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ABSTRACT
3D NAND flash memory exhibits two contrasting process charac-
teristics from its manufacturing process. While process variability
between different horizontal layers are well known, little has been
systematically investigated about strong process similarity (PS)
within the horizontal layer. In this paper, based on an extensive
characterization study using real 3D flash chips, we show that
3D NAND flash memory possesses very strong process similar-
ity within a 3D flash block: the word lines (WLs) on the same
horizontal layer of the 3D flash block exhibit virtually equivalent
reliability characteristics. This strong process similarity, which was
not previously utilized, opens simple but effective new optimiza-
tion opportunities for 3D flash memory. In this paper, we focus
on exploiting the process similarity for improving the I/O latency.
By carefully reusing various flash operating parameters monitored
from accessing the leading WL, the remaining WLs on the same
horizontal layer can be quickly accessed, avoiding unnecessary
redundant steps for subsequent program and read operations. We
also propose a new program sequence, called mixed order scheme
(MOS), for 3D NAND flash memory which can further reduce the
program latency. We have implemented a PS-aware FTL, called
cubeFTL, which takes advantage of the proposed techniques. Our
evaluation results show that cubeFTL can improve the IOPS by
up to 48% over an existing PS-unaware FTL.
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Figure 1: Illustrations of differences between 2D NAND and
3D NAND.
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1 INTRODUCTION
3D NAND flash memory [11, 14, 15, 32, 37], in which memory cells
are vertically stacked, enabled the continuous growth in the flash
capacity by overcoming various technical challenges in scaling 2D
NAND flash memory. For example, 2D flash memory technologies
had encountered the fundamental limits to scaling below the 10-
nm process technology [34] because of the low device reliability
(due to severe cell-to-cell interference) and high manufacturing
complexity. By exploiting the vertical dimension for the capacity
increase, 3D NAND flash memory has contributed to sustain the
50% per year growth rate in the NAND flash capacity [19], which
established flash-based storage systems as de facto standards from
mobile systems to high-performance enterprise environments.

Although an architecture of 3D NAND flash memory is concep-
tually described as if multiple 2D NAND flash layers are stacked in
a vertical direction [17], the inner organization of 3D NAND flash
memory is quite different from this logical explanation. Fig. 1(a)
illustrates an organizational difference in a NAND block between
2D flash and 3D flash. The 3D NAND block in Fig. 1(a) consists of
five horizontal layers (h-layers), which are stacked along the z axis.
Each horizontal layer consists of four word lines (WLs). Similarly,
the 3D NAND block may be described to have four vertical layers
(v-layers) in the y axis where each v-layer consists of five vertically
stacked WLs that are separated by select-line (SL) transistors. As
shown in Fig. 1(a), when a 2D NAND block is rotated by 90 ◦ in a

211

https://doi.org/10.1145/3352460.3358311
https://doi.org/10.1145/3352460.3358311
https://doi.org/10.1145/3352460.3358311


MICRO-52, October 12–16, 2019, Columbus, OH, USA Y. Shim and M. Kim, et al.

counterclockwise direction using the x axis as an axis of rotation,
it corresponds to a single v-layer. Furthermore, most 3D NAND
devices (e.g., TCAT [15], p-BICs [18] and SMArT [7]) adopt cylin-
drical charge trap (CT)-type cell structures. This CT-type cell uses
a non-conductive layer of silicon nitride (SiN) that traps electri-
cal charges to store bit information, while 2D NAND devices use
floating gate cell structures which store bits in a conductor (e.g.,
poly-Si). As shown in Fig. 1(b), this SiN layer has been modified into
a three dimensional form that wraps around the channel, acting as
an insulator that holds charges.

Since the overall organization and basic cell structure of 3D
NAND flash memory were greatly changed over those of 2D NAND
flash memory, the physical and electrical characteristics of 3D
NAND flash memory are also quite different from those of 2D
NAND flash memory. For example, 3D NAND flash memory is
more reliable because the cell-to-cell interference, which causes
data corruption, is not an issue in the CT-type cell structure. Since
the cell dimension can be affected by the vertical etching process
(described in Section 2), the error characteristics of 3D NAND flash
memory vary significantly over the cell’s geometric location within
its 3D organization. Furthermore, there are several new reliability
concerns (such as the early charge loss [5]) that were not present
in 2D NAND flash memory. Therefore, in order to take full advan-
tage of 3D flash memory, we need to revisit various optimization
issues of NAND flash memory by exploiting the 3D NAND-specific
characteristics.

Although several groups [25, 40] have already attempted to un-
derstand various characteristics of 3D flash memory, most of these
studies focus on introducing new problems rather than presenting
practical solutions to the new problems. Since 3D flash memory adds
new sources of variation (such as the vertical dimension) from its
manufacturing process, process variability tends to increase over
2D flash memory. This, in turn, makes it difficult to devise a solu-
tion that works well over the process variations originated from
different sources. In this paper, in order to better understand the
reliability characteristics of 3D flash memory (so that more practical
solutions can be devised), we performed a comprehensive process
characterization study using state-of-the-art 3D TLC NAND flash
chips. We tested more than 20,000 flash blocks which were evenly
selected from different physical locations using 160 flash chips.
More than 11 million pages were used from these blocks.

From our characterization study, we have confirmed that there
exists strong process variability between different h-layers as other
researchers (such as [25]) have similarly observed. Since 3D NAND
flash memory is manufactured using a vertically successive etching
process from the topmost h-layer to the bottom h-layer, the cell
structure along the z axis varies, leading to significant layer-to-layer
variation. (We call this process variability the vertical variability
or inter-layer variability.) Although several researchers (e.g., [6, 13,
25, 39]) have exploited the vertical variability for improving flash
reliability, our result suggests that such techniques will be difficult
to work effectively in practice. Although the inter-layer variability
is clearly observed, its variation pattern is not easily predictable
when several sources of variation (e.g., the flash aging status or
the physical location of the flash block) are inter-related. Without
a reasonable prediction model for the inter-layer variability, the
effectiveness of the existing techniques can be quite limited. Our

observation strongly motivates a need for better schemes to exploit
the vertical variability in practice.

Our second finding from the process characterization study,
whichwas a surprise for us, was that there exists very strong process
similarity (PS) within a 3D flash block. Since the flash cells on the
same h-layer of the 3D flash block experiences the same (etching)
process conditions, the WLs on the same h-layer were expected to
be quite homogeneous in their reliability characteristics. Our study,
however, indicated a much stronger result than our expectation.
That is, the WLs on the same h-layer exhibited virtually equivalent
reliability characteristics. (We call this intra-layer process similarity
the horizontal similarity or intra-layer similarity.) The horizontal
similarity, which has not been previously reported in literatures,
opens up simple but effective new optimization opportunities for
3D flash memory.

In this paper, we focus on exploiting the horizontal similarity for
designing high-performance SSDs. Our key insight is the horizon-
tal similarity can be effectively used during run time in deciding
whether the required steps for implementing flash program and
read operations can be safely skipped without degrading data relia-
bility. Since the error characteristics of the WLs within the same
h-layer are virtually equivalent, if we can obtain key parameters
during accessing the leading WL of the h-layer, the remaining WLs
of the same h-layer can be accessed efficiently by skipping unnec-
essary steps. By exploiting the horizontal similarity, we propose
novel latency optimization techniques for program and read op-
erations. Since the proposed latency optimization techniques are
based on the parameter values monitored during run time, the ver-
tical variability of 3D flash memory can be fully utilized as well.
Unlike the existing techniques that depend on off-line parameter
estimation [13, 25], our proposed techniques can accurately reflect
changing environments by measuring key parameters just-in-time
before they are used.

Since the effectiveness of the proposed optimization techniques
depends on the NAND parameters monitored for the leading WL
of each h-layer, we propose a modified program sequence for 3D
NAND flash memory based on our characterization study. The
modified program sequence, which we call the mixed order scheme
(MOS), allowsWLs in a single v-layer to be successively programmed.
The extra flexibility of the MOS scheme in the page programming
order comes with no sacrifice in the data reliability because little
interference exists between different v-layers in 3D flash memory.

In order to evaluate the effectiveness of our proposed optimiza-
tion techniques, we have implemented the PS-aware FTL, called
cubeFTL, which fully exploits the intra-layer similarity of 3D flash
memory using the emulated 3D flash memory which accurately
reflects the cubic organization of 3D NAND flash memory. Our
experimental results using various workloads show that cubeFTL
can improve the IOPS by up to 48% over the existing PS-unaware
FTL.

The rest of this paper is organized as follow. Before our opti-
mization techniques are presented, we review the manufacturing
process of 3DNANDflashmemory and explain the steps of program
and read operations in Section 2. In Section 3, we report our key
findings from the characterization study. We describe the proposed
PS-aware optimization techniques in Section 4 and PS-aware FTL
is presented in Section 5. Experimental results follow in Section 6,
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Figure 2: A detailed illustration of a vertical layer of 3D
NAND flash memory.

and related work is summarized in Section 7. Section 8 concludes
with a summary and future work.

2 BACKGROUND
In order to optimize the latency of a program and read operations,
our proposed techniques intelligently identify redundant steps us-
ing the horizontal similarity. In this section, we briefly give an
overview of the 3D NAND manufacturing process that is directly
related to the process characteristics reported in Section 3. We also
review the basics of program operations and read operations at the
micro-operation level where our proposed techniques are described.

2.1 3D NAND Manufacturing Process
Fig. 2 shows a detailed organization of a vertical layer in 3D NAND
flash memory using a cross-sectional view (along the z axis) and a
top-down view (of three cross sections along the x-y plane). The
stacked cells are vertically connected through cylindrical channel
holes. The channel holes are formed at the early stage of 3D NAND
flash manufacturing by an etching process [15]. The etching pro-
cess, which is considered as one of the most important steps for
manufacturing 3D NAND flash memory, is the root cause of pro-
cess similarity and variability in 3D NAND flash memory. While
the etching process proceeds from the top h-layer to the bottom
substrate, it introduces structural variations to channel holes in
different h-layers. These structural variations, in turn, cause differ-
ences in flash cells’ characteristics.

The inter-layer variability is the direct consequence of the struc-
tural variations from a high aspect ratio of channel holes. For ex-
ample, as shown in Fig. 2(b), the diameter of the channel holes
varies significantly over the height of an h-layer. The channel hole
diameter in the topmost h-layer is wider than that in the bottom
h-layer because of the high aspect ratio of the cylindrical channel
hole. Furthermore, the shape of channel holes in some h-layers
is an ellipse or a rugged shape unlike the circle in upper h-layers
mainly due to etchant fluid dynamics.

Different channel hole diameters as well as their shapes can
cause latency variations in the program or erase operation. Since a
channel hole can be seen as a physical barrier to the charge flow
along WLs in h-layers, the fluctuations in the channel hole sizes
can increase the parasitic resistance or capacitance, thus resulting
in large variations in the error characteristics of different h-layers.
Since the electrical stress during NAND operations varies depend-
ing on the cell structure, the NAND aging status (e.g., endurance
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Figure 3: An overview of the 2-bit MLC NAND program.

and data retention) can be also affected by the structural variations
during the etching process.

Unlike the inter-layer variability between different h-layers,
NAND cells on the same h-layer are almost homogeneous in their
characteristics. Since these cells are manufactured by the same etch-
ing step at the same time, there is a little variation in the diameter
of channel holes or in their shapes. This homogeneous nature of
the etching step directly contributes to the intra-layer similarity.

2.2 NAND Flash Program Operation
A NAND flash memory chip consists of a large number of blocks,
each of which is composed of multiple WLs. Depending on the
number of bits per cell, one to four logical pages can be mapped
to a single WL. For example, in TLC NAND flash memory, three
logical pages are mapped into a single WL. When s logical pages are
mapped to a WL, each cell of the WL stores s bits per cell by using
2s different Vth states. For example, MLC NAND flash memory
stores two bits in a cell by using four different Vth states.

In order to program a NAND cell to a specific state, the Vth
distribution should be formed within a specified Vth window for
the state. Flash devices generally use the incremental step pulse
programming (ISPP) scheme [36] for controlling the Vth distribu-
tion. Fig. 3(a) illustrates the ISPP scheme for programming 2-bit
MLC NAND flash memory. The ISPP scheme gradually increases a
program voltage by ∆VI SPP until all cells in a page are positioned
in their desired Vth windows. After each program (shown by the
white box in Fig. 3(a)), NAND cells are checked (i.e., verified) by a
verify operation (shown by the shaded box in Fig. 3(a)) to see if they
have been correctly programmed. We denote the program step and
verify step by PGM and VFY, respectively. (Similarly, we use tPGM
and tV FY to indicate the latency of PGM and VFY, respectively.)
Once the cells were properly programmed, the verified cells are
excluded (i.e., inhibited) from subsequent program steps. Otherwise,
another round of the program-verify step is repeated. (Following
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the convention, we call each sequence of program-verify steps by
an ISPP loop.)

As shown in Fig. 3(a), a verify step is required after each program
step unless the cells were already verified. For example, when cells
are programmed for the P1 state, all the cells on a WL need to be
verified including cells to be programmed, for example, for the P3
state. This is because the program speed of NAND cells on the
same WL is not the same. Fast cells on a WL reach their target Vth
region with a small number of ISPP loops while a large number
of ISPP loops are needed for slow cells on the same WL. In order
to prevent the fast cells from exceeding the desired Vth region,
which causes the over-programmed errors, all programmed cells
need VFY operations each time one ISPP loop is completed. As
shown in Fig. 3(a), tPROG is defined as the total time of performing
MaxLoop program-verify loops where the i-th loop takes tLOOP(i).
MaxLoop is set to (VF inal - VStar t ) / ∆VI SPP where VF inal and
VStar t are the ending program voltage and the starting program
voltage, respectively. For the i-th ISPP loop, tLOOP(i) is given by
the sum of tPGM and (ki × tV FY ) where ki is the number of verify
operations required for the i-th ISPP loop. In summary, tPROG can
be expressed as follows:

tPROG =

MaxLoop∑
i=1

(tPGM + ki × tV FY ) (1)

Fig. 3(b) illustrates howki values change over programmed states
for 2-bit MLC flash. For P1-programmed cells, three ISPP loops (i.e.,
❶, ❷, and ❸) are used and three VFY operations are needed (as
shown in Fig. 3(a)) for each ISPP loop. (That is, k1 = k2 = k3 = 3.)
As shown in Fig. 3(b), although NAND cells are programmed for
the P1 state, all the cells are needed to be verified against the P2
and P3 states as well because the program speeds of NAND cells
on the same WL can be quite different. For P2-programmed cells,
two more ISPP loops (i.e., ❹ and ❺) are needed with two VFY
operations for each ISPP loop. (That is, k4 = k5 = 2.) Since the P1-
programmed cells are excluded from ISPP loops for P2-programmed
cells, each ISPP loop requires only two VFY operations, one for P2-
programmed cells and the other for P3-programmed cells. Similarly,
P3-programmed cells require two more ISPP loops (i.e., ❻ and ❼)
with only one VFY operation in each ISPP loop. (That is, k6 = k7 =
1).

2.3 Read Retries in Read Latency
Since the data stored in flash memory cells can be corrupted by
various error sources (such as a large number of P/E cycles or long
data retention times [2, 4, 28]), when a NAND page withm different
program states is read, an Error Correcting Code (ECC) engine in
a flash controller monitors if the page includes errors beyond the
ECC engine’s correction capability. When such uncorrectable errors
are detected, the flash controller retries the page read operation
with a different combination ofm V Read

Ref (i)’s until the page does not
include any uncorrectable errors. Note that V Read

Ref (i) is the read refer-
ence voltage used to distinguish Pi from P(i − 1). For example, in
Fig. 4, V Read

Ref (3) distinguishes P3 from P2. When P3 is shifted due to a
long data retention time, it may overlap with V Read

Ref (3), thus introduc-
ing bit errors [3, 22]. The shaded regions indicate such overlapped
errors. When such a read failure occurs, V Read

Ref (i) is adjusted with

N
u

m
b

e
r
 o

f 
c
e
ll

s

Vth

E-State

( ) ( ) ( )

P1 P2 P3

Errors

( )

Initial

After a long 

retention time
E-State P1 P2 P3

Figure 4: An example of finding the optimal read reference
voltages using read retries.

an offset ∆V Read
Ref (i). Since the read latency tREAD linearly increases

as the number of read retries (NumRetry) increases, many opti-
mization techniques such as [3] and [43] have been proposed for
reducing NumRetry, in particular, when NAND cells reach near
the end of their lifetimes. The core of these techniques relies on
how quickly find the right offsets ∆V Read

Ref (i)’s. For example, the tech-
nique proposed in [43] keeps track of changes in Vth distributions
so that the optimal ∆V Read

Ref (i)’s can be quickly identified. Unlike the
existing techniques, our proposed solution reduces NumRetry by
exploiting the strong intra-layer similarity.

3 PROCESS VARIABILITY
CHARACTERIZATION IN 3D NAND FLASH
MEMORY

3.1 Variability Characterization Methodology
In order to better understand the implication of a cubic organization
on the process variability of 3D NAND flash memory, we have
performed a comprehensive process characterization study using
160 3D TLC flash chips with 48 horizontal layers where each layer
consists of 4 WLs. We selected 128 blocks from each chip. A total
of 11,520,000 pages (i.e., 3,840,000 WLs) were used in our study.

As a reliability measure of NAND memory cells, we used the
number Nr et (wi j , x , t) of retention bit errors after t-month reten-
tion time when the WLwi j was x pre-cycled wherewi j represents
the j-th WL of the i-th h-layer in a flash block [16]. Since the main
goal of our study was to understand the characteristics of process
variability in 3D flash memory, we measured Nr et (wi j , x , t) values
while changing both P/E cycles and data retention times using an
in-house test board with a NAND controller and a temperature
controller. For example, we varied P/E cycles from 0 (i.e., an initial
condition) to 2K (i.e., the end of lifetime condition) and changed
retention times from 0 month to 12 months.

In order to represent the degree of process variability among
WLs, we define two metrics, ∆V j

x,t and ∆H i
x,t , under a given (x ,

t). ∆V j
x,t is defined as a ratio of the maximum Nr et (wpj , x , t) and

minimum Nr et (wqj , x , t) wherewpj andwqj are the WLs with the
maximum number of retention bit errors and the minimum number
of retention bit errors, respectively, along the j-th vertical layer.
Similarly, ∆H i

x,t is defined as a ratio of the maximumNr et (wir , x , t)
and minimum Nr et (wis , x , t) wherewir andwis are the WLs with
the maximum number of retention bit errors and the minimum
number of retention bit errors, respectively, among the WLs in
the i-th horizontal layer. ∆V j

x,t indicates the degree of the inter-
layer variability while ∆H i

x,t shows the degree of the intra-layer
variability. The larger ∆V j

x,t , the higher the process variability. On
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Figure 5: Characterization results on intra-layer similarity.
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the other hand, as ∆V j
x,t and ∆H i

x,t get closer to 1, process similarity
gets stronger.

3.2 Horizontal Intra-Layer Similarity
Fig. 5 summarizes the characterization results for intra-layer sim-
ilarity. As shown in Figs. 5(a) and 5(b), no BER difference exists
among four WLs on each h-layer shown. (In Figs. 5(a) and 5(b), we
indicate four WLs on the same h-layer by WL1, WL2, WL3 and
WL4.) We picked four representative h-layers whose vertical loca-
tions are shown in Fig. 6(a). The measured BERs were normalized
over the h-layer which has the best retention BER. (BER is computed
by dividing Nr et (wi j , x , t) by the total number of cells per WL.)
As reported in other literatures (e.g., [33]), h-layerα and h-layerω ,
which are on the block edges, have high BER values. Although each
h-layer shows different BER values because of channel-hole pro-
cess variations, their ∆H i

x,t values are all 1. In all of our measured
h-layers, in fact, virtually all the ∆H i

x,t values were 1 regardless
of the flash aging conditions. Fig. 5(c) shows that the horizontal
similarity is consistently maintained over different blocks as well
under varying P/E cycles and retention times.

Strong horizontal intra-layer similarity implies that if we find
out key parameters from any WL on the same h-layer, they can be
safely applied to the remaining WLs on the same h-layer without
the additional cost for estimating the parameters. For example, as
shown in Fig. 5(d), all the WLs on the same h-layer have the same
tPROG. If we measure tPROG once, say, for the leading WL on
an h-layer, the tPROG values for the remaining WLs on the same
h-layer can be exactly predicted. Since many flash optimization
techniques (e.g., [1, 25]) rely on such parameter estimation for
their high efficiency, the intra-layer similarity can be used in many
different optimization cases in 3D flash memory. Furthermore, as

the number of WLs on an h-layer is expected to increase in a near
future (e.g., from 4 to 8 [21]), the efficiency of exploiting the intra-
layer similarity will be further improved.

3.3 Vertical Inter-layer Variability
Fig. 6 summarizes the characterization results for inter-layer vari-
ability. Unlike the intra-layer similarity results shown in Figs. 5(a)
and 5(b), significant h-layer to h-layer BER differences exist within
tested flash blocks. (Because of the strong intra-layer similarity,
we show BER values for the leading WL only in Figs. 6(a), 6(b)
and 6(c).) All BER values were normalized over that of h-layerβ
(which is the most reliable h-layer) in a fresh NAND block (i.e.,
0 P/E) with no retention time. Figs. 6(a), 6(b) and 6(c) also show
that as WLs experience more P/E cycles, their BERs change in a
complicated fashion so that it is very difficult to accurately predict
the BER value of a WL under a given aging condition. For example,
∆V j

x,t for the fresh block is only 1.6 while ∆V j
x,t for the WLs after

1-year retention after 2K P/E cycles is 2.3. Furthermore, as shown
in Fig. 6(c), when the flash block experiences a long retention time
(e.g., 1-year retention time) around its maximum lifetime (i.e., 2K
P/Es), BER values of less reliable h-layers (i.e. h-layerκ , h-layerα ,
and h-layerω ) increase faster over those of more reliable h-layers
(i.e., h-layerβ ), introducing the nonlinear dynamic behavior. As
shown in Fig. 6(d), there are significant per-block BER differences
as well. In two sample blocks, Block I and Block II, ∆V j

x,t of Block I
is larger than that of Block II by 18%. Since the BER value of a WL
can change in a nonlinear fashion under different aging conditions
as well as the physical block location, it is a challenge to accurately
estimate per-WL BER values, which are important for realizing the
high efficiency of the existing techniques (such as [13, 25]) that
exploit the inter-layer variability.
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Figure 7: An overall procedure for skipping redundant VFYs.

4 PS-AWARE OPTIMIZATIONS
4.1 Program Latency Optimizations
In designing the optimized program scheme based on the horizontal
similarity, we focus on two parts of Equation (1) for tPROG . First, we
reduce ki by skipping redundant VFYs. (See Section 4.1.1.) Second,
we reduce MaxLoop. (See Section 4.1.2.)

4.1.1 Elimination of Redundant VFYs. When a page is programmed
by the ISPP scheme, if we knew the exact number of required ISPP
loops for each cell a priori, no VFY would be necessary. Although
this would be impossible in practice, thanks to the strong horizontal
similarity, once the number of required VFY operations is known
for the leading WL of an h-layer, we can accurately predict the
number of ISPP loops for the subsequent WLs on the same h-layer,
thus skipping unnecessary VFY steps.

In order to better describe our proposed technique, we rewrite
Equation (1) as follows, assuming that there arem different program
states, P1, ..., Pm:

tPROG =
Pm∑
s=P1

(Ls × (tPGM +Vs × tV FY )) (2)

where Ls is the number of ISPP loops required for s-programmed
cells andVs is the number of VFY steps needed in a single ISPP loop
for s-programmed cells. In Ls , we do not include earlier ISPP loops
used for programming program states P1, ..., P(s-1). For example, in
Fig. 2(a), LP1 = 3, LP2 = 2, and LP3 = 2. Similarly, VP1 = 3, VP2 = 2,
andVP3 = 1. If we knew LP1, .., LPm in advance before programming
a WL, we could skip all the VFY steps (i.e.,

∑Pm
s=P1(Ls × Vs )) from

Equation 2.
In practice, however, because of significant program-speed vari-

ations among NAND cells in a WL, LPi should be modelled as
an interval [LPimin , LPimax ] rather than a constant. That is, for Pi-
programmed cells, the smallest number of ISPP loops is LPimin while
the largest number of ISPP loops is LPimax . Since fast cells only need
LPimin ISPP loops, VFY is necessary from the LPimin-th ISPP loop so
that verified cells are excluded from subsequent ISPP loops to avoid
over-program errors. As shown in Fig. 7, in our VFY reduction tech-
nique, when cells in the leading WL of an h-layer are programmed
to Pi (❶), we monitor both LPimin and LPimax (❷). Based on the strong
horizontal similarity, when cells in the remaining WLs on the same
h-layer are programmed to Pi , N VFY steps are skipped (❸) where
N = (

∑P (i−1)
s=P1 L

s
max + (LPimin − 1)) for i > 1 and N = (LPimin −1) for

i = 1. For example, if we assume that Fig. 3(a) in Section 2 shows
the ISPP loops for the leading WL, in the remaining WLs, for P2-
programmed cells, 3 VFYs are skipped (i.e., LP1max + LP2min- 1) while
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Figure 8: The effect of the number of skipped VFYs on the
BER of program states.

for P3-programmed cells, 5 VFYs are skipped (i.e., LP1max + LP2max +
LP3min-1 where LP1max = 3, LP2max = 2, LP2min = 1 and LP3min = 1).

In our scheme, since higher states (e.g., P7 state in 3DTLCNAND)
require more ISPP loops, they tend to skip more VFY steps over
lower states (e.g., P3 state). Fig. 8 shows the typical effect of the
number of skipped VFYs on the BER of program states assuming
that LPimin = L

Pi
max for i = 1, ...,m. (All BER values normalized over

the worst h-layerκ at 2.0K P/Es with 1-year retention time.) P7-state
cells can safely skip 7 VFYs while P1-state cells can skip only 1 VFY
in TLC NAND flash memory. In all the program states, the more
VFYs are skipped, the higher the BER value of the program states
becomes. This is because when more VFYs are skipped, more fast
cells get over-programmed. Skipped VFYs can reduce the average
tPROG by 16.2% in our tested chips without degrading the flash
reliability.

Although we assumed that LPimin = L
Pi
max in Fig. 8(a), in practice,

they are not equal. Fig. 8(b) shows how the number of skipped VFYs
may change depending on the program state by an example. For P7
state cells, LPimin = 7 and LPimax = 9. Since our technique measures LPimin
and LPimax during run time, we can take full advantage of dynamic
changes in skipping VFYs. On the other hand, if the number of
skipped VFYs were statically determined off-line, many redundant
VFYs may not be skipped because such techniques should use the
smallest LPimin under the worst operating conditions.

4.1.2 Reduction in Number of ISPP Loops. Our second program
latency optimization technique focuses on reducing MaxLoop in
Equation (1) by balancing the BER of each h-layer without compro-
mising the flash reliability. Our technique was mainly motivated by
our observation that the default VStar t and VF inal , which were set
under the worst case reliability condition, can be safely relaxed by
increasing VStar t and decreasing VF inal on most h-layers. With the
modified V ′

Star t and V ′
F inal (where V

′
Star t > VStar t and V ′

F inal < VF inal ),
MaxLoop becomes smaller because MaxLoop = ( V ′

F inal − V ′
Star t )

/ ∆VI SPP . For example, if we can shorten the difference between
VF inal andVStar t by 10%, MaxLoop is reduced by 10%, thus reducing
the overall tPROG by 10%.
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Figure 9: The Error balancing between h-layers.
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Figure 10:VStar t andVF inal adjustment margins over different
h-layers.

Fig. 9 illustrates the key idea of our MaxLoop reduction tech-
nique by exploiting horizontal similarity. As shown in Fig. 9(a), in
a default mode, VStar t and VF inal are set very conservatively to sat-
isfy the data reliability at h-layerκ (i.e., the worst layer) under the
worst operating conditions (e.g., at the end of the NAND lifetime
with the longest data retention time). However, when WLs on most
h-layers (e.g., h-layerβ ) are programmed, considerable spare BER
margins (SM ) exist because they are programmed under non-worst
operating conditions and they are not on the worst h-layer. If SM
were known in advance after programming the leading WL, by
exploiting horizontal similarity, they could be effectively reused in
adjusting VStar t and VF inal in subsequent WLs on the same h-layer,
so that MaxLoop can be effectively reduced without any reliability
problem. (Even with this adjustment of VStar t and VF inal , as shown
in Fig. 9(b), BER of h-layerβ is still less than the ECC correction
capability.)

Although adjusting VStar t and VF inal adaptively by exploiting
the inter-layer variability is not new (e.g., [13]), our scheme is
novel in that VStar t and VF inal can be adjusted in a tight but safe
fashion during run time. When the leading WL in the h-layer is
programmed, we monitor the BER (BEREP1) between the erase (E)
state and the lowest program (P1) state.1 SM is estimated as the dif-
ference between the monitored BEREP1 and the maximum allowed
BER (BERMax

EP1 ). Since SM indicates how much BER can be relaxed
without degrading the data reliability, it can be used as an efficient
parameter in adjusting VStar t and VF inal for subsequent WLs on the
same h-layer.

It should be noted that even for the same h-layer, VStar t and
VF inal can be adjusted by different SM if operating conditions or the
physical location of flash block change. This is the key advantage of
our proposed scheme over the existing technique [13]. Unlike [13]
which adjusts VF inal based on the off-line characterization results
1It is known that the errors between E state and P1 state can accurately reflect the
NAND health status and it can be used to predict the overall spareVth margin [20, 35].
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Figure 11: VStar t and VF inal adjustment based on BEREP1.
(such as Fig. 10), our proposed scheme makes on-line decisions by
adapting to changing operating conditions. In the scheme proposed
in [13], for example, h-layerβ in all flash blocks can decrease VF inal

by 130 mV only over its entire lifetime, resulting in an about 8% im-
provement in the program latency. On the other hand, our scheme
not only relax the BER of h-layer by exploiting SM that reflects the
difference originated from the flash aging and the position of the
flash block, but also adjusts both VStar t and VF inal , thus improving
the program latency more efficiently.

In order to decide adjustment margins of VStar t and VF inal from
the measured BEREP1 of the leading WL of an h-layer, we first
compute SM (= BERMax

EP1 − BEREP1), which represents how much
BEREP1 can be relaxed over the maximum allowed BERMax

EP1 , shown
in Fig. 11(a). From the computed SM , we decide the total adjustment
margin for VStar t and VF inal . For example, as shown in Fig. 11(b), if
the measured BEREP1 indicates that SM is 1.7, the total adjustment
margin for VStar t and VF inal is decided to be 320 mV. By adjusting
VStar t and VF inal by 320 mV, tPROG can be reduced by 19.7%. We
experimentally decided BERMax

EP1 from a large-scale characterization
study. Similarly, a conversion table, which maps a given SM to a
total adjustment margin forVStar t andVF inal , is constructed off-line
from extensive experimental measurements and used during run
time. Once the total adjustment margin is known, we use another
pre-defined table which states how to divide the total adjustment
margin between VStar t and VF inal .

4.1.3 Modification in Program Sequence. One interesting side effect
of our proposed program latency optimization technique is that it
divides WLs of a flash block into two distinct groups, leader WLs
and follower WLs. The leader-WL group, which consists of leading
WLs of each h-layer, has the default (i.e., normal) program latency.
On the other hand, the follower-WL group, which includes all the
remainingWLs except leader-WLs, has the reduced program latency.
In the conventional program sequence shown in Fig. 12(a), which
we call the horizontal-first order, as one leader-WL is programmed,
three more WLs are added to the follower-WL group. Although the
horizontal-first order scheme works well for many write workloads,
when a large sequential write is required, its peak write bandwidth
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is limited because every four WL writes, one write should be served
by the slow leader-WL group.

In order to increase the number of WLs in the faster follow-WL
group, we have evaluated two additional program orders shown in
Figs. 12(b) and 12(c), the vertical-first order scheme and the mixed
order scheme (MOS), respectively. The key difference of these new
order schemes over the conventional horizontal-first order is that
they can reserve more WLs in the follower-WL group. For example,
if we follow the mixed order scheme, all the WLs in the block
except for ones in the first v-layer can be added to the follower-WL
group. If the follower-WL group has a large number of WLs, write
workloads with the high write bandwidth can be better served.

In order to validate the feasibility of our proposed program
sequences, we evaluated the reliability characteristics of different
program sequences using real 3D TLC flash chips. Fig. 13 shows the
normalized BER results of three program sequences. Measured BER
values were normalized over the BER value of the horizontal-first
order. As shown in Fig. 13, three program sequences were virtually
equivalent in their reliability.2 Unlike 2D NAND flash, WLs in a 3D
flash block are separated by SL transistors, so that each WLs can
be programmed independently without interfering other WLs on
the same h-layer. For example, whenw11 in Fig. 12 is programmed,
otherWLs (w12,w13, andw14) are inhibited from being programmed
by SL transistors [10], thus not introducing cell-to-cell interference
as in 2D NAND flash.

4.1.4 Safety Check for PS-aware Optimizations. Our latency opti-
mization techniques described in Sections 4.1.1 and 4.1.2 assume
that the most recent [LPimin , LPimax ] values and SM are always applica-
ble for subsequent program operations. Although this assumption is
likely to hold on most practical settings, if there is a sudden change
in NAND operating conditions (e.g., a sudden surge in the ambient
temperature), themonitored [LPimin , LPimax ] andBEREP1 valuesmay be
no longer valid to be used for optimizing tPROG . In order to avoid
such rare failure cases, we check the BER value of each WL pro-
gram operation. Since flash memory vendors provide the low-level
NAND flash memory interface function, we can access the current
settings of internal NAND flash memory (including modifications
of operating parameters setting) and check the current BER value
of each WL after program operation (e.g., Set/Get-Features) [30].
If the BER value of the just completed WL is significantly higher
than that of the previously programmed WL on the same h-layer,
we assume that the current WL was improperly programmed and
re-program the same data in the followingWL.When the same data
is reprogrammed, new [LPimin , LPimax ] values and SM are monitored

2The maximum error difference among three sequences was less than 3%. This differ-
ence can be considered negligible because it comes mainly from the random telegraph
noise (RTN) [27].
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for subsequent uses. Since we use the existing NAND interface with
a minor code change, an additional time overhead is negligible (i.e.,
< 1 µs) for supporting the extra safety check for our optimization
techniques.

4.2 Read Latency Optimization
The read latency can be improved in a similar fashion as tPROG
by exploiting the strong horizontal similarity characteristics of 3D
NAND flash memory. As explained in Section 2, when the read
operation fails, a flash controller retries the read operation with
modified V Read

Ref (i)’s until no uncorrectable error exists. To minimize
the number of read retries, we aggressively reuse the most recent
optimal ∆V Read

Ref (i) offset values known for each h-layer. We denote the
most recent offset values by D = {∆V Read

Ref (i) |1 ≤ i ≤ m} and assume
thatDwas computed for a WL on an h-layerµ . If a requested read is
to a WL on the same h-layerµ , we simply use D for the read request
thanks to the strong horizontal similarity. Since each h-layer in a
block has different D (as described in Section 3.3), when a read is
to a WL not on the same h-layerµ , a new set D′ is built.

Our proposed technique operates very accurately with low mem-
ory space overhead by exploiting strong horizontal similarity. Since
the optimal ∆V Read

Ref (i)’s are rarely mispredicted3 except when environ-
mental factors (e.g., temperature) suddenly change, our proposed
scheme effectively minimizes NumRetry without any hardware
modification or any operational delay. Fig. 14 compares two distri-
butions of NumRetry values under our scheme and the existing
scheme, respectively, using real 3D TLC NAND flash chips. Our pro-
posed technique can reduce NumRetry by 66% on average over the
existing PS-unaware scheme, thus substantially improving tREAD
of 3D flash memory.

5 CUBEFTL: PS-AWARE FTL
Based on PS-aware optimization techniques explained in Section 4,
we have designed a novel FTL for 3DNANDflash-based SSDs, called
cubeFTL. Fig. 15 describes an overall architecture of cubeFTL.
As shown in Fig. 15, cubeFTL is based on a page-level FTL with
two additional modules: Optimal Parameter Manager (OPM) andWL
Allocation Manager (WAM). The OPM plays a key role for PS-aware
latency optimizations in cubeFTL. It sets optimal parameters for
target WLs finish reads and programs with shorter latencies. The
WAM is responsible for choosingWLs for every incoming host write.
By considering the write performance asymmetry between leader
WLs and follower ones, the WAM selects the most appropriate WL

3In case that the current optimal offset values fail to read, a new set D∗ is computed
and D∗ is used for future prediction of optimal offset adjustments.
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Figure 15: An organizational overview of cubeFTL.

under the current I/O workload characteristics. Once the WAM
detects that the amount of free space is not sufficient, it invokes
garbage collections (GCs).

5.1 Optimal Parameter Setting
The main role of the OPM is to set optimal parameters for a pro-
gram and read operations based on PS-aware latency optimizations
explained in Sections 4.1 and 4.2, respectively. In order to reduce
tPROG for follower WLs 4, the OPM monitors two values from the
leader WL program: 1) the number of ISPP loops for each program
state (i.e., [LPimin , LPimax ]) and 2) the BER value between the E state
and P1 state (i.e., BEREP1). Based on the first one, the OPM com-
putes the number N Pi

skip of skipped VFYs for the Pi-programmed
cells. VFY steps for each program states eliminates N Pi

skip VFY steps
from the second WL. Using the monitored BEREP1, the OPM ob-
tains appropriate values of VStar t and VF inal referring a predefined
table. The optimal program parameters, N Pi

skip ’s,VStar t andVF inal are
temporarily kept until they are used for all the follower WLs.

For the read latency optimization, the OPMmaintains an optimal
read reference voltage table (ORT) to keep track of the most recent
∆V Read

Ref (i) values for every h-layer in an SSD (i.e., Dh , where h is
an h-layer index in an SSD). For reading a WL from an h-layer h,
if the corresponding Dh in the ORT is different from the default
value, the OPM adjusts ∆V Read

Ref (i)’s for the read as values of Dh to
reduce NumRetry. If read retries are newly incurred (either by
misprediction or additional retention), the OPM updates the ORT
with the final∆V Read

Ref (i)’s which did not introduce uncorrectable errors.
The space overhead for maintaining the ORT is trivial. For example,
with 3D TLC NAND devices, if there are 4 adjustable ∆V Read

Ref (i) levels
between each program state, two bytes per h-layer is sufficient
for representing 7 (i.e., 23 − 1) ∆V Read

Ref (i)’s in Dh (7 × 2 = 14 bits).
Therefore, when each h-layer has 4 WLs and the page size is 16 KB,
the space overhead is about 0.001% (2[ byte

h−layer ] × (16, 384[ bytepaдe ] ×

3[paдeW L ] × 4[ WL
h−layer ])

−1 ≈ 1.02 × 10−5), which requires only 10
MB memory for a 1-TB SSD.

4CubeFTL does not exploit the vertical variability (due to its inconsistency explained
Section 3.3), so leader WLs are programmed with default parameters (i.e., no tPROG
reduction for leader WLs).
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Figure 16: Adaptive WL allocations by the OPM.
Setting optimal parameters for each operation can be supported

by using the existing NAND interface. Since most NAND manufac-
turers already provide the low-level interface for adjusting various
parameters, no significant hardware modification is necessary for
the PS-aware latency optimizations in cubeFTL. Note that setting
parameters only takes less than 1 µs, therefore, the performance
overhead is negligible considering the average tPROG (e.g., 700 µs)
and tREAD (e.g., 80 µs).

5.2 Adaptive WL Allocation
In order to take a full advantage of proposed techniques at the
storage system level, the WAM selects the most appropriate WLs
for each host write, taking into account the current performance re-
quirement. As a general guideline, theWAM tries to handle as many
host writes as possible with fast follower WLs under a high write-
bandwidth requirement, while using slow leader WLs when the
normal program speed is sufficient. By doing so, the WAM enables
cubeFTL to better meet varying performance requirements.

The WAM monitors the write buffer utilization µ to estimate
the current write-bandwidth requirement. For a given threshold
value µTH (e.g., 0.9), the WAM judges that a high write-bandwidth
is required if µ > µTH . Otherwise, it estimates that no high write-
bandwidth is necessary. Depending on the estimated requirement,
the WAM selects the right WL in active blocks (i.e., the current
write point) for flushing next entry of the write buffer. Following
the above guideline, if µ > µTH , the WAM tries to use follower WLs.
Otherwise, it prefers slow leader WLs.

For such workload-aware WL allocations, the WAM should be
able to flexibly choose a desired WL from a block. To this end, as
shown in Fig. 16, it manages active blocks in a fully mixed fashion
based on the MOS. The WAM keeps track of two h-layer indices for
each active block; iLeader points to the h-layer with the next free
leader WL while iFollower points to the h-layer with the next free
follower WL. When µ ≤ µTH , the WAM flushes the write buffer
by using leader WLs from iLeader (❶), even if follower WLs of
lower h-layers were not yet used. On the other hand, under a high
write-bandwidth requirement, follower WLs are successively used
as long as iFollower < iLeader (❷). This allows cubeFTL to use
more follower WLs when the write buffer is heavily used so that
more free buffer space can be made available quickly for the next
host write request.

When no high write bandwidth is required, cubeFTL tries to
use leader WLs. However, once cubeFTL runs out of leader WLs
in an active block, cubeFTLmust use follower WLs even when no
high write bandwidth is needed. In order to avoid such an awkward
situation, we use two active blocks per chip where more than two
active blocks per chip could be better. However, the more active
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Figure 17: Comparisons of normalized IOPS under six different workloads.
blocks per chip, the more memory overhead for the OPM to keep
optimal parameters for follower WLs. In the current cubeFTL, the
WAM manages two active blocks per chip as a simple solution.

6 EXPERIMENTAL RESULTS
6.1 Experimental Settings
In order to evaluate the effectiveness of the proposed techniques,
we have implemented cubeFTL on a unified SSD development
platform for NAND flash-based storage systems [23]. Our evalua-
tion platform can support up to the 512-GB capacity, but for fast
evaluation, the storage capacity was set to 32 GB. The target SSD
was configured to have 2 buses, each of which has 4 3D TLC NAND
chips. Each chip consists of 428 blocks and each block consists of
48 h-layers with 4 WLs per h-layer. The page size was set to 16 KB.
For our evaluation, we modified a NAND flash model in our plat-
form to distinguish leader WLs from follower WLs. For leader WLs,
typical operating parameters were applied [19, 41]. For follower
WLs, tPROG was shortened by up to 35.9% and NumRetry was re-
duced by 66% on average5. We have compared cubeFTL with two
different FTLs: pageFTL and vertFTL. PageFTL, which is our
baseline FTL, is a page-level mapping FTL without any 3D NAND-
specific optimizations. VertFTL, which employs a MaxLoop re-
duction technique proposed in [13], is used to represent the ex-
isting state-of-the-art technique for reducing tPROG. VertFTL,
however, adjustsVF inal only in a conservative manner to ensure the
flash reliability even under the worst operating condition.

For our evaluations, we used sixworkloads, four from the Filebench
benchmark tool [38], Mail, Web, Proxy and OLTP, and two real-
world DB applications, Rocks and Mongo. Mail, Web, and Proxy,
emulate I/O activities of mail servers, web servers, and proxy cache
servers, respectively, while OLTP represents intensive DB work-
loads. Rocks and Mongo run RocksDB [9] and MongoDB [29],
respectively, using Yahoo! Cloud Service Benchmark (YCSB) [8].
Among many different YCSB workloads, we used update-heavy
workload (type A) which consists of 50/50 reads and writes.

6.2 Performance Evaluation
In order to compare the overall performance of cubeFTL over
pageFTL and vertFTL, we measured IOPS values of each FTL
under different P/E cycles and retention times. Since NumRetry
highly depends on the SSD aging condition, evaluation under dif-
ferent aging states are necessary to understand the effectiveness of
the proposed read latency optimization. Three different aging states
at 30◦C are used in our evaluations: 0K P/E cycle with no retention

5These parameter changes reflect the overall effect of our proposed techniques de-
scribed in Secs. 4.1 and 4.2.

(i.e., fresh state), 2K P/E cycles with 1-month retention, and 2K
P/E cycles with 1-year retention. From our characterization results,
partly shown in Fig. 14, we constructed a probabilistic read-retry
model for our experiments. We assumed that no read retry occurs
in the fresh state. After 2K P/E cycles, 30% and 90% of reads need
read retries, respectively, with 1-month retention time and 1-year
retention time.

Fig. 17(a) shows normalized IOPS values of three FTLs under
the fresh state. Note that no read retries occurred in fresh blocks,
so all the performance gains of cubeFTL came from the program
latency optimization. As shown Fig. 17(a), cubeFTL significantly
improves I/O performance over the other FTLs under every work-
load. It outperforms pageFTL and vertFTL by up to 48% and
36%, respectively. As expected, the performance gains of vertFTL
over pageFTL was insignificant compared to cubeFTL, due to
its conservativeVF inal adjustment. VertFTL can reduce tPROG by
only 8% on average while the 30% tPROG reduction is possible in
cubeFTL on average. For OLTP, cubeFTL achieved the largest
IOPS improvement ratio. Since OLTP was the most write-intensive
workload, cubeFTL took advantage of its workload-aware adap-
tive WL allocation heuristics of the WAM module. By allocating
fast follower WLs when burst writes are requested, cubeFTL can
improve the IOPS by 48% over pageFTL.

Figs. 17(b) and 17(c) show the normalized IOPS under 1-month
retention time and 1-year retention time after 2K P/E cycles, respec-
tively. As shown in Figs. 17(b) and 17(c), IOPS gains of cubeFTL
over the other FTLs are significantly increased, compared to that
of Fig. 17(a) when all the blocks were fresh. Unlike Fig. 17(a), the
largest IOPS gain by cubeFTL was observed in Proxy, not OLTP.
This is because, at the end of the SSD lifetime, the read retry over-
head can dominate the overall performance. CubeFTL achieved
a higher improvement ratio because of its efficient NumRetry
reduction technique.

6.3 Impact of Adaptive WL Allocation
In order to evaluate the effectiveness of the workload-aware WL
allocations in cubeFTL, we evaluated the I/O latency using Rocks
workload under the fresh block state using cubeFTL-. CubeFTL-
works in the same fashion as cubeFTL except that the WAM
module of cubeFTL is disabled. CubeFTL- handles host writes
without considering the current performance requirement, using
WLs in an active block based on the horizontal-first order.

Fig. 18(a) shows a cumulative distribution of the write latency un-
der the Rocks workload. As shown in Fig. 18(a), both the cubeFTL
and cubeFTL- served write requests with short latencies over
pageFTL and vertFTL. For example, in cubeFTL, the 90th per-
centile of the write latency was 0.72 ms. On the other hand, in
pageFTL, the 90th percentile of the write latency was 1.10 ms,
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Figure 18: Comparisons of the I/O latency in Rocks.
about 1.53 times longer. Compared to cubeFTL, cubeFTL- per-
formed slightly lower. For example, the 80th percentile of cubeFTL
was about 42.26% shorter than that of cubeFTL-. By using more
follower WLs for burst writes, cubeFTL can flush the write buffer
quickly, allowing more host writes to be returned early.

It is noteworthy that the adaptive WL allocation was also effec-
tive in improving the application-level read latency, which greatly
affects the user-perceived performance. Fig. 18(b) shows a cumu-
lative distribution of the read latency under the Rocks workload.
Even though our proposed tREAD optimization has no impact at
the fresh state (because no read retry occurs), cubeFTL reduced
the read latency over the other FTLs including cubeFTL-. This is
because that less reads were blocked by previous writes owing to
the fast flush of the write buffer in cubeFTL. In conclusion, the
WAM enabled cubeFTL to maximize the benefit of the PS-aware
latency optimizations at the system level.

7 RELATEDWORK
There have been intensive investigations to reduce the NAND flash
memory program latency (such as [13, 16, 24, 26, 31, 39]) and read
latency (such as [25]). However, most existing techniques do not
exploit the intra-layer similarity of 3D NAND flash memory. For
example, the technique proposed by Pan et al. [31], which targets
for 2D NAND flash memory, reduces MaxLoop by dynamically
increasing ∆VI SPP . Although this technique can improve tPROG,
it requires an extra safety mechanism to handle pages written in
an accelerated fashion. Since no process similarity or variability is
considered, the efficiency of this technique is quite limited.

A few investigators have recently proposed 3D NAND-specific
optimization techniques. However, none of these techniques exploit
the process similarity of 3D NAND flash memory in a comprehen-
sive fashion as our work. In order to reduce the program latency,
for example, Hung. et al. [13] proposed a program latency improve-
ment technique by exploiting inter-layer variability, but they do not
consider dynamic characteristic changes of horizontal layers that
occur when P/E cycles, retention times and physical block location
change. Therefore, its practical benefit is rather limited. Further-
more, no horizontal similarity was exploited at all. Wang et al. [39]
also proposed a reliability enhancement technique by exploiting
the inter-layer variability, but they do not consider the horizontal
similarity as our work. Maejima et al. [26] presented a MaxLoop
reduction technique similar to ours using the horizontal similarity.

However, their technique, whose details were not described, is lim-
ited to adjustingVStar t only while our technique adjusts bothVStar t

and VF inal . Furthermore, our proposed techniques treat the I/O la-
tency optimization problem in a comprehensive fashion including
the VFY reduction technique, the new program sequence and the
reduction in read retries.

For the read latency improvement, Luo et al. [25] proposed a
read reference voltage adjustment technique exploiting the vertical
variability. However, they neither consider the dynamically chang-
ing operating conditions nor exploit the horizontal similarity. Since
their technique depends on the static flash operating parameters
that were decided off-line, its efficiency is rather limited by not
taking advantage of additional inter-layer variability.

8 CONCLUSIONS
We have presented novel I/O latency optimization techniques for
3D flash-based SSDs. Our proposed techniques exploit the horizon-
tal intra-layer similarity, which was newly discovered from our
characterization study. Strong intra-layer similarity allows flash
operating parameters monitored for the leading WL of an h-layer
to be reused in a tight but safe fashion for the remaining WLs on
the same h-layer. In order to reduce tPROG, when the leading WL
of an h-layer is programmed, we monitor the number of required
ISPP loops for each program state and the spare BER margin, and
then reuse them for the remaining WLs on the same h-layer to skip
redundant VFYs and reduce MaxLoop. We also propose a modified
program order, called the mixed order, which can improve the peak
write bandwidth when combined with the proposed program la-
tency optimization techniques. For reducing tREAD, we reuse the
optimal ∆V Read

Ref (i) offset values from the first read from an h-layer
so that following reads can reuse the optimal ∆V Read

Ref (i) monitored
from the first read. Our experimental results using cubeFTL show
that the proposed techniques can improve IOPS by up to 48% over
the existing PS-unaware FTL. The high efficiency of the proposed
techniques comes from directly measuring key flash operating pa-
rameters during run time so that changing operating conditions
are accurately reflected in the optimization procedure in a high
adaptive fashion.

Although we have focused on improving the I/O latency of high-
performance SSDs in this paper, we believe that the strong intra-
layer similarity can be widely used for optimizing different aspects
of high-performance SSDs. For example, it may be possible to im-
prove the quality and speed of an error-correction coding algorithm
used for such SSDs by exploiting various information collected
from the leader WL. Since the horizontal similarity guarantees
accurate I/O response times, it can be used to build SSDs with a
highly deterministic latency as a solution to the long-tail problem
in SSDs [12, 42].
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