
Improving SSD Performance Using Adaptive

Restricted-Copyback Operations

Duwon Hong1, Myungsuk Kim1, Jisung Park1, Myoungsoo Jung2, and Jihong Kim1

1Department of Computer Science and Engineering, Seoul National University
2Department of Electrical Engineering, KAIST

Email: 1{duwon.hong, morssola75, jspark, jihong}@davinci.snu.ac.kr, 2m.jung@kaist.ac.kr

Abstract—Copyback operation can improve the performance
of data migrations in SSD, but they are rarely used because
of their error propagation problem. In this paper, we pro-
pose an integrated approach that maximizes the efficiency of
copyback operations but does not compromise data reliability.
First, we propose a novel per-block error propagation model
under consecutive copyback operations. Our model significantly
increases the number of successive copybacks by exploiting
the aging characteristics of NAND blocks. Second, we devise
a resource-efficient error management scheme that can handle
successive copybacks where pages move around multiple blocks
with different reliability. Experimental results show that the
proposed technique can improve the IO throughput by up to
25% over the existing technique.

Index Terms—Copyback, NAND flash, FTL, Storage system

I. INTRODUCTION

Flash-based SSDs move a large amount of data internally

to support various SSD management tasks such as garbage

collection (GC), wear leveling and read-distrub management.

Since these internal data copy operations directly interfere with

I/O requests from user applications, how to efficiently handle

internal data migrations is a key challenge for designing a

high-performance SSD. Although there have been extensive

investigations (e.g., [1]–[4]) to mitigate the impact of internal

data migrations, most existing techniques do not adequately

handle a new performance bottleneck of copy operations in

modern SSDs. Unlike old SSDs where the copy cost was

dominated by the program time tPROG, in recent high-end

SSDs, the data transfer time tDMA between flash cells and off-

chip DRAM takes a large portion of the copy cost. This shift

in the performance bottleneck is due to two recent flash/SSD

technology changes: 1) innovations in the flash cell design

(which reduced tPROG) [5] and 2) a high degree of the internal

parallelism in high-end SSDs (which increases the effective

data transfer time tDMA).

In order to minimize tDMA, copyback operations [6] are

considered as one of the most effective solutions because

the copyback operation can move pages without off-chip

data transfers, thus eliminating tDMA completely. However,

copyback operations are rarely used in modern SSDs because

they cause a fatal reliability problem. When pages are migrated

using copyback operations, they bypass an off-chip error-

correction code (ECC) module and bit errors occurred during

copybacks are accumulated. If the number of the accumulated

bit errors exceeds the correction capacity of the ECC module,

the stored data in the copybacked page becomes unreadable.

Furthermore, since tPROG was responsible for a large portion

of the data migration time in old SSDs, the performance

improvement from copyback operations was marginal. How-

ever, as tDMA becomes a key performance bottleneck of data

migrations in modern SSDs, research on revitalizing copyback

is receiving new attention. For example, FastGC [7] shows

that copyback operations can be useful in reducing the GC

overhead by limiting the number of consecutive copyback

operations so that the accumulated bit errors do not exceed

the error correction capability of a common ECC scheme.

In this paper, we propose an integrated approach that

maximizes the efficiency of copyback operations but does not

sacrifice data reliability. Although our approach is based on

the same motivation as FastGC [7], we improve the existing

technique in two major aspects. First, we propose a novel per-

block error propagation model under consecutive copyback

operations. Our model aggressively exploits the aging char-

acteristics of NAND flash memory in deciding the copyback

threshold of a NAND block. (We call the maximum number of

consecutive copyback operations allowed for a NAND block

as the copyback threshold of the NAND block.) From our

characterization study with 3D TLC NAND chips [8], we

observed that the copyback threshold of a NAND block cannot

be accurately predicted by using a simple NAND aging model

based on the number of P/E cycles. For example, even when

two blocks had the same number of P/E cycles, their copyback

threshold values can range from 3 to 5. By exploiting per-block

differences during run time, our model significantly increases

the copyback threshold of most NAND blocks over FastGC.

Second, we devise an efficient error management scheme

that can handle successive copyback operations where pages

move around multiple blocks with different reliability. When

a page is migrated through blocks with different copyback

thresholds, our scheme accurately maintains the remaining

copyback balance of the page regardless of different copyback

thresholds of migrated blocks. In managing the remaining

copyback balance of a page, our scheme employs a per-

block scheme instead of a more direct per-page scheme as

used in FastGC. Unlike the common perception, the per-

block management scheme, which can significantly reduce the

memory and flash requirement over the per-page management

scheme, improves both the performance and lifetime of SSDs.

As a side effect of the per-block management, our scheme

naturally separates data with different lifetimes into different

blocks, thus achieving the high GC efficiency. By mitigating

the flash requirement of the per-page management, our scheme

improves the write amplification factor (WAF) as well. In the

rest of the paper, we call the proposed copyback scheme as

rCPB.

In order to evaluate the effectiveness of the rCPB scheme,

we implemented an rCPB-aware FTL, rcFTL. We have evalu-

ated rcFTL using various benchmarks on our SSD emulation

environment [9]. Our experimental results show that rcFTL can

improve the overall I/O throughput up to 25% over FastGC.

In addition to basic extensions for supporting rCPB, rcFTL

implements an intelligent data-migration mode selector for

maximizing the effect of rCPB on the SSD performance. The

mode selector decides whether to use off-chip copy operation

or rCPB when performing a data migration depending on the

I/O intensity of host I/O workloads. The experimental results

show that the mode selector can improve the I/O throughput

by up to 12% over when it is not used.

The rest of this paper is organized as follows. In Section II,

we review the data migration in modern SSD and explain why

NAND aging-aware copyback is needed. Section III describes

the proposed rCPB operation. In Section IV, we present our

design and implementation of rcFTL in details. Sections V

and VI describe our evaluation results and related work,

respectively. We conclude in Section VII with a summary.

II. MOTIVATIONS

A. Data Migration in Modern SSD

A typical data migration in SSDs is performed by an off-

chip data copy. An SSD firmware reads data from a source

page and transfers the data to a DRAM buffer through a

channel bus. Before the data are sent to the DRAM buffer,

errors are corrected by the ECC module of the flash memory

controller (FMC). In the program phase, the SSD firmware

takes a reverse data path from the DRAM buffer to the target

page. The data copy time tCOPY can be expressed as follows:

tCOPY = tR + tDMAout + tDMAin + tPROG where tR,

tDMAout and tDMAin are a data transfer time from NAND

cells to a per-plane register and a DMA out/in time between

the register and DRAM buffer, respectively. However, a large

number of data migrations may occur at the same time in

a modern SSD. A high degree of the parallelism in data

migrations may significantly increase tDMAin and tDMAout

because of contentions on the channel level as well as the serial

bus to/from the DRAM buffer. This is because the bandwidth

of the DRAM is limited and the efficiency of the DRAM

degrades when many masters request DRAM at the same time.

On the other hand, when a copyback operation is used,

a data migration can be performed without requiring neither

tDMAout nor tDMAin . The FTL can read data from the source

page to the per-plane local register and directly write back to

the destination page from the per-plane local register. Since the

copyback operation transfers data within a given plane, even

when multiple data migrations occur at the same time, all data

migrations can be completed by (tR + tPROG). Thus, it can

significantly reduce the overhead of data migrations especially

for modern SSD of multiple channels and multiple ways.

0

2

4

6

8

10

0K 1K 2K 3K 4K 5K 6K

C
o
p

y
b

ac
k
 T

h
re

sh
o
ld

Number of P/E cycles

Fig. 1: Copyback threshold variations on different P/E cycles.

B. Need for Block Aging-Aware Copyback

Generally, the number of P/E cycles has been mainly used

as the indicator of NAND aging. During NAND operations,

the high voltage used in the erase operation damages the tunnel

oxide of the NAND cells, thus increasing the Bit Error Rate

(BER) observed in subsequent reads. As the number of P/E

cycles increases, the tunnel oxide layer eventually reaches

a state in which the cells can no longer store information

reliably. Since erase operations are responsible for the wear

of NAND cells, the number of P/E cycles has been regarded

as a good proxy indicating the wear of NAND cells.

However, the number of P/E cycles alone cannot accurately

represent the exact wear status of NAND cells. For example,

when two NAND blocks experience the same number of

P/E cycles, their BER could be significantly different [10].

This difference is mainly caused by process variations in the

manufacturing and is accelerated by various user environments

such as operating temperature. From our characterization

study using 3D TLC NAND chips [8], we observed that the

copyback threshold of a block cannot be accurately estimated

by only using the P/E cycles as a wear indicator of NAND

cells. Fig. 1 shows that, even at the same P/E cycles, there is

a large variation on the copyback threshold count. In FastGC,

since a single copyback threshold value was used for all the

blocks with the same P/E cycles, the copyback threshold was

conservatively selected, thus missing many opportunities for

additional copybacks on most blocks.

The rCPB scheme proposed in this paper was mainly moti-

vated from how to exploit these missed copybacks. From our

characterization study, which will be described in Section III,

we observed that the copyback threshold of a NAND block

can be accurately predicted when the P/E cycles of the NAND

block is augmented with the BER value measured right after a

program operation. Using this extended NAND wear indicator,

most of the missed copybacks in FastGC can be successfully

utilized under the rCPB scheme.

III. RCPB: COPYBACK WITH A LIMIT

A. Error-Propagation Characteristics

In order to manage the flash reliability problem caused

by successive copyback operations, it is important to un-

derstand the NAND error propagation characteristics when

the same page experiences consecutive copybacks without

error correction by the ECC module. We conducted a NAND

reliability characterization study using 30 actual 3D TLC

NAND chips [8] to better understand the error propagation

0

1

2

3

4

5

0K 1K 2K 3K 4K 5K 6K

N
o

rm
al

iz
ed

 B
E

R

Number of P/E cycles

Worst BER blocks

Best BER blocks

Median BER blocks

(a) BER variations over P/E cycles.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

N
o

rm
al

iz
ed

 B
E

R

Number of consecutive copybacks

0K P/E & best BER 0K P/E & worst BER

3K P/E & best BER 3K P/E & worst BER

Maximum ECC limit

(b) BER variations over block characteris-
tics.

0

1

2

3

4

5

1

1.5
2

2.5
3

3.5
4

C
o
p

y
b

ac
k

 T
h

re
sh

o
ld

(c) Copyback thresholds distribution.

Fig. 2: Key results of the NAND characterization study.

characteristics under successive copybacks. In order to take

into account of block-to-block variations as well as page-

to-page differences, we selected 128 blocks from each chip

where their physical locations were evenly distributed within

the chip. For a selected block, we tested all the pages in the

block. In our study, a total of 3,840 blocks and 2,211,840 pages

were evaluated to obtain statistically significant experimental

results.

In order to derive the proposed rCPB model, we first

evaluated the reliability differences within NAND blocks with

the same P/E cycles. As a measurement of the block reliability,

we used the BER value of a block immediately after a program

operation. Since the BER value is computed right after the

block is programmed, no BER degradation is added from the

retention errors or read disturb errors, so that the measured

BER represents the block reliability level more accurately.

Fig. 2(a) shows how BERs fluctuate within blocks with the

same P/E cycles. As expected, large BER variations exist

among the same aged blocks by P/E cycles. For example, the

BER of the worst block is 1.8-times larger than that of the

best block when the number of P/E cycles is 6K. As shown in

the box plot, BER values of most blocks are clustered around

the average BER of a given P/E cycles. On the other hand,

the worst BER values make BER distribution long-tailed ones.

This contributes many missed copybacks in FastGC.

In order to characterize the effect of the block reliability

level on the copyback threshold, we observed how BERs

change over successive copybacks when the block reliabil-

ity level changes. We divided the blocks according to the

measured BER characteristics and evaluated the difference of

error accumulation characteristics by copyback operations for

each group. Fig. 2(b) illustrates our evaluation results on the

best BER blocks and the worst BER blocks under the initial

(i.e., 0K) P/E cycle condition and 3K P/E cycle condition, re-

spectively. (We used the 3-month retention requirement in this

evaluation.) Under all conditions, the worse BER characteristic

of the blocks, the larger the error accumulation due to the

copyback operations. Considering the error accumulation level

due to copyback operations for each group and the correction

capability of the ECC module, it is possible to make the

copyback thresholds for each condition.

Fig. 2(c) shows how the copyback threshold value changes

under each P/E cycle condition when considering the retention

requirement with block BER characteristic. The retention

requirement was assumed to be one year at 30◦C. Even at

the same P/E cycles, the copyback threshold varies greatly

depending on BER characteristic of the NAND blocks. When

P/E cycle is 3K, the best BER block can use two more

copyback operations than the worst BER block. Therefore,

by distinguishing the block reliability level, the total number

of copybacks can increased over the block-unaware worst-

case setting of FastGC. In order to identify the copyback

threshold accurately, we considered the properties of P/E

cycles, retention time requirement, all possible data migration

cases between source and destination pages, and the different

characteristics between NAND blocks.

B. RCPB Operation Model

From our characterization study on the copyback error

propagation, we constructed the copyback threshold table,

CTT (x, e, t), which indicates the maximum number of con-

secutive copyback operations that does not cause any re-

liability problem for x P/E-cycled blocks of BER value e

under the condition of t-month retention requirement. Table

I summarizes our proposed rCPB operation model with the

different retention requirements. If 1-year retention is required

at 2K P/E cycles, the copyback threshold of NAND block is

determined from 2 to 4 based on the value of p. If the data

migration is required more than the copyback threshold, the

page must be migrated using an off-chip data copy, thus the

accumulated bit errors can be corrected by the ECC module.

As the table shows copyback threshold can be increased on

3-month retention. In this paper, we used 1-year retention as

a basic requirement in accordance with JEDEC standards.

TABLE I: The proposed rCPB operation model.

Retention

requirement

Block BER

characteristic

P/E cycles

[0K∼0.4K] (0.4K∼1K] (1K∼2K] (2K∼3K] (3K∼4K] (4K∼5K]

1 year

Best block 5 4 4 3 3 2

Median block 5 4 3 3 2 1

Worst block 3 2 2 1 1 0

3 months

Best block 6 5 4 4 3 2

Median block 6 5 4 3 3 2

Worst block 4 3 2 2 1 1

Selected victim

Garbage Collector

Write Request

Copyback quota

NAND Flash Memory

CopybackRead Program Erase

Extended Mapping Table

Per-Block Copyback

Quota Management

Multiple Active

Block Management

Copyback

Threshold

Error Propagation Management (EPM)
Mapping

Table

Write Buffer

RCPB Off-Chip Copy

Data Migration Mode Selector

(DMMS)

Utilization

Wear leveler

Migration

mode
Foreground Background

Fig. 3: An organizational overview of rcFTL.

IV. DESIGN AND IMPLEMENTATION OF RCFTL

Based on the proposed rCPB model presented in Sec-

tion III, we implemented an rCPB-enabled flash translation

layer (FTL), called rcFTL, which is based on the existing page-

level mapping FTL. Fig. 3 shows an overall organization of

rcFTL. RcFTL consists of two additional modules, the error

propagation management (EPM), and the data migration mode

selector (DMMS). The EPM module is in charge of checking

the rCPB availability for a data migration while the DMMS

module selects the most appropriate data migration mode for

a given data copy request.

A. EPM module

1) Quota-Based Determination of RCPB Availability: The

EPM module plays a key role to ensure the data reliability

while rcFTL maximally uses rCPB operations. When an rCPB

operation is desired in moving a page, the EPM module

checks its availability. A key challenge in determining the

rCPB availability is that pages are moved across various blocks

that have different copyback thresholds. If a page migration is

(somehow) managed to move pages only within NAND blocks

with the same threshold, determining the rCPB availability is

straightforward. All we need is to keep every page’s rCPB

count less than the threshold of those blocks. However, such

a page migration management is rather impractical because it

significantly obstructs a flexible page allocation of an FTL.

In order to effectively determine the rCPB availability of

page migrations across blocks with different thresholds, the

EPM module employs quota-based rCPB model which regards

the copyback threshold of a block as the quota spent upon the

rCPB from the block. For example, if the copyback threshold

of a block is CT , the EPM module considers that a copyback

operation from the block deducts 1
CT

of the maximum quota

which is initially given the same amount for every block.

This is based on our observation that the error-propagation in

successive rCPB operations at the same block is almost linear

(even though the error increase per rCPB operation varies in

different blocks).

Fig. 4 shows how rcFTL deals with the page migrations

with the quota-based rCPB model. The EPM module keeps

track of the copyback quota Q(pi) for every page where pi
indicates a page whose index is i in an SSD. When a page px
is programmed by a host write, Q(px) is initialized with Qinit

…

…

Host Write
block : bn bm bk

bjbi

()
()

() < 0

() =

() =
()

()

() =

()

()

()
()

()

rCPB
rCPB

rCPB

External copy

Fig. 4: An illustrative example of the quota transition.

(❶ in Fig. 4). Once rcFTL moves px using an rCPB operation

from block bn to bm, the EPM module decreases Q(px) by

deducted quota, Qinit

CT (bn)
(❷), where CT (bn) is the copyback

threshold of bn. We can obtain CT (bn) just by retrieving the

predefined CTT with PE(bn) and BER(bn)
1. For a simple

management of Q(pi), we set Qinit to the least-common-

multiple value of all the present values in the CTT. As long

as Q(px) ≥ 0, px can be moved through successive rCPB

operations (❸ and ❹). On the other hand, if the deducted

quota of the source block bj , Qinit

CT (bj)
, is large enough to make

Q(px) less than 0, the EPM module only allows off-chip copy

so that Q(px) is initialized with Qinit (❺).

2) Per-block Quota Management: Although the quota-

based approach is effective in determining the rCPB availabil-

ity, managing Q(pi)’s in a per-page fashion may introduce

non-trivial space overhead, considering the capacity increase

of the modern SSDs. For example, suppose that Qinit is 30 and

rcFTL manages 4-KB logical-to-physical mappings in a 16-TB

SSD. In such a case, at least more than 2.5-GB2 memory space

is additionally required for the per-page quota management.

In order to avoid the overhead of per-page quota manage-

ment, EPM module employs a per-block quota management

approach. That is, the amount of copyback quota deducted by

rCPB operations is managed at the block level, not at the page

level. Since the number of entry for the per-block management

is at least two orders of magnitude smaller than that for the

per-page management, the per-block management technique

significantly reduces the memory footprint for the copyback

quota and minimizes the computing overhead of bookkeeping

operations to a negligible level. Since all the pages in a block

are assumed to have the same amount of the copyback quota

in the per-block quota management, when a source page p

in a victim block bv[Q(bv), dQ(bv)] with the copyback quota

Q(bv) and the deducted quota dQ(bv) is migrated by rCPB,

the page p should be moved to a page in a block bd where

Q(bd) = Q(bv) − dQ(bv). In order to efficiently support

this additional constraint, the EPM module manages multiple

active blocks per plane at the same time. Fig. 5 shows an

example of how data migrations are performed using rCPB

operations in the per-block quota management. If the Qinit

is given by 6, the EPM module maintains five active blocks

whose copyback quota is divided into 0, 2, 3, 4, and 6. When

1P/E cycles of block bn, PE(bn), is maintained in typical SSDs, so rcFTL

needs to additionally keep track of BER(bn) as explained in Section III.
2(5[bit

page
]× 16× 1012[byte

SSD
]× (4× 109[byte

page
])−1 = 2.5× 109[byte

SSD
])

G

H

A C

D

E

F…

Multiple active blocks per plane

Invalid

Invalid

Invalid

D

Invalid

Invalid

Invalid

Invalid
…

A

B

C

G

H

Invalid

E

F

B

rCPBrCPB Off-chip copy

[6, 2] [6, 3] [2, 2] [0,]

= 6 = 4 = 0= 3

Fig. 5: Data migrations in the per-block management.

a block bv2[6, 3] is selected as a GC victim block, its valid

pages, C and D, are moved to the active block ba3 which has

the quota of 3 by rCPB operations. On the other hand, if the

block bvn[0, x] is selected as a GC victim block, its valid pages

are moved using off-chip copies to the active block ba1 which

has the initial quota, 6.

B. Data Migration Mode Selection

In order to take full advantages of rCPB, the DMMS module

intelligently chooses when to use rCPB over a normal off-chip

copy depending on the write buffer utilization ratio u. When

u is low, which indicates that the current host I/O workload

is not intensive, the DMMS module selects the off-chip copy

mode so that more future data migrations can be supported

by rCPB. On the other hand, when u is high, the DMMS

module chooses the rCPB mode for higher performance. In

our current implementation, the utilization threshold ratio for

the mode selection was set to 50%. (That is, if u is higher

than 50%, the rCPB mode is used for data migrations.) Since

rcFTL employs the per-block quota management scheme and

most data migration decisions are made in a block granularity,

the DMMS module makes its mode selection decisions in a

per-block level as well. When a data migration decision is

made (e.g., by a foreground GC task), the DMMS module

selects a proper mode based on the current u value. In order

to filter out abrupt noise-like changes in u, the DMMS module

makes its mode selection based on a t-second moving average

of u. In the current implementation, t is set to an average

block write time.

In rcFTL, both the GC and wear leveler operate in an

rCPB-aware fashion. For urgent management tasks (such as

a foreground GC task), the rCPB mode is actively used

regardless of the current u ratio value. On the other hand,

when background management tasks (such as a background

GC task) are invoked, the DMMS module decides proper

modes as explained above.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the effectiveness of the proposed rcFTL

technique, we implemented rcFTL as a host-level FTL on

a custom flash storage system [9]. For our evaluation, we

configured our flash storage system to support a 128-GB

storage capacity only for efficient experimental evaluations.

Our emulated storage system was configured to have eight

TABLE II: I/O characteristics of traces used for evaluations.

OLTP NTRX Varmail Fileserver

Read:Write 7:3 0.5:9.5 4:6 4:6

WAF 2.0 2.3 2.7 5.4

channels with eight NAND flash chips per channel. Each

NAND flash chip has 1024 blocks which are composed of

128 16-KB pages and NAND interface which supports up to

533 MT/s. The average tPROG was set to 660 us [8] and the

size of the write buffer was set to 10 MB. We evaluated rcFTL

using four I/O traces generated from Sysbench and Filebench.

As shown in Table II, each workload has different ratios

between read and write and different WAF values. Using these

workloads, we evaluated the overall I/O throughput for six

different P/E cycle conditions where the copyback threshold

counts are distinguished and compared them with the existing

techniques. All measurements were normalized over a page-

level mapping FTL which always migrates data using the off-

chip copy.

B. Evaluation Results

Fig. 6(a) shows the normalized I/O performance for each

workload under various P/E cycle conditions. The proposed

rcFTL has better performance compared to the existing FastGC

method for all workloads because it uses block-aware copy-

back threshold effectively and the per-block management

scheme for the copyback quota improves the WAF value. The

overall I/O throughput was improved by 43% on average of

four workloads in initial P/E cycle over the baseline FTL. It

also improved I/O throughput by 25% over the FastGC method

when P/E cycles is 5K. When blocks are young, most data

migrations can be supported by copybacks even in the worst

blocks. As the copyback threshold increases, the degree of

performance improvement due to rCPB degrades, most of the

improvements in young blocks over FastGC comes from per-

block management of rcFTL. On the other hand, as shown in

Fig. 6(b), as blocks get older, the impact of block-aware rCPB

scheme grows. For example, the performance improvement by

block-aware rCPB is 14% when the P/E cycle is 5K.

In order to analyze the effect of per-block management

of rcFTL, we compared the WAF value of rcFTL and exist-

ing per-page management. Fig. 7(a) shows normalized WAF

value based on baseline FTL. Overall, per-block management

scheme of rcFTL showed lower WAF than per-page manage-

ment for all conditions. Although the overhead of per-page

management was amplified due to the small number of pages

per block by limited capacity, the WAF value was increased

in per-page management as the copyback threshold increases

in OLTP and Varmail. On the other hand, the per-block

management of rcFTL decreased WAF value as the copyback

threshold increases. This is the result of separating data with

different lifetimes into different blocks through multiple active

block management of per-block scheme without consuming

flash resources. However, there was no WAF reduction effect

of per-block management on FileServer. This is because the

workload has a strong random update characteristic that does

not have any significant locality.

0.75

1

1.25

1.5

1.75

FastGC rcFTL FastGC rcFTL FastGC rcFTL FastGC rcFTL FastGC rcFTL

NTRX OLTP Varmail FileServer Average

N
o

rm
al

iz
ed

 I
/O

 T
h

ro
u

g
h
p

u
t

P/E 0K P/E 1K P/E 3K P/E 5K

25%

16%

(a) Normalized I/O throughput. (b) Improvement

0

5

10

15

20

25

30

0K 1K 3K 5K

Im
p

ro
v
em

en
t

R
at

io
 (

%
)

Number of P/E cycles

Blk-aware rCPB

Per-blk management

breakdown.

Fig. 6: Performance comparison between FTLs.

0.8

0.9

1

1.1

1.2

Per-Blk Per-Page Per-Blk Per-Page Per-Blk Per-Page

OLTP Varmail FileServer

N
o

rm
al

iz
ed

 W
A

F

P/E 1K P/E 3K P/E 5K

(a) Per-block management.

1

1.05

1.1

1.15

High Mid Low

N
o

rm
al

iz
ed

 I
/O

 T
h

ro
u

g
h

tp
u

t

Workload Intensity

P/E 0K P/E 1K P/E 3K P/E 5K

(b) Migration mode selector.

Fig. 7: Effectiveness of each FTL module.

In order to understand how the mode selector proposed

in rcFTL performs, we compared the performance of rcFTL

with rcFTL– (which uses rCPB in a greedy fashion). Fig. 7(b)

shows normalized performance gain of rcFTL over rcFTL–

under varying I/O intensity. In order to generate workload

fluctuations, which are needed to properly evaluate the DMMS

module, we generated three synthetic workloads, High, Mid

and Low, using Fio benchmark. In High, 70% of I/O requests

were issued without inter-request idle times while 30% were

issued with some idle times. For Mid and Low, the ratio

between two requests is 50:50 and 30:70, respectively. When

the I/O intensity is lower than the threshold, since the off-chip

copy mode is more likely to be used in rcFTL, rCPB-eligible

blocks tend to increase over rcFTL– because the copyback

quota of more blocks are reset. The increased number of rCPB-

eligible blocks, in turn, improves the I/O throughput when the

I/O intensity is higher than the threshold. Fig. 7(b) shows that

the performance gain is higher when the workload intensity

is Low. The performance is further improved, especially in

small copyback threshold conditions, which shows that the

mode selector works effectively.

VI. RELATED WORK

There have been several studies to improve the performance

of flash-based storage systems with the copyback operation.

However, many existing techniques [11]–[13] are not applica-

ble for modern NAND flash memory because they assumed an

ideal SLC NAND flash memory where no error propagation

occurs from successive copyback operations. Other studies

such as Jang et al. [14] considered the error propagation

problem in their techniques. However, their solutions was to

bring data out to the ECC module to check the validity of

data, thus minimizing the potential benefit of using copyback.

In recent study of Wu et al. [7], they proposed a technique

that can use copyback without error propagation based on

NAND characterization for the first time. However, there is a

lot of room for improvement because their method is a naive

approach and there is overhead for error propagation man-

agement. Our technique differs from the existing technique in

that it maximizes the potential benefits of copyback by taking

both block characteristics and host workload characteristics

into account, and has full control over error propagation issues

with minimal overhead.

VII. CONCLUSIONS

We have presented rCPB to minimize the performance

degradation from data migrations in modern SSDs. From a

NAND characterization study, we developed an rCPB opera-

tion model that takes as the key inputs block characteristics

and data retention requirement. Based on the rCPB operation

model, we have implemented an rCPB-aware FTL, rcFTL,

which intelligently manages when to use rCPB for a given

I/O workload requirement. Our experimental results show that

rcFTL can improve the overall I/O throughput up to 25% over

the existing technique.

VIII. ACKNOWLEDGEMENTS

This work was supported by Samsung Research Funding

& Incubation Center of Samsung Electronics under Project

Number SRFC-IT1701-11.

REFERENCES

[1] A. Gupta et al., “Dftl: A flash translation layer employing demand-
based selective caching of page-level address mappings,” in Proc. Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems, 2009.

[2] J.-U. Kang et al., “A superblock-based flash translation layer for nand
flash memory,” in Proc. Int’l Conf. Embedded Software, 2006.

[3] J. Kim et al., “A space-efficient flash translation layer for compactflash
systems,” IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366–
375, 2002.

[4] S.-W. Lee et al., “Fast: An efficient flash translation layer for flash
memory,” in Proc. Int’l Conf. Embedded and Ubiquitous Computing,
2006.

[5] H. Kim et al., “Evolution of nand flash memory: from 2d to 3d as a
storage market leader,” in Proc. Int’l Memory Workshop, 2017.

[6] Tn-29-15: Nand flash internal data move idm overview. [Online]. Avail-
able: https://www.micron.com/∼/media/documents/products/technical-
note/nand-flash/tn2915.pdf

[7] F. Wu et al., “Fastgc: Accelerate garbage collection via an efficient
copyback-based data migration in ssds,” in Proc. Design Automation
Conf., 2018.

[8] D. Kang et al., “256gb 3b/cell v-nand flash memory with 48 stacked wl
layers,” in Proc. Int’l Solid-State Circuits Conf., 2016.

[9] S.-W. Jun et al., “Bluedbm: An appliance for big data analytics,” in
Proc. Int’l Symp. Computer Architecture, 2015.

[10] Y. Pan et al., “Error rate-based wear-leveling for nand flash memory
at highly scaled technology nodes,” IEEE Trans. on Very Large Scale
Integration Systems, vol. 21, no. 7, pp. 1350–1354, 2013.

[11] Y. J. Seong et al., “Hydra: A block-mapped parallel flash memory solid-
state disk architecture,” IEEE Trans. Computers, vol. 59, no. 7, pp. 905–
921, 2010.

[12] A. R. Abdurrab et al., “Dloop: A flash translation layer exploiting
plane-level parallelism,” in Proc. Int’l Symp. Parallel and Distributed
Processing, 2013.

[13] W. Wang and T. Xie, “Pcftl: A plane-centric flash translation layer
utilizing copy-back operations,” IEEE Trans. Parallel and Distributed
Systems, vol. 26, no. 12, pp. 3420–3432, 2015.

[14] W. T. Chang et al., “An efficient copy-back operation scheme using
dedicated flash memory controller in solid-state disks,” Int’l Journal of
Electrical Energy, vol. 2, no. 1, pp. 13–17, 2014.

