τ2,1 and its higher-priority tasks,
τ1,1 and τ1,2. However, during [ud2,1, ud3,1], because only 2
time units are available, 1 time unit of additional lower-priority

work (L̃2,1(0) = ∆ − (ud3,1 − ud2,1)), which is shown in the
black-box of Figure 4(b), should be processed before ud2,1

in order to guarantee the feasible schedule of τ3,1. There-

fore, l̃oad2,1(0) becomes 4. In a similar way, we can compute

l̃oad1,1(0). Consequently, 2 time units of slack time is avail-
able for τ1,1 and it can be scheduled with a lower clock speed
fclk =

w1,1
slack1,1(0)+w1,1

fmax = 1
3
fmax.

Case II : When udβ(t) is earlier than dα, l̃oadβ(t) must
be processed before dα. Otherwise, τβ violates its timing con-
straint because τβ can be executed after the execution of its
higher-priority tasks including τα. Thus, in this case, we mod-
ify the execution interval for τα by changing the τα’s deadline
to udβ(t). Therefore, the slack time of τα is given by :

slackα(t) = udβ(t)− t− l̃oadβ(t). (4)

For example, assume that, in the above example, all tasks
are active except for τ1 at t = 13 (Figure 4(c)) and only 1 time
unit of work is left for τ3,2. In this case, ud2,3(=18) is later
than ud3,2(=16), and the slack time of τ2,3 is estimated relative
to ud3,2. Since τ3,2 can be scheduled after τ2,3’s completion,
τ2,3’s effective deadline is earlier than its original deadline. In
Figure 4(c), τ2,3 should complete before t = 14 and τ2,3 cannot
have any slack time (cf. Figure 4(d)).
Figure 5 summarizes the proposed slack estimation proce-

dure. During run time, this algorithm can be executed at every
scheduling point such as the activation, resumption, and com-
pletion of task instances. In estimating the available execution
time for the scheduled task, only one instance is examined per
a periodic task,thus the estimation algorithm having the O(n)
time complexity5. When the available execution time Aα(t) for
τα at t, the clock speed can be adjusted to

fclk = (wrem
α (t)/Aα(t))× fmax, (5)

and the supply voltage is adjusted accordingly.

5. EXPERIMENTAL RESULTS
To evaluate the energy efficiency of the proposed voltage

scheduling algorithm, several experiments were performed us-
ing three DVS algorithms: (1) the lppsRM algorithm [10], (2)
the ccRM algorithm [5], and (3) the lpWDA algorithm proposed
in this paper. Experiments were performed using SimDVS, an
integrated DVS simulation environment [9, 13]. The energy
simulator in SimDVS is based on the ARM8 microprocessor
core. The clock speed is scaled in the range of [8, 100] MHz
with a step size of 1 MHz and the supply voltage is scaled in
the range of [1.1, 3.3] V. It is assumed that the system enters
into a power-down mode when the system is idle. (The power
consumption in the power-down mode is assumed to be zero.)
In the experiments, the voltage scaling overhead is assumed
negligible both in the time delay and power consumption.

4
H̃3,1(0) includes the works from τ1,1, τ1,2, τ2,1, and τ2,2.

5
The time complexity of the proposed heuristic varies from O(n) (in the
worst case) to O(1) (in the best case) according to the priority of the
scheduled task. When τi is scheduled, the time complexity is O(n − i)
in the worst case.

Table 2: Task sets for experiments.
% tasks WCETs (ms) Periods (ms) Utilization

CNC 8 0.035 ∼ 0.72 2.4∼9.6 0.489

Avionics 17 1 ∼ 9 25∼1,000 0.848

Videophone 4 1.4 ∼ 50.4 40∼66.7 0.986

Figure 6 shows the experimental results for three real-world
application task sets and a number of synthesized task sets.
The three real-world application task sets are derived from the
Computerized Numerical Control (CNC) machine controller
application, the Avionics application, and the VideoPhone ap-
plication, which were used for the experiments in [10, 6]. The
parameters of these applications are summarized in Table 2. In
each experiment, the execution time of each task instance was
randomly drawn from a Gaussian distribution6 in the range
of [BCET, WCET], where BCET is the best case execution
time. The experiments were performed by varying BCET from
10% to 90% of WCET for each application. In each figure,
the x-axis represents the ratio of BCET to WCET while the
y-axis represents the normalized energy consumption ratio to
the energy consumption of the same application running on a
DVS-unaware system with a power-down mode only.
As shown in Figures 6(a)∼(c), lpWDA reduces the energy

consumption up to 48% and 42% over lppsRM and ccRM, re-
spectively. Since the average execution times of task instances
decrease as BCET becomes smaller, the slack times of task in-
stances increase as BCET decreases. Thus, as shown in the
figures, the energy efficiency of each DVS algorithm increases
as the ratio of BCET to WCET decreases. Note that the en-
ergy efficiency of the proposed lpWDA algorithm increases much
faster than lppsRM and ccRM because the proposed lpWDA al-
gorithm is more efficient in exploiting the slack times of tasks
than the others.
We also performed extensive experiments using synthesized

application sets by varying the number of tasks in a task set
whose results are given in Figure 6(d). For a given number of
tasks, 100 random task sets7 were generated, whose utilization
is 0.9. In these experiments, another RM DVS algorithm lpSHR
is evaluated together. lpSHR estimates the slack times using the
RM extension of priority-based slack stealing [6, 4], and adjusts
the clock speed and voltage accordingly.
The experimental results in Figure 6(d) show that lpWDA

achieves 25∼42% more energy savings compared to the others.
Figure 6(d) also shows that as the number of tasks increases,
the energy efficiency of lpWDA increases while those of lppsRM
and ccRM are not changed. This can be explained by the fact
that as the number of tasks increases, lpWDA has more task
instances from which slack times are taken. On the other hand,
in lppsRM and ccRM, the slack estimation is limited to the time
between the completion of a task instance and the arrival of the
next task instance, which is largely independent of the number
of tasks in the system.
Although the energy efficiency of lpSHR is much better than

those of lppsRM and ccRM (by 16% ∼ 22%), it is still worse
than that of lpWDA (by 25%). As pointed out earlier, this is be-
cause higher-priority tasks tend to have less slacks than lower-
priority tasks in RM scheduling. Due to such an unbalance
in the amount of available slack times among the tasks, lpSHR
cannot achieve a high energy efficiency as when the priority-
based slack stealing method was used in EDF DVS algorithms.

6
With the mean m = BCET+WCET

2 and the standard deviation σ =
WCET-BCET

6 .
7
The period and WCET of each task were randomly generated using the
uniform distribution within the ranges of [10, 100] ms and [1, period)
ms.

400

a

a_b

a_c

a_d

a_e

a_f

a_g

a_h

a_i

a_j

b

a a_b a_c a_d a_e a_f a_g a_h a_i a_j

stv�`�tv�stv�`�tv�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�¡¡¤�~�¡¡¤�~

���~���~

�¡�ur�¡�ur

(a) CNC

a

a_b

a_c

a_d

a_e

a_f

a_g

a_h

a_i

a_j

b

a a_b a_c a_d a_e a_f a_g a_h a_i a_j

stv�`�tv�stv�`�tv�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�¡¡¤�~�¡¡¤�~

���~���~

�¡�ur�¡�ur

(b) Avionics

a

a_b

a_c

a_d

a_e

a_f

a_g

a_h

a_i

a_j

b

a a_b a_c a_d a_e a_f a_g a_h a_i a_j

stv�`�tv�stv�`�tv�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�¡¡¤�~�¡¡¤�~

���~���~

�¡�ur�¡�ur

(c) VideoPhone

a

a_b

a_c

a_d

a_e

a_f

a_g

a_h

a_i

a_j

b

c e g i ba bc be bg

�¦���£ � ��¤�¤�¦���£ � ��¤�¤

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�

£�

�
��
«
�
�
v
�
�
£�
ª
t

�
¤
¦
�
¡
¥�

�

�¡¡¤�~�¡¡¤�~ ���~���~ �¡�y��¡�y� �¡�ur�¡�ur

(d) Synthesized applications

Figure 6: Experimental results.

6. CONCLUSIONS
We have presented a novel voltage scheduling algorithm for

RM scheduling based on an efficient slack estimation heuris-
tic. We have discussed why existing RM DVS algorithms do
not perform well and explained how we can overcome such
limitations. As a heuristic, a slack estimation method using
the short term work-demand analysis was introduced, and a
new RM DVS algorithm, lpWDA, was proposed. Experimen-
tal results show that the lpWDA algorithm reduces the energy
consumption up to 40% over the existing algorithms.

7. REFERENCES
[1] T. Sakurai and A. Newton. Alpha-power Law MOSFET Model and

Its Application to CMOS Inverter Delay and Other Formulas.
IEEE Journal of Solid State Circuits, 25(2):584–594, 1990.

[2] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 110–123, December 1992.

[3] T. S. Tia, J. W. S., and M. Shankar. Algorithms and Optimality of
Scheduling of Soft Aperiodic Requests in Fixed-Priority
Preemptive Systems. Journal of Real-Time Systems, 10(1):23–43,
1996.

[4] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and
Aggressive Scheduling Techniques for Power-Aware Real-Time
Systems. In Proceedings of IEEE Real-Time Systems Symposium,
pages 95–105, December 2001.

[5] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems. In Proceedings of 18th
ACM Symposium on Operating Systems Principles, pages
89–102, October 2001.

[6] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems Using
Slack Time Analysis. In Proceedings of Design, Automation and
Test in Europe, pages 788–794, March 2002.

[7] F. Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE Foundations
of Computer Science, pages 374–382, 1995.

[8] G. Quan and X. S. Hu. An Optimal Voltage Schedule for
Real-Time Systems on a Variable Voltage Processor. In
Proceedings of the Design, Automation and Test in Europe,
pages 782–787, March 2002.

[9] W. Kim, D. Shin, J. Jeon, J. Kim, and S. L. Min. Performance
Comparison of Dynamic Voltage Scaling Algorithms for Hard
Real-Time Systems. In Proceedings of Real-Time and Embedded
Technology and Applications Symposium, pages 219–228,
September 2002.

[10] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors. In
Proceedings of the International Conference on Computer-Aided
Design, pages 365–368, November 2000.

[11] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling
Algorithm : Exact Characterization and Average Case Behavior.
In Proceedings of the IEEE Real-Time Systems Symposium,
pages 166–171, December 1989.

[12] W.-S. Liu. Real-Time Systems. Prentice Hall, Englewood Cliffs,
NJ, June 2000.

[13] D. Shin, W. Kim, J. Jeon, J. Kim, and S. L. Min. SimDVS: An
Integrated Simulation Environment for Performance Evaluation of
Dynamic Voltage Scaling Algorithms. In Proceedings of Workshop
on Power-Aware Computer Systems, February 2002.

Algorithm : Estimate the available execution time
and set the voltage/clock speed for τααα

1. Initially, put all tasks into readyQ and, for each task τα,

2. set udα = pα and

3. Hα(t) =
∑

τκ∈T ACT
α (t) wrem

κ (t)

+
∑ α−1

i=1 (�
udα−ε

pi
� − � t+ε

pi
�) · wi

4. where, T ACT
α (t) = {τκ|κ < α and τκ ∈ readyQ(t) }

5. When a task τα is activated, set wrem
α (t) = wα

6. When a task τα is completed or preempted, call UpdateLoadInfo()

7. When a task τα is scheduled for execution,

8. (1) call CalcSlackTime() to get slack time slackα(t)

9. (2) set the clock frequency as

fclk =
wrem

α (t)
slackα(t)+wrem

α (t) · fmax, and

10. (3) set the voltage accordingly.

11. Function CalcSlackTime()

12. Input : the active task τα, waitQ, readyQ, and current time t

13. Output : the slack time slackα(t) for τα

14. Identify the task τβ that has the earliest upcoming deadline

among tasks whose priorities are not higher than that of τα

15. Lβ(t) = CalcLowerPriorityWork(τβ, t)

16. loadβ(t) = wrem
β (t) +Hβ(t) + Lβ(t)

17. slackα(t) = max(0, udβ − t − loadβ)

18. return (slackα(t))

19. Function CalcLowerPriorityWork()

20. Input : a reference task τβ and current time t

21. Output : the amount of lower-priority work needed to be

done before udβ

22. if τβ is identical to τn then return 0 end if

23. Identify the task τγ that has the earliest upcoming deadline

among tasks whose priorities are lower than that of τβ

24. Lγ(t) = CalcLowerPriorityWork(τγ, t)

25. loadγ(t) = wrem
γ (t) +Hγ(t) + Lγ(t)

26. Lβ(t) = max(0, loadγ(t)− wrem
β (t)− Hβ(t)− udγ + udβ)

27. return Lβ(t)

28. Function UpdateLoadInfo()

29. Input : the completed or preempted task τα, and the

amount of work wdone done for τα in the previous schedule
30. if (COMPLETION) then

31. udα = udα + pα

32. Hα(t) =
∑α−1

i=1 (�
udα−ε

pi
� − � t+ε

pi
�) · wi

33. loop from κ = α − 1 until κ = n by increasing κ

34. Hκ(t) = Hκ(t)− wrem
α (t)

35. end loop

36. wrem
α (t) = 0

37. else (PREEMPTION)

38. wrem
α (t) = wrem

α (t) − wdone

39. loop from κ = α − 1 until κ = n by increasing κ

40. Hκ(t) = Hκ(t)− wdone

41. end loop

42. end if

Figure 5: Voltage scaling algorithm.

401

