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Dynamic Reconfiguration of Cache Indexing in Embedded
Processors

Junhee KIM†, Sung-Soo LIM††, Nonmembers, and Jihong KIM†a), Member

SUMMARY Cache performance optimization is an important design
consideration in building high-performance embedded processors. Unlike
general-purpose microprocessors, embedded processors can take advan-
tages of application-specific information in optimizing the cache perfor-
mance. One of such examples is to use modified cache index bits (over
conventional index bits) based on memory access traces from key target
embedded applications so that the number of conflict misses can be re-
duced. In this paper, we present a novel fine-grained cache reconfiguration
technique which allows an intra-program reconfiguration of cache index
bits, thus better reflecting the changing characteristics of a program exe-
cution. The proposed technique, called dynamic reconfiguration of index
bits (DRIB), dynamically changes cache index bits in the function level.
This compiler-directed and fine-grained approach allows each function to
be executed using its own optimal index bits with no additional hardware
support. In order to avoid potential performance degradation by frequent
cache invalidations from reconfiguring cache index bits, we describe an ef-
ficient algorithm for selecting target functions whose cache index bits are
reconfigured. Our algorithm ensures that the number of cache misses re-
duced by DRIB outnumbers the number of cache misses increased from
cache invalidations. We also propose a new cache architecture, Two-Level
Indexing (TLI) cache, which further reduces the number of conflict misses
by intelligently dividing indexing steps into two stages. Our experimental
results show that the DRIP approach combined with the TLI cache reduces
the number of cache misses by 35% over the conventional cache indexing
technique.
key words: cache indexing, cache organization, dynamic reconfiguration,
embedded processor, microprocessor architecture

1. Introduction

As embedded systems are employed to support more intel-
ligent services with sophisticated functions, more powerful
embedded processors are necessary. In high-performance
embedded processors, as with general-purpose processors,
reducing performance gap between the CPU and memory
system is critical in achieving the maximum performance
potential of the embedded processors. Since most high-
performance embedded processors are based on cache mem-
ory, cache performance optimization becomes an important
design goal in building high-performance embedded proces-
sors. Unlike general-purpose processors, embedded pro-
cessors are designed with a set of target applications in
mind. Therefore, it is possible to further optimize the de-
sign of cache architecture in embedded processors based on
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application-specific information. For example, several re-
search groups have investigated cache reconfiguration tech-
niques to improve the performance and energy efficiency of
the cache memory [1]–[6].

Improving on-chip cache memory performance natu-
rally involves modifications of indexing or hashing mech-
anism for cached data. Especially for embedded system
applications with limited caching behaviors, such modifi-
cations could show significant impact. A number of re-
searchers have proposed cache hashing techniques to obtain
better cache performance in general-purpose processors [7]–
[9], [14]. As even more aggressive techniques, the recent
works proposed techniques to decide better cache hashing
functions based on memory access traces of target embed-
ded applications [1], [2]. In these techniques, the optimal
cache index bits are extracted by analyzing memory traces.
As expected, the index bits selected are quite different from
the conventional least-significant bits. However, these tech-
niques are still limited in that a single set of statically chosen
index bits is used for target embedded applications. Since
the memory access patterns can be drastically different even
in the execution of a single application, a more fine-grained
reconfiguration technique can be more effective than these
techniques.

In this paper, we propose a novel cache indexing tech-
nique called dynamic reconfiguration of index bits (DRIB)
which reconfigures index bits in a function-level granular-
ity. Based on cache simulation results, we first select a set
of functions in a program for which cache index bits are
modified for better cache performance. We call the selected
functions Index Bits Configured Functions (IBCF). The op-
timal index bits for each IBCF are extracted from the simu-
lation results. One factor to consider in selecting the IBCFs
is the potential performance degradation caused by frequent
cache invalidations during cache index bits changes. We de-
scribe an algorithm to select the IBCFs which ensures that
the number of cache misses reduced by DRIB outnumbers
the number of cache misses increased from cache invalida-
tions.

We also propose a new cache indexing architecture,
called Two-Level Indexing (TLI) cache, which divides
cache index bits into two levels (L1 and L2) so that the index
bits are configured more aggressively depending on input
memory traces. The L1 cache index bits are first configured
based on the target applications and then the L2 cache index
bits are configured depending on the sub-traces of target ap-
plications. Since the TLI cache increases the flexibility of
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cache index bits during executions of target applications, the
combination of the TLI cache and DRIB mechanism gives a
synergetic effect on improving the cache performance.

In order to evaluate the effectiveness of the proposed
techniques, we have performed several experiments using a
cache simulator. When the DRIB technique is used in the
TLI cache, experimental results show that our approach can
reduce the number of cache misses up to 35% over the con-
ventional cache indexing technique. Compared to the static
cache reconfiguration techniques [1], [2], the proposed dy-
namic approach reduced the number of cache misses up to
23%.

The rest of the paper is organized as follows. In Sect. 2,
we introduce a dynamically reconfigured cache organiza-
tion. Section 3 describes our compiler-directed DRIB ap-
proach. Section 4 presents an overview of the TLI organi-
zation while Sect. 5 shows the experimental results. Finally,
we conclude with a summary in Sect. 6.

2. Overview of Dynamic Reconfiguration of Cache In-
dexing

2.1 Background

Givargis et al. proposed the idea of cache index bits selection
based on target applications for the fist time [1]. In the study,
optimal index bits are extracted from a given memory access
trace using a heuristic algorithm and the cache index bits
setting is performed by hard-wiring between core address
lines and cache address lines [1]. This hard-wiring does not
allow dynamic reconfiguration of cache index bits.

Patel et al. improved and extended the idea of Givar-
gis et al. in [2]. They inserted multiplexors between the
core and cache to support the reconfigurability of index bits
as depicted in Fig. 1. This allows reconfiguration of cache
index bits depending on target application sets. They im-
plemented n : 1 mux in Fig. 1 with NMOS pass transistors
to minimize timing delay in [2]. Though the method im-
proved the reconfigurability of cache index bits, the cache
index bits configuration granularity is a single application.
During the execution of a single application, each fragment
in the program could show different caching behavior and
thus the possibility of further optimization in cache index
bits selection could exist. Our idea of finer-grained cache
reconfiguration is based on such reasoning.

Fig. 1 Patel et al.’s cache index-bit reconfiguring circuit.

2.2 Basic Idea

Each of the program fragments has a different memory ac-
cess pattern that requires different optimal index bits. There-
fore, it would be better if the cache index bits could be dy-
namically reconfigured during program execution depend-
ing on the memory access pattern of each program fragment.
DRIB is a mechanism that configures cache index bits dy-
namically according to the current execution context while
running a single application. We call the existing caching
indexing approach proposed in [2] static reconfiguration of
index bits (SRIB) for distinction.

In order to illustrate the potential advantage of the
DRIB over SRIB, consider Fig. 2 which shows the num-
ber of cache misses for ‘cjpeg’ application (a JPEG en-
coder) under different cache indexing approaches. The y-
axis of Fig. 2 indicates the number of cache misses ob-
tained from cache simulation under our experimental en-
vironment described in Sect. 5. ‘SRIB for the whole pro-
gram’ means that optimal index bits are extracted from
the memory trace of the whole program and SRIB is used
based on the trace. This does not reduce cache misses at
all compared to ‘traditional indexing,’ which means that
the optimal index bits for the whole program trace are
the same as the LSBs used for conventional cache index-
ing for ‘cjpeg’. By analyzing the memory trace, we ob-
serve that the function ‘pre process data’ and its calling
functions have significantly different memory access pat-
terns from the rest of ‘cjpeg’, thus requiring a different set
of index bits for cache performance optimization. There-
fore, we would get totally different caching performance
depending on the memory traces for which the cache in-
dexing bits are configured: if index bits are only config-
ured for ‘pre process data’, the caching performance for the
rest of the functions in ‘cjpeg’ would be significantly de-
graded. However, in DRIB, different optimal index bits can
be configured for both ‘pre process data’ and the rest of the
functions dynamically and thus minimizes cache misses as
shown in Fig. 2.

2.3 Index Bits Reconfiguration Issues

Although DRIB can offer additional opportunities for op-
timizing cache performance, it’s not always helpful to use
DRIB for all the program fragments. DRIB has an impor-
tant side effect: cache invalidation. Whenever cache index
bits are reconfigured during the execution of a program, all
the existing cache lines must be invalidated because the ex-
isting cache lines will map to different memory blocks under
the new cache indexing.

Figure 3 depicts an example of an incorrect cache op-
eration that could happen in reconfiguring index bits. Let’s
assume that there is an 8-bit address machine and that this
machine has an 8-set direct mapped cache. The address
‘00100011’ is mapped to set ‘011’ by original index bits b0,
b1 and b2 before reconfiguration, as seen in (a). After this
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Fig. 2 Number of cache misses for ‘cjpeg’ under different cache indexing approaches.

(a)

(b)

Fig. 3 An example of incorrect cache operations under the cache index-
ing reconfiguration: (a) before reconfiguration, (b) after reconfiguration.

reference, cache index bits are reconfigured as b4, b5 and b6.
Under these new index bits, the address ‘00110100’ is also
mapped to set ‘011’. These two references have the same
tag value of ‘00100’, which produces an incorrect cache hit,
as seen in (b).

Consequently, the reconfiguration of index bits must
accompany cache invalidation. Miss reduction by using

DRIB might be outnumbered by miss increment resulting
from cache invalidation in some program fragments; overall
performance would worsen in this case. Thus DRIB must
be used carefully considering its side effects. Therefore, a
method to decide which program fragments should be se-
lected for DRIB and how much is the benefit of selecting
the fragments is required. We propose a compiler-directed
approach for the program mentioned above in this paper.

3. Proposed DRIB Approach

3.1 Index Bits Configured Functions

In our DRIB approach, the unit of program fragments in
a program to change cache indexing bits dynamically is a
function. Therefore, to apply our DRIB, we need to se-
lect the functions (IBCFs) where the cache index bits could
be reconfigured and the performance improvement due to
the reconfiguration would be still profitable considering the
cache invalidations caused by the reconfigurations. The se-
lection is performed at compilation level and the compiler
inserts cache index reconfiguration codes into the IBCFs se-
lected. We call the optimal index bits for each of the IBCFs
its native index bits. A typical example of IBCF is shown in
Fig. 4. In function Q, the cache invalidation and index bits
configuration codes are inserted by the compiler. For sim-
plicity, we assume that execution returns to its caller func-
tion only at the end of the function body.

3.2 Algorithm for Selecting IBCFs

3.2.1 Selection Criteria for IBCFs

In this section, the detailed algorithm to select IBCFs among
the functions in a program is presented. Before describ-
ing the detailed algorithm in a formal fashion, the selec-
tion criteria for IBCFs are intuitively introduced in this sub-
section. Since the selection criteria is directly related to
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Fig. 4 An example of calling typical index bits configured function.

the additional cache misses caused by DRIB, we catego-
rize the criteria into two different conditions depending on
the scope of the effect of DRIB: the amount of additional
cache misses in calling function caused by DRIB in called
function (inter-function memory reference relationship) and
the amount of additional cache misses in the called function
(intra-function memory reference relationship). A key gen-
eral condition is that the cache misses newly introduced due
to the application of DRIB should be smaller than the cache
miss reduction due to the reconfiguration of cache indexing
by DRIB. For inter-function memory reference relationship,
the cache misses by memory references newly introduced
by DRIB due to the cache invalidation in called function
(IBCF) should not be significant. For intra-function memory
references, the cache misses in called function when DRIB
is applied should not be larger than the cache misses when
DRIB is not applied.

We describe the selection criteria using the example in
Fig. 4. The inter-function memory references would be the
memory references in (2) of P to the addresses that have
existed in cache lines before the call of Q, which results in
new cache misses by cache invalidation in Q. Cache miss in-
creases in (2) is mainly due to these new misses†. In order to
eliminate the possibility of significant cache miss increases
for inter-function memory references, we could safely select
the IBCFs so that the memory references in the IBCFs are
sufficiently large to evict the cache contents filled in caller
function even when DRIB is not applied. This condition is
conservative, but safe. From this, we make the first condi-
tion for a function Q to be an IBCF as follows:

Condition 1: The number of memory references from Q
while running the body of Q must be larger than the given
threshold value, Accessthreshold which is obtained compared
with the number of memory references in caller function.

The condition for intra-function memory references
could be summarized in the following:

Condition 2: For the memory references occurring while
running the body of Q, the number of cache misses when
DRIB is used in Q must be smaller than when DRIB is not
used in Q.

In the following subsection, we define the two condi-
tions in formal way.

3.2.2 Terminology and Definition for the Proposed Algo-
rithm

Our algorithm takes as inputs the function call graph without
cycles, the symbol table, and the cache memory trace of a
target application. Though original function call graphs may
contain cycles, to be used in our IBCF selection algorithm,
the call graphs should be converted to DAGs first using the
method proposed in [10]. Because each function in a target
application corresponds to one of the nodes in this DAG, we
use functions and nodes interchangeably in the following
explanation.

In our algorithm, memory trace is expressed as a ‘set’
of memory references, whose elements have the form of
(i, ai). The value i is an index and means that the reference
is i-th reference in the whole memory trace T , thus there can
be discontinuity in indexes of elements for sub-traces of T .
The value ai denotes the memory address of the correspond-
ing memory reference. So total memory trace T is expressed
as T = {(1, a1), (2, a2), . . . , (L, aL)} where L is the number of
total memory references.

First, we define the following Boolean values using
terms of activation record and run-time stack in [15] when
i-th memory reference of T occurred, for a node A and an
edge e.

NODE CALLA(i)

=



true (if activation record of A is
in runtime stack)

false (otherwise)

EDGE CALLe(i)

=



true (if activation record of e’s tail
function is in runtime stack
and just over it in runtime

stack, is activation record of
e’s head function)

false (otherwise)

As shown in the definitions, NODE CALL and
EDGE CALL must be obtained from runtime information.
In order to determine these values using only cache simula-
tion, we must also gather instruction cache memory traces
even if the target cache is only the data cache. We can know
the points when calling or returning of functions is occurred
by comparing current and last instruction memory addresses
while all the memory references are processed sequentially.
That is, we can say that either calling or returning of func-
tions is occurred when two functions whose area include
current and last instruction address respectively on symbol
table are not the same. In these cases, we can push a cor-
responding function to runtime stack if current instruction

†There are also new misses from memory references in (2) to
the addresses that mapped to cache lines in (1). But they are rela-
tively small.
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address is one of entry addresses of functions on symbol ta-
ble because calling for that function is occurred. Otherwise,
we can do pop operations until the function includes current
instruction address is on the top of stack because returning
to that function is occurred.

In a given call graph, each node has the following node
values:

• NEA: the number of executions of function A while
running a target application once.
• NTA: sub-set of total memory trace T , all of whose ele-

ment memory references occur while running the body
of A. It is expressed as follows:

NTA = {(i, ai)|(i, ai) ∈ T and NODE CALLA(i) = true}
(1)

• NMA: the number of cache misses for memory refer-
ences in NTA.
• NEMA,e: the number of cache misses for memory ref-

erences in NETA,e, which is expressed as Eq. (2). If an
edge e cannot be reached from node A, NEMA,e must
be always zero because NETA,e has no element.

NETA,e = {(i, ai)|(i, ai) ∈ NTA and

EDGE CALLe(i) = true and

e can be reached from A} (2)

When NODE CALLA is true, it means that correspond-
ing function A is placed in somewhere of stack, not that it
must be placed on top of stack. Therefore memory refer-
ences occurred in other functions that function A calls are
also included in NTA. This means that all the cache mem-
ory references (and cache memory misses) in NTA can be
influenced by cache index bits configured in function A. So
Using of NEM is very important in our approach. For exam-
ple, let us assume there is a program that has the following
simple call graph.

(A) --> (C) <-- (B)

As shown above, function C can be called by both A
and B. We must know which function’s index bits (among A
and B) influence cache memory misses occurred in function
C for each calling of it. The value of NM is not enough for
this purpose because it is defined for only ‘node’ not ‘edge’.
Hence we present the concept of NEM.

NTA and NEA among node values of A cannot be
changed for a fixed target application and memory trace.
These are called constant node values and obtained before
the beginning of the algorithm†. Unlike those values, NMA

and NEMA,e are dependent on the index bits used in cache
simulation. These are called variable node values and must
be initialized to zero. Variable node values are determined
by two ways. The first is that function A is selected as an
IBCF. In this case, NMA and NEMA,e are obtained by cache
simulation using optimal index bits for NTA. In the second

Fig. 5 An example of using node values.

way, function A is not an IBCF, but all the variable node val-
ues of its predecessor nodes are already determined, when
the node values of A can be obtained from its predecessor
nodes by their definitions as follows:

NMA =
∑

j∈In−EdgeA

NEMtail node of j, j (3)

NEMA,e =
∑

j∈In−EdgeA

NEMtail node of j, e

(only if edge e can be reached from node A)

(4)

where In−EdgeA is a set of all the incoming edges to A. The
value of NMA obtained by this way represents the number of
cache misses occurring in NTA when DRIB is not used in A.

We present a simple example as follows in order to de-
scribe usage of these node values on a given DAG. Let us
suppose Fig. 5 is a function call graph of a target program.
A, B, C, D, E and F are nodes(functions) and (1), (2), (3),
(4), (5) and (6) are edges in that graph. If we perform cache
simulation in function A and B for fixed index bits, we can
get all the node values of A and B for those index bits while
simulating. Now let’s see function D. Function D is called
only when either function A or B is in runtime stack. In
other words, all the cache misses during running of func-
tion D are occurred when when either function A or B is in
runtime stack. So, we can tell as follow.

NMD = NEMA,(2) + NEMB,(3) (5)

Of course, the values of NMC , NME and NMF can be
obtained by the same way using node values of their callers’.
These values of NM mean the number of cache misses oc-
curred in the corresponding function when it is not an IBCF
and caches are operating by using index bits of its caller’s
(or caller of caller’s or so on).

NMC = NEMA,(1) (6)

NME = NEMC,(4) + NEMD,(5) (7)

NMF = NEMD,(6) (8)

However, in case of NME and NMF , the values of
NEMC,(4), NEMD,(5) and NEMD,(6) are prerequisite. There-
fore we must get the values of NEM also while processing

†NETA,e can also be one of constant node values. But we don’t
have to save it because it can be easily obtained from NTA and
EDGE CALLe(i).
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Fig. 6 Algorithm for selecting IBCFs.

function C and D as follows.

NEMC,(4) = NEMA,(4) (9)

NEMD,(5) = NEMA,(5) + NEMB,(5) (10)

NEMD,(6) = NEMA,(6) + NEMB,(6) (11)

As shown in this example, exploiting these node val-
ues is very important and helpful because it can decide the
number of cache misses without cache simulation in case of
non-IBCF.

Now we can convert the two conditions presented in a
previous sub-section to the following forms using notations
defined in this sub-section:

Condition 1:

n(NTA)/NEA > Accessthreshold (12)

Condition 2:

NumMissnew indexing(NTA) + Overheadconfig.

<
∑

j∈In−EdgeA

NEMtail node of j, j (13)

For our experiments, the value of Accessthreshold is
set equal to the size of the target cache (in bytes). In
Eq. (13), NumMissnew indexing(NTA) means the number of
cache misses resulting from cache simulation† for NTA us-
ing its optimal index bits, and Overheadconfig. means the tim-
ing overhead for reconfiguring the cache. Therefore, the left
side of Eq. (13) means the value of NMA when A is assumed
to be an IBCF and DRIB is used in A. On the contrary, the
right side of Eq. (13) is the value of NMA when A is not an
IBCF, as seen in Eq. (3), and DRIB is not used in A. All the
variable node values of A’s predecessor nodes must be de-
cided in advance to apply Eq. (13) to A. For this reason, our
algorithm must be a top-down approach that begins in the
entry node and proceeds to leaf nodes in a given call graph.

3.2.3 Overall Algorithm for Selecting IBCFs

Our algorithm for selecting IBCFs from among all the func-
tions is described in Fig. 6. Our algorithm proceeds by
examining each of the functions one by one from the en-
try node to see whether or not it satisfies the two condi-
tions for IBCFs. In Fig. 6, the function ‘GET-OPTIMAL-
INDEX-BITS(T)’ extracts and returns optimal index bits
of a given memory reference trace T . This function can
be implemented using algorithms in [1] or [2]. The func-
tion ‘SIMULATE-CACHE-BY-GIVEN-INDEX-BITS(IBs,
T)’ simulates caching behavior with given index bits IBs
for a memory reference trace T and returns the number
of cache misses as a result. And the function ‘SET-AS-
INDEX-BITS-CONFIGURING-FUNCTION(N, IBs)’ sets
a function N and index bits IBs as one of IBCFs and its na-
tive index bits, respectively.

4. Two-Level Indexing Cache

The benefit of cache index bits reconfiguration would be
more significant once we could utilize the diverse caching
behaviors in a program more aggressively. In order to fur-
ther improve the caching performance by cache bits recon-
figuration, we propose more flexible cache indexing archi-
tecture called Two-Level Indexing (TLI).

†Cache simulation for the sub-trace is a little different from that
for total trace T . Cache must be invalidated whenever there is dis-
continuity between the indexes of a last reference and a current ref-
erence while simulating each memory reference in the sub-trace by
ascending order of its index. This is because cache re-configuring
instructions must be executed at these discontinuous points in real
execution using DRIB.
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4.1 Concept

Cache optimization by using application-specific optimal in-
dex bits is based on the fact that different memory traces
may have different optimal index bits. A key objective of
TLI architecture is to maximally utilize the different caching
behaviors of the memory traces and to apply different index
bits for each memory trace as much as possible. This mecha-
nism divides input memory reference of a program into sub-
traces which are even finer-grained unit than the functions
used until the previous section; the next step is to extract
different index bits for each sub-trace. At the same time,
the index bits in the TLI cache is divided into two steps, L1
index bits and L2 index bits. The set of memory references
that is mapped to the same L1 index bit value is called the
super-set for the L1 index bit value. In the TLI cache, each
memory reference is mapped to one of the super-sets in the
first-level indexing. For example, assume that b0, b1, b2 and
b3 are index bits for a 16-set cache. In this case, sets 0, 1, 2
and 3 belong to the same super-set if b2 and b3 are L1 index
bits because they have the same values of zero for b2 and b3.
Within the same super-set, the memory references could be
further divided into several groups depending on the values
of L2 index bits.

Consequently, the total memory reference trace is di-
vided into 2the number of L1 index bits sub-traces inside the cache.
So if we extract and use different optimal L2 index bits for
the sub-traces of each super-set, we can reduce cache con-
flict misses more than conventional one-level indexing, al-
though all the super-sets have the same L1 index bits.

4.2 Motivational Example

The following example shows how the TLI cache could im-
prove the cache indexing performance compared with con-
ventional one-level indexing cache. Let us suppose that
memory accesses occur in the order of index values shown
in Table 1 assuming an 8-bit address machine.

Under the conventional one-level indexing scheme
based on the algorithm presented in [1], [A0, A4, A5, A3,
A1, A2, A6, A7] is selected as an optimal index bit order. If
the target cache has 4 sets, A0 and A4 should be chosen for
index bits according to this order and memory accesses in
Table 1 should be hashed to each set as shown in Fig. 7 (a).

We can get better hashing results by using the TLI
cache. Let us assume that a 4-set TLI cache has only one
bit for L1 and L2 index bit, respectively. Memory accesses
are divided into two groups as shown in Fig. 7 (b) when A0

is used for L1 index bit. Then A4 is used for L2 index bit
in group of ([2] [5] [6] [8]) and A3 is used in group of ([1]
[3] [4] [7]). As shown in the example, memory accesses are
distributed to each set more uniformly in the TLI cache.

4.3 Structure of the TLI Cache

The structure of the TLI cache is depicted in Fig. 8. In this

Table 1 A sample address trace.

index A7 A6 A5 A4 A3 A2 A1 A0

1 0 0 0 0 1 0 1 1
2 0 0 0 0 1 1 1 0
3 0 0 0 1 0 0 1 1
4 0 0 1 0 1 0 1 1
5 0 0 0 0 1 1 0 0
6 0 0 0 1 1 1 0 0
7 0 0 0 0 0 0 1 1
8 0 0 1 1 1 1 0 0

(a)

(b)

Fig. 7 An example of cache hashing results: (a) conventional one-level
indexing scheme, (b) two-level indexing scheme.

figure, ‘super-set’ means the group of cache sets resulted
from the first-level indexing. Each cache set included in the
same super-set has the same value of first-level index bits.
Each super-set has its own second-level row decoder, which
is implemented using AND gates and linked to different L2
index bits. The notations bL1,k, bL2−s,k and btag,k mean the
k-th first index bit, the k-th second index bit of super-set s
and the k-th tag bit, respectively, in Fig. 8. Programmable
index bit selectors proposed in [2] are inserted between the
core and cache address pins of the TLI cache for reconfig-
urability, which are depicted as n:1 muxes in Fig. 8.

In the TLI cache, each super-set must have different
tag bits essentially because the set has different L2 index
bits; tag bits are the rest of the bits, except the offset bits
and index bits. But a complex circuit must be inserted into
the comparator parts to use different tag bits for each super-
set. To avoid this complexity, we use all the L2 index bits
as parts of the tag bits also, which makes a single cache line
needs additional tag bits of the number of L2 index bits.
So we limit the number of L2 index bits to two at most in
consideration of this space penalty. However, there is no
timing penalty in cache hit time of the TLI cache because
a summation of the operating times of L1 decoder and L2
decoder for each super-set is the same as the operating time
of a row decoder used in the conventional one-level indexing
cache. And there is no additional delay in comparator due
to increments of tag bits because the comparator checks all
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(a)

(b)

Fig. 8 Structure of a two-level indexing cache: (a) row decoder parts, (b) comparator parts.

the values of the tag bits simultaneously according to the
CACTI model [11].

4.4 Method for Selecting Optimal Index Bits in the TLI
Cache

Selecting optimal index bits in the TLI cache requires sig-
nificantly complicated additional steps compared to the al-
gorithm used for one-level indexing cache. In this paper, we
devise a simplified algorithm for optimal index bits selec-
tion in TLI cache with modification of the algorithm used
for the one-level cache: First, follow the steps in the con-

ventional cache’s index-bits-selecting algorithm for the to-
tal memory trace assuming that there is a direct-mapped
cache that has 2the number of L1 index bits sets. Index bits se-
lected by this are L1 index bits. Next, divide the total
memory trace into sub-traces of each super-set using these
L1 index bits. Finally, follow the steps in the conven-
tional cache’s index-bits-selecting algorithm for each sub-
trace assuming that there is a cache the number of whose
sets is 2the number of L2 index bits and other parameters that are
the same as the real cache. As a result, all the L2 index bits
for each super-set are obtained.
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5. Experiments

5.1 DRIB Simulator

In order to evaluate the effectiveness of our proposed tech-
niques, we have implemented a DRIB simulator. Figure 9
shows the overall structure of our DRIB simulator as well
as the IBCF selector. In our DRIB simulator, the symbol ta-
ble and call graph are extracted from the target application.
The binary image of the target application is given for the in-
put to SimpleScalar/ARM [12] in order to obtain the cache
memory reference trace. The symbol table, call graph, and
memory trace are used as the inputs for the IBCF selector.
The IBCF selector produces a list of selected IBCFs and
their native index bits.

The IBCF selector consists of three important modules:
the main IBCF selecting module, the cache simulator, and
the optimal index bits extractor. The main IBCF selecting
module is the main part of the IBCF selector that runs the
algorithm described in Fig. 6. It calls the other two modules
while processing the algorithm. The cache simulator con-
tained in the selector supports both conventional one-level
indexing and our two-level indexing. The optimal index bits
extractor is the module to extract optimal cache index bits
from a given memory trace, which can be implemented us-
ing algorithms in [1] or [2]. We have implemented a new
algorithm to extract the optimal cache index bits compen-
sating the limitations of the existing algorithms in [1] and
[2].

The outputs of the IBCF selector program, a list of
IBCFs and their native index bits, can be used by the com-
piler for creating binary images that include cache index set-
ting codes for DRIB. Instead of modifying a compiler and
generating modified binary images from target applications,
we used cache simulator using the IBCF selection informa-
tion to simulate the caching behavior when DRIB is applied.

5.2 Results

We performed the experiments for our DRIB approach and
the TLI cache for embedded applications from the Power-
Stone suite [13] (adpcm, des, fir, pocsag, ucbqsort and v42)
and real multimedia applications, including the JPEG en-
coder (cjpeg), JPEG decoder (djpeg), MPEG audio decoder
(mad) and MPEG-4 complaint video codec decoder (xvid).
In our experiments, the target cache is a direct-mapped data
cache whose total size is 1 KB and line size is 16 bytes and
we set the value of Overheadconfig. as zero. Though the pro-
posed DRIB method and the TLI cache architecture could
be used for other cache configurations other than direct-
mapped cache, we only show the results of direct-mapped
cache configuration for the simplicity.

Depending on which approaches are chosen to be ap-
plied, there are four different implementation choices for
cache indexing as summarized in Fig. 10. Among these,

(a)

(b)

Fig. 9 Structure of automatic DRIB simulator: (a) overall structure, (b)
IBCF selector program.

Fig. 10 Four implementation choices for cache indexing.

‘SRIB ONE-LEVEL’ means the approaches in [1], [2] be-
cause it is the case that optimal index bits are statically
configured when a conventional one-level indexing cache is
used.

Figure 11 shows the number of cache misses of the
four choices in Fig. 10 normalized to traditional indexing
that uses the LSBs for index bits.

Our DRIB approach could obtain more miss reduction
than SRIB in a conventional one-level indexing cache, as
shown in Fig. 11. Even in some cases when SRIB cannot
reduce misses at all like ‘des’, ‘cjpeg’ and ‘mad’, our ap-
proach improves cache performance. In addition, Fig. 11
shows that our TLI cache reduces conflict misses in both
SRIB and DRIB. In particular, we obtain the best results
when our DRIB approach is used in the TLI cache, which
is about 23% and 35% of miss reduction compared to static
index bits configuring and traditional indexing in a conven-
tional one-level indexing cache, respectively.

6. Conclusions

We proposed a compiler-directed and function-level cache
indexing optimization technique called DRIB in which
cache index bits are reconfigured based on the memory
access behavior of each function. In order to make the
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Fig. 11 The number of total cache misses normalized to traditional indexing.

function-level cache reconfiguration profitable, the cache
miss reduction from the modified cache indexing should be
bigger than the cache miss increment due to the cache in-
validation for index bits reconfiguration. We described an
efficient algorithm to select functions for which cache index
bits are dynamically reconfigured. Our algorithm considers
both program structure and memory access patterns.

In order to further reduce the number of conflict misses,
we proposed a novel cache architecture, called the TLI
cache. The TLI cache is based on two indexing stages. The
first stage index divides cache accesses into several super-
sets while the second stage index decides a cache set using
its own row decoder and second-level index bits. So if we
extract and use different optimal second-level index bits for
each super-set, we can obtain better cache performance.

From the experiments based on simulation, we showed
that our dynamic index bits reconfiguring technique and the
TLI cache can be effective in reducing the number of conflict
misses over the conventional cache indexing technique. For
example, the DRIB approach combined with the TLI cache
reduces the number of conflict misses by up to 35% over the
conventional cache indexing technique.
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