Web Browser Cache Management Techniques for Mobile

Full Browsing on NAND-

Keonsoo Ha
School of Computer Science and Engineering
Seoul National University
air2lc@davinci.snu.ac.kr

ABSTRACT

As wireless communication and mobile device technologies i
prove, mobile full browsing is emerging as a killer applioatfor
mobile devices. In order to use mobile full browsing effitign

in terms of performance, energy, and download cost, mobéé W
browsers adopt Web browser cache. However, the /O accéss pa
terns of a Web browser cache make it difficult for these mobile
devices to use a NAND-based secondary storage efficientthid
paper, we propose Web browser cache management technaques f
mobile full browsing on NAND-based mobile devices. A propds
filtering technique reduces useless write operations in NAldsh
memory by selectively caching frequently reused Web pagbs o

A proposed NAND-aware packaging technique reduces garbage

collection overheads by combining small files into a singhe\ND
page. Our experimental results show that the proposed Véaisbr
cache management techniques reduce the total responseftime

based Mobile Devices

Jihong Kim
School of Computer Science and Engineering
Seoul National University
jihong@davinci.snu.ac.kr

commonly used for a similar purpose in a desktop Web browser,
a Web browser cache can improve the Web access performance
and reduce the energy consumption of the mobile devicesgluri
Web surfing. Furthermore, it can reduce the download cost for
Web pages. For our target mobile devices with the two-levahm
ory hierarchy structure, a Web browser cache is typicallplésn
mented in two levels. L1 Web browser cache is implemented in
the main memory while L2 Web browser cache is implemented in
the NAND flash memory. The two-level hierarchical structofa
Web browser cache takes advantages of both the main menmbry an
the NAND flash memory. Although the main memory is faster than
the NAND flash memory, its size is limited in mobile devices; B
storing less frequently used Web pages in the NAND flash mgmor
we can have an effectively large and fast Web browser cache.

The two-level Web browser cache organization for our tamgst
bile devices, however, requires a different cache managestrat-

a Web browser cache on average 28% over a conventional Web€9Y from ones used for a desktop Web browser. For example, in a

browser cache management technique.

1. INTRODUCTION

Mobile full browsing, which allows users to access compglete
Web pages from mobile devices, has not been widely used becau

desktop PC, once downloaded into a local PC, a Web page isdach
into a local Web browser cache. Although this strategy ohiax
all the downloaded files into a Web browser cache is reasenabl
for a desktop PC, it incurs a significant performance ovettiea
NAND-based mobile devices because of unique charactevisfi
NAND flash memory. First, since overwrite operations areatot

many users find it unpleasant and cumbersome to navigate Weblowed in NAND flash memory, caching all the downloaded Web

pages using a mobile Web browser. For example, in order tb nav
gate complex Web pages from a typical cellular phone withallsm
display, a user must scroll up and down many times with frague
visits to hyperlinks for multiple subpages. Although manasad
automatic reauthoring techniques [1, 2] provided a pastidution

for this problem, they were not widely adopted because manua
reauthoring severely limits the number of Web pages aduessi
from mobile devices while automatic reauthoring does notipce
high-quality transcoded Web pages.

However, as faster mobile communication technologiesh sisc
HSDPA [3] and WCDMA [4], are widely available and the comput-
ing power of mobile devices improves, mobile full browsiwgif-
bined with new interface techniques) is emerging as a kélfgli-
cation for mobile devices. For example, Apple’s iPhone [&% h
been successful by supporting mobile full browsing effitiens-
ing a touch screen technology. Other cellular phone matwiars
have also introduced new cellular phones with a support fulila
full browsing. For example, LG’s LH2300, Samsung’s SPH-MB30
and Nokia’s N73 are available in the market. One of the common
architectural characteristics of these new phones ishiestall em-
ploy NAND flash memory as a secondary storage in addition to a
relatively small main memory. In this paper, we assume that o
target mobile devices are architected with a similar merh@yar-
chy consisting of two levels, the first-level (i.e., L1) mamemory
and the second-level (i.e., L2) NAND flash memory.

In order for these mobile devices to support full browsinfir ef

pages into a Web browser cache can cause unnecessary byck co
operations during garbage collections. These extra daiga ap-
erations can significantly degrade the performance of Welser
cache, especially when cached Web pages are evicted froiihe
browser cache without being reused. According to our olserv
tions, about 42% of cached Web pages are evicted withougbein
reused. (Note that in a desktop PC with a hard disk, thesesdnus
files are not a problem because a hard disk can overwrite.)eThe
fore, it is necessary to filter out those downloaded files tviaie
less likely to be reused.

Second, since a large number of files in the Web browser cache
are smaller than the page size of NAND flash memory, which is
4 KB, garbage collections in NAND flash memory are frequently
triggered. The garbage collection is triggered, for examplhen
the number of free blocks is below a preset determined tbiésh
In a log-based FTL, if the empty space of log blocks is extex)st
the garbage collection is triggered. Even if a file is smathem
the page size, one complete page is allocated to the file.uBeca
of large internal fragmentations, the flash space is inefiity uti-
lized, triggering garbage collections frequently.

In order to overcome the mismatch problems between the NAND
flash memory and the Web browser cache, we propose a new cache
management strategy for a mobile Web browser cache based on
NAND flash memory. First, we propose a filtering technique to
reduce useless write operations into NAND flash memory which
implements L2 Web browser cache. This technique prevesess fil

ciently, a mobile Web browser must use a Web browser cache. Aswhich are less likely reused from being written into NAND flas

LFor example, ones accessible from a typical desktop PC.

memory. To decide if a file will be written to NAND flash memory

or not, our proposed technique considers each file’s histobi

Web browser cache. Second, we propose a packaging technique

to better handle a large number of small files in L2 Web browser
cache. Our proposed NAND-aware packaging technique caabin
small files into a new file whose size is close to the page size
of NAND flash memory so that the internal fragmentation prob-
lem can be alleviated. Experimental results based on dewta
browser cache traces show that the proposed techniqueserdu

B1 (victim block)

Valid*

Valid*
B3

Invalid I

Invalid Valid*

B2 (victim bloc| Valid

Invalid Valid

Invalid

Valid

AV

Valid

total response time of a Web browser cache on average 28% over

a conventional Web browser cache organization. In pagicthe
total response time in L2 Web browser cache which includes th
garbage collection overhead is reduced on average 79%.

The rest of this paper is organized as follows. Section 2 saimm
rizes related works and Section 3 introduces motivatioreti&n
4 describes the details of the proposed techniques. Expetah
results are presented in Section 5. Finally, conclusioagi&en in
Section 6.

2. RELATED WORKS

Web cache management has been widely studied for several

years with a particular emphasis on replacement policieBS G
(Greedy Dual-Size) [6], GDSP (GDS Popularity) [7], and LRS-
W3-U (Least Normalized Cost Replacement for the Web with Up-
dates) [8] are the examples of better known replacementipsli

In these algorithms, the main design goal is to enhance tHierpe

Figure 1: An example of extra operations during a garbage
collection in L2 Web browser cache

reused after copying the valid pages in the block to a new free
block. Since a garbage collection requires many read, waitd
erase operations, frequent invocations of a garbage twmilean
significantly degrade the performance of NAND flash memory.

3.2 Motivations

In this section, we explain the main motivations of our wosk u
ing simple examples. Consider a two-level Web browser cache
organization that consists of L1 Web browser cache and L2 Web
browser cache, which were implemented in the main memory and
NAND flash memory, respectively. Because NAND flash memory
cannot support overwrite operations, if infrequently exliiles are

mance of a Web proxy cache, thus the performance of a memorycached into L2 Web browser cache, they may cause a large mumbe

hierarchy in a server is not of interest. On the other hanauin
work, the main design goal is to enhance the performance afta W
browser cache of a mobile device. Therefore, we considepéhe
formance of a memory hierarchy as a main design requirement.

of useless copy operations during a garbage collection.

Figure 1 shows an example of such extra block copy operations
during a garbage collection. There are three NAND flash mgmor
blocks B1, B2, and B3. Each block consists of four pages. Grey

Compared to Web cache techniques in servers, there are notcolored pages store valid data but they are not reused. S, tuatpy-
many researches on mobile Web browser cache techniques, Yan ing the grey pages is useless for future computations, tlassing

et al. proposed a replacement algorithm in a mobile Web browser
cache with memory and network bandwidth constraints [9]eyTh
combined their replacement algorithm with partial cactang re-
placement. Jiret al. proposed Web caching and prefetching algo-
rithms in mobile devices using sequence-mining based giedi
algorithms [10]. In order to combine the caching replacenasgial
prefetching algorithms together, they formulated the maghrofit
using the locality of a Web page, the size of a Web page, ddlay o

saving a Web page. Like the studies on Web proxy server cache,

the objective of the researches on mobile Web browser cade i

CPU cycles. In Figure 1, we denote such valid pages usingi®al
Suppose that blocks B1 and B2 are the victim blocks to be drase
during garbage collections. Before erasing the victim kdo@alid

data in the victim blocks are copied into a new free block ¢klo

B3 is the free block in the figure). In this case, although diata
pages PO and P1 of the block B1 are not reused, two read opera-
tions and two write operations are necessary for a copyingoB1
B3. In fact, if we had known it a priori that PO and P1 of the ldoc

B1 are not reused, we could have avoided writing data to PO and
P1. Therefore, two read operations and four write operatwere

enhance the performance of the Web browser cache by better re wasted.

placement algorithms and prefetching algorithms. Howellez
Web proxy cache studies, the performance of a secondaggstor
was not considered in existing mobile Web browser cachestiive
gations. On the other hand, in our work, we enhance the perfor

If a large amount of data are not reused (e.g., PO and P1 of B1),
the performance of a Web browser cache can be deteriorabte T
1 shows how many files are not reused after they have been saved
in a Web browser cache. Three traces were collected from Web

mance of a Web browser cache in mobile devices by considering browser opera [11] while Web surfing. (For more details omehe

the characteristics of a secondary storage in mobile device

3. BASIC IDEA
3.1 NAND Flash Memory

NAND flash memory is organized with blocks and each block is
composed of multiple pages. Each page is a unit of read arid wri
operation, and each block is a unit of erase operation. Elacdk b
has the endurance limitation in terms of the number of eraped
ations. For example, one recent NAND flash memory considted o
MLC chips can be erased at most 10,000 times.

Unlike a hard disk, NAND flash memory does not allow over-

traces, refer Section 5.) Unused requests, which are usedrjoe
before they are cached to the Web browser cache, take orgavera
42 % of all the Web pages requests in our traces, assuminththat
Web browser does not have any size limit. The statistics bieTa
1 strongly suggest that we need an intelligent Web cachitigypo
possibly filtering out unused files from the L2 Web browserheac

To understand the influence of extra operations during g@rba
collections on the performance of a Web browser cache, we ob-
served breakdowns of the times spent by garbage colledtidr®
Web browser cache using three traces. As shown in Figureo2tab

write operations. When the data in a page is updated, the newTable 1: Amount of Unused Requests in Web Cache Workloads

data is written to a free page and the old data must be invali-
dated. Because of this unique characteristic of NAND flasmme
ory, a garbage collection scheme is needed to reclaim tfai-nv
dated pages. A garbage collection scheme should selecttk blo
which has many invalid pages and erase the selected block to b

| Trace [1] 2] 3]
Total Requests (MB) 152 | 210 168
Unused Requests (MB) 70 | 81 | 68

| Percentage of unused requests (6%6 | 39 | 40 |

-
N

[
o

~ O 00

Time spent during garbage
collections (sec)

Tracel Trace2 Trace3

W GC (Reused) @ GC (Unused)

Figure 2: The breakdown of times spent during garbage collec
tions of each trace

akBFiles [A

|
PO
P1
P2
P3

B

C

D

ola|w|>

wasies [][e [o (][]l [c][x [m][n][o][]
B1 B2 B3

PO

PO
P1
P2
P3

PO
P1
P2
P3

P1

P2

ololz|g

E 1
F J
G K
H L

P3

Figure 3: An example of internal fragmentations in L2 Web
browser cache

79% of the total garbage collection time are wasted by uselgsy
operations.

The second motivation is based on our observations of down-
loaded file sizes. According to our observations for thraeds, on
average 95% of requested files are smaller than the pagessien.
though a file is smaller than the page size, it takes a compégge,
thus incurring an internal fragmentation. Since this pimeeoon
decreases the number of free blocks or reduces empty space o
log blocks dramatically, garbage collections are triggenere fre-
quently. Figure 3 shows an example of the internal fragntiemta
problem. There are four blocks and 16 files. The size of the file
A, B, C, and D is 4 KB while the size of the rest of the files is 1
KB. In case of 4 KB files, each file occupies one page, taking one
block BO. On the other hand, although the total size of 1 KBsfile
is smaller than 16 KB, storing all 1 KB files requires threedn
Since a garbage collection module is more frequently laeidcs
there are more files accessed, a large number of small filedewil
grade the performance of the NAND flash memory. Therefore, a
new technique to reduce the number of internal fragmemtstio
L2 Web browser cache is required.

4. WEB BROWSER CACHE MANAGE-
MENT TECHNIQUES

4.1 Overview of Web Browser Cache System

Our target mobile network system, which consists of Web
servers, the internet, AP (Access point)s, and mobile éesyits
presented in figure 4. Web servers store Web pages and the inte
net is a network of networks which consists of Web serverss AP
are charge of connecting between mobile devices and thenaite
A mobile device consists of a network interface, a procedsbr
Web browser cache, and L2 Web browser cache.

Figure 5 shows the operations in the Web browser cache system
which we assume in our work. When a user visits a Web page
with an URL (Uniform Resource Locator) address, a Web browse

Network

PROCESSOR
interface

L1 Web browser cache

L2 Web browser cache

)

Figure 4: A mobile system environment

finds files related to the requested Web page using a Web hrowse
database which enables a Web browser to find the requestedffile

a file exists in a Web browser cache and it is valid, a Web browse
obtains the file from a Web browser cache. A validation tedbise

by compared to the file in a Web server using the last modifiad.ti

In other cases, a Web browser downloads the file from Webserve

When a file is stored in a Web browser cache, it is written into
L1 Web browser cache. If the file is larger than the size of LbWe
browser cache, it is written to L2 Web browser cache diredtly
the same manner, if a file is larger than the size of L2 Web beows
cache, it is not cached in a Web browser cache. After the stor-
ing a file in a Web browser cache, the file information such as th
file name and the URL address are updated in the Web browser
database. If a file in L2 Web browser cache is updated, thefile i
L2 Web browser cache is invalidated because NAND flash memory
cannot support overwrite operations. The updated file iedtm
L1 Web browser cache.

If free space of L1 Web browser cache is not enough to cache a
requested file, cached other files in the L1 Web browser caghe a
evicted by a replacement policy to make free space. In oukwor
we use LRU (Least Recently Used) as a replacement policy. The
evicted files from the L1 Web browser cache are stored in L2 Web
Erowser cache. In the same way, if free space in L2 Web browser

ache is insufficient, same processes are done. The evit#ed fi
from the L2 Web browser cache are removed and the information
about the evicted file in a Web browser database is also delete

To utilize fast access time of the main memory efficientlg- fr
quently accessed files in L2 Web browser cache can be migrated
to L1 Web browser cache. Several files in L1 Web browser cache
must be evicted to make free space for the migrated file. More-
over, some files in L2 Web browser cache may be evicted to make
free space for storing the evicted files. Thus, frequent atiign
can degrade performance of a Web browser cache. To prevent a
migration from being triggered frequently, we assume thaea
quently accessed file is migrated when a migration profitrigeia

than the cost. The cost can be denoted[@s%w * N,

L1 Web

browser cache [[l

Move
Filtering

O T TR

L2 Web browser cache

Eviction
cki

[
{
\
B

Figure 5: The operations in the Web browser cache

where f.size, N.pagesize, and Ny, are size of a migrated file,
size of a NAND flash memory page, and latency time of a write op-
eration in NAND flash memory, respectively. This is becauns t
the evicted files may be written to L2 Web browser cache taking

other hand, if Web pages are visited evenly among all, a low ac
cess threshold is preferred. Since tight filtering deletestrfiles,

a Web browser cannot obtain many files from Web browser cache.
In the same manner, if Web pages which users have visited are

as much as the space which the migrated file has occupied. We asupdated frequently, a low update threshold is preferrecréoent

sume a migration profit a%w % fileaccessinNAND *Nr,

where fileqccessinnanp aNd Ng are the number of accesses of a
file in L2 Web browser cache and latency time of a read operatio
in NAND flash memory, respectively. (Access time to be taken i
main memory is not considered in this profit, because it idigieg
ble because of its fast bandwidth.) If a migrated file is asedsas
many asfileqccessinvanp times in L1 Web browser cache after
a migration, the amount of the profit can be saved in termsd ti

Our proposed filtering technique and packaging technigee ar
applied when a file is evicted from L1 Web browser cache. The
details of the techniques are described in Section 4.2 antio8e
4.3.

4.2 Filtering Technique

Filtering technique is to write requested Web pages into BAN
flash memory selectively to reduce useless copy operatidhs.
basic idea of this technique is to prevent files, which havenbe
accessed infrequently in L1 Web browser, from being writtelh2
Web browser cache. Since users tend to visit the Web pageswhi
they have visited habitually, more frequently accessed Wé&es
in recent has a high probability of being reused. Howevénpaigh
a Web page is frequently accessed in L1 Web browser caclte, if i
is updated frequently in L2 Web browser cache, performarice o
L2 Web browser cache can be reduced due to garbage collection
Thus, this technique also considers the number of updatailef
in L1 Web browser cache.

In order for this technique to filter out the files which are in-
frequently accessed and frequently updated, this technipes
two thresholds. One is ‘access threshold’ and another idatep
threshold’. When a file is evicted from L1 Web browser cache,
this algorithm compares the number of accesses and updates o
evicted file to the thresholds. If the number of accessesefilh
is larger than the access threshold and the number of updhtes
the file is less than the update threshold, it is written to Lebw
browser cache. In other cases, the evicted file is removedhend
information about the file in a Web browser database is rechove

The thresholds must be changed to reflect users’ Web page ac
cess patterns and Web page characteristics. If users’ Wgbgia
cesses are centralized into a small number of Web pages)abe fi
related to the Web pages are accessed more frequentlysloase,

a high access threshold is preferred, because it can avaty ra

accessed files being cached into L2 Web browser cache. On the

Algorithm 1 Threshold changing algorithm
1: if (Missa + Missy) = scope then

2. if (Missqe > PrevMiss,) V (Missq = scope) then
3: the «— the +1
4. else
5: the «— the — 1
6: endif
7. if (Missy > PrevMissy) V (Miss, = scope) then
8: thy «— thy — 1
9. else
10: thy < thy +1
11: endif
12: PrevMiss, «— Miss,
13: PrevMiss, « Miss,
14: Missq <— 0
15 Miss, +— 0
16: end if

them from being stored in L2 Web browser cache. On the opposit
case, a high update threshold is preferred to avoid exegdgsight
filtering.

In our proposed technique, Threshold changing algorithm is
charge of changing each threshold value dynamically.Thecba
idea of this algorithm is to change the thresholds by evalgatur-
rent threshold values. The proposed filtering techniqudiptethe
probabilities of both being reused and being updated of aezl/
file using current access threshold and update thresholdurif
rent thresholds are not proper for current Web page accdss pa
terns, the number of misjudgments increases. For exanfpde, i
access threshold was quite low, many files are evicted fronve2
browser cache without being reused. It implies that theiptiets
based on the access threshold were wrong. In our paper, ltbeal
wrong prediction by the access threshold ‘access missqpieu.

In the same manner, if an update threshold was quite highy man
files are invalidated by being updated in L2 Web browser cache
It implies that the predictions based on the update threlsivere
wrong. We call the wrong prediction by the update threshoft *
date miss-prediction’. Therefore, the variances of the lmemof
access miss-predictions and update miss-predictionsecanor-
tant hints to evaluate current thresholds.

Changing threshold algorithm changes the thresholds ukig
variances of the number of access miss-predictions andteipda
miss-predictions. Algorithm 1 shows how this algorithm tsor
The access miss-prediction, denotedMs$ss,, increases when-
ever a file, which have not been reused, is evicted from L2 Web
browser cache. The update miss-prediction, denoted/ ass.,,
increases whenever a file is updated in L2 Web browser cache.
When the summation of access miss-predictions and update mi
predictions is equal to a pre-defined vals@pe, this algorithm
changes the thresholds. (We set tlepe with 20 based on sev-
eral experiments.) This algorithm checks whether the nurnbe
miss-predictions increases or not compared to the last&iah.

If Miss, is larger thanPrevMiss,, which is the number of ac-
cess miss-predictions in the previous evaluation, thesacteesh-
old th, increases. Since current access threshold is so low, the

number of access miss-predictions increases compare@ tash
evaluation. Thus, the access threshold increases foetiditter-
ing. Moreover, ifMiss, is equal toscope, the access threshold
increases for the same reason. In the opposite case, thesacce
threshold decreases for looser filtering. If the accesshiuld is
equal to zero, it does not decrease. In the same mannef;df,,

is larger thanPrevMiss,,, which is the number of update miss-
predictions in the previous evaluation, the update threshb,
decreases. Since current update threshold is so high, thberu
of update miss-predictions increases compared to the Vakiae
tion. Therefore, the update threshold decreases for tilybtifig.

If the update threshold is equal to zero, it does not decrédsee-
over, if Miss,, is equal toscope, the update threshold decreases
for the same reason. In the opposite case, the update tldesho
creases for looser filtering. After the changing threshalM$ss,,
and Miss,, are copied to théPrevMiss, and PrevMiss,, re-
spectively. They are used in the next evaluation. Findifyss,
and M iss,, are initialized with zero.

4.3 Packaging technique

Packaging technique is to combine files smaller than the page
size of NAND flash memory into a file of which size is close to
the page size. When a file is evicted from L1 Web browser cache,
this technique compares the size of the evicted file to the pagp.

If the evicted file is smaller than the page size, a file is edad

store small files. For convenience of describing, we calldfee
ated file for packaging ‘package file’. Since the evicted fikkes
an internal fragmentation, it is copied to a package fileciagtof
being written to L2 Web browser cache. In order to utilizecgpa
in a page of NAND flash memory as efficiently as possible, this
technique collects other small files to be packaged by sngriri
Web browser cache. The order of scanning follows the order of
replacement in L1 Web browser cache. If a file, which is so kmal
that the summation of the file size and the size of the packéme fi
is smaller than the page size, is found, this technique mekegli-
cation of the file and copies it to the package file. A file, whiels
been replicated, does not be considered again when otheagec
files scan for packaging. This technique does not changertiez o
of replacement in L1 Web browser cache, because it usesieaepl
tion instead of evicting a file. These processes are endbd Bize
of a package file becomes same to NAND flash memory size or all
files in L1 Web browser cache are scanned. After the scantting,
package file is written to L2 Web browser cache. Like a normal
file, the information of the package file is added to a Web besws
database when the package file is written to L2 Web browséecac
Figure 6 presents an example of this technique. Assume that
file B is selected as a victim file by a replacement policy in L1
Web browser cache. This file is copied to a package file, becaus
it is smaller than a page of NAND flash memory. This algorithm
scans L1 Web browser cache and the replications of files C and D
are copied to the package file. The file between the files C and D
are not selected because of its large size. A dotted line @wadl s
letters in the figure denote copying a replication and raghns,
respectively. In the example in Figure 3, four 1KB files can be
packaged into a 4 KB file. Therefore, all 1 KB files can be stored
in a block.

Table 2: Characteristics of Traces
Trace 1 2 3
The number of files 3,980 | 3,966 | 4,299
Write request (MB) 85 102 | 101
Read request (MB) 67 108 67
Percentage of under 4KB (%) 98 98 89
Byte hit ratio (%) 44 51 40

Table 3: System Configuration Parameters
Main memory Size of Web caching : 2 MB
(L1 Web browser cache)) Access Latency : 127.5 ns
NAND flash memory | Size of Web caching : 15 MB
(L2 Web browser cache) Capacity : 512 MB
Read latency : 60 us
Write latency : 800 us
Erase latency : 1.2 ms
Page size : 4 KB
Block size : 512 KB
14.4 Mbps

Network bandwidth

replication is evicted from L1 Web browser cache if the aradffile
of the replication exists in L2 Web browser cache.

5. EXPERIMENTS

In order to evaluate the proposed techniques, we have devel-
oped a trace-driven Web caching simulator as well as a NAND

To read a packaged file in a package file, a Web browser databasdlash memory simulator. In order to collect I/O access traufes

in a Web browser cache keeps the information about packaging
When a file is packaged in a package file, information in a Web
browser database is updated. For a packaged file, the idatitifi
of the package file and an offset in the package file are updéted
a packaged file is requested, Web browser finds the file using th
identification and the offset in a Web browser database. @n th
other hand, for a package file, the number of packaged filesoand
tal size of the packaged files are stored. When a file is padkage
package file, the number of packaged files and the size of the pa
aged file increase. If a packaged file in a package file is iostdd
by being updated, the number of packaged files decreasesidne a
size of a package file decreases as the size of the invalifilged
If the number of included files in a package file becomes zém, t
package file is removed from L2 Web browser cache.

To utilize fast access time of L1 Web browser cache, if a pack-
aged file is accessed frequently in L2 Web browser, the ratpdic
of the file is created and it is copied to L1 Web browser. Theléon
tion for a migration triggering is same to the condition farmal
files, but this technique makes a replication instead of ngptihe
original file. This is why that a write operation is saved wtliba

L1 Web browser cache

eoe |[D C
r [y Eviction
SN,
A Y
\V v
Package File ||d| c | B
[eeo |d]| c|B]

L2 Web browser cache

Figure 6: An example of the proposed packaging technique

the Web browser cache, we used the 1/0O access trace program in
AccuSim [12]. Since the program captures all I/O traces feom
Web browser, we extracted the |/O traces of Web browser cache
from Web browser I/O access traces. We have collected thesra
from a desktop PC without a specific scenario to mimic usual fu
browsing behaviors such as sending an e-mail, visitingapsites,

and Web searching. Table 2 shows information of each tracle su
as the number of requested files, the amount of read reqhest, t
amount of write request, a percentage of requested file wikich
smaller than 4KB, and byte hit ratio. The byte hit ratio isasbhéed
assuming an infinite size of a Web browser cache. Table 3 sum-
marizes system configuration parameters used for our enpats.

We assume that users set the Web browser cache size as 2 MB for
L1 Web browser cache and 15 MB of NAND flash memory for L2
Web browser cache in 512 MB flash memory. The access latency
of the main memory is calculated based on [13]. We use the log-
based FTL [14] for evaluations and set the number of log Id@sk

10.

Figure 7 shows the total response times in L2 Web browser for
each trace under three different management schemes.”;N&ne
‘P’, and ‘FP’ in the x-axis represent a conventional Web ey
the filtering technique, the packaging technique, and thebt¢o
nation of the filtering technique and packaging techniqaspec-
tively. ‘None’ is the base case for comparisons. The y-axib-i
cates the total response time in L2 Web browser cache. The
posed filtering technique and the proposed packaging teabme-
duce the total response times on average 72% and 38% over the
base case. Finally, the combined technique reduces tHer¢sta
sponse time about on average 79% over the base case. Thissmpl
that the proposed techniques improve the performance of €8 W
browser cache by selective writing and deferring garbadieatmn
triggerings.

Figure 8 shows the breakdown of the total response timeseof th
Web browser cache. Since the network latency is very large an
about 55% of Web pages are downloaded through Web servers,

pro

F
=)

100
920 1
80

w
@

w
=]

N
(o]

60 | — H

L []
= .
- 40 I
30 L ||
| 20 o e —}—
ninlnlnm i :
o L = = L
FP

None F P FP None F P FP None F P

-
o

=
15

Total response time
in L2 Web browser cache (sec)
N
o
Total response time (sec)

«

o

None F P FP None F P FP None F P FP

Tracel Trace2 Trace3 Tracel Trace2 Trace3

W Read/Write O Garbage Collection Overhead M L1 Web browser cache L2 Web browser cache [Network

Figure 7: The breakdown of total response times in L2 Web Figure 8: The breakdown of total response times of Web
browser cache browser cache

it has the largest portion in the breakdown. On the other hand in part by the Brain Korea 21 Project in 2008. The ICT at Seoul
although many files are obtained directly from L1 Web browser National University provides research facilities for thtady.

cache, it has the smallest portion in the breakdown becduise o

fast access time. The filtering technique and the packagidgt 8. REFERENCES

nique reduce the total response times of the Web browsetecach [1] K. Nagao, Y. Shirai, and K. Squire. “Semantic annotaté

on average about 25% and 9% comparing to the base case,-respec transcoding: making Web content more accessible,” IEEEMul

tively. The combined technique reduces the total respansest timedia, vol. 8, no. 2, pp. 69-81, 2001.
about 28% on average. Moreover, we observed that the byte hit[2] J. Chen, B. Zhou, J. Shi, and H. Zhang. “Function-based ob
ratios of each case are almost similar. It implies that tluppsed ject model towards website adaptation,” in Proc. Inteowel
techniques can enhance the performance of a Web browsee cach Conference on World Wide Web, 2001.
by reducing overheads of a secondary storage. [3] http://hspa.gsmworld.com
[4] http://lwww.umtsworld.com/technology/wcdma.htm

6. CONCLUSIONS [5] http://www.apple.com/iphone

We have proposed two new Web browser cache managementl6] P- Cao and S. Irani. “Cost-aware WWW proxy caching algo-
techniques appropriate for mobile devices that supportil@ob rithms,” in Proc. USENIX Symposium on Internet Technolagie
full browsing. Taking account of NAND flash memory’s unique and Systems, 1997.
characteristics, the proposed filtering technique effebtidistin- [7] S. Jin and A. Bestavros. “Popularity-aware greedy iz
guishes files with high reusability from ones with low reliigb Web proxy caching algorithms,” in Proc. International Ganf

By saving files with high reusability only into L2 Web browser ence on Distributed Computing Systems, 2000.
cache in NAND flash memory, the proposed filtering technidgge s [8] J. Shim, P. Scheuermann, and R. Vingralek. “Proxy cate a

nificantly reduces the garbage collection overhead of NANBH] rithms: design, implementation, and performance,” |EE&EF
memory over a conventional technique. action on Knowledge and Data Engineering, vol. 11, no. 4, pp.
The proposed packaging technique minimizes internal feagm 549-562, 1999.
tations which frequently occur when the size of downloadkss fi [9] C. Yang, K. Tien, and M. Wueng. “Browser cache manage-
is smaller than the page size of NAND flash memory. By intel- ment for small wireless devices with memory and bandwidth
ligently combining small files into larger files that fit withithe constraints,” in Proc. Parallel and Distributed ComputiAg-
page boundary without introducing internal fragmentagjothe plications and Technologies, 2003.
proposed packaging technique also reduces unnecesséigggar [10] B. Jin, S. Tian, C. Lin, X. Ren, and Y. Huang. “An integeelt
collections. Experimental results demonstrate that ttopgsed prefetching and caching scheme for mobile Web caching sys-
techniques can reduce the total response time of a Web browse tem,” in Proc. International Conference on Software Engine
cache on average 28% over a conventional approach. ing, Artificial Intelligence, Networking, and Parallel/@ributed
Our current work can be extended in several directions. ¥or e Computing, 2007.

ample, as an immediate future work, we plan to implementtbe p [11] www.opera.com

posed techniques in one of the open-source mobile phonés suc 1] A, R. Butt, C. Gniady, Y. C. Hu. “The performance impact
as Openmoko’s Neo FreeRunner phone [15] to evaluate the per-- of kernel prefetching on buffer cache replacement algorith

formance benefits of the proposed techniques in a practatal s ACM SIGMETRICS Performance Evaluation Review, vol. 33,

ting. Moreover, we will extend our experiments with varidtiL_s. no. 1, pp. 157-168, 2005.

Since th_e condition for a ga(bage collection triggering &_mdp_ro- [13] Samsung Electronics. “4M 32Bit x 4 Banks Mobile

CEsSSes In a garbage_ collection depend on a F.TL’ conm_ddnmg ¢ SDRAM,” http://www.samsung.com/global/system/busgies

acteristics of FTLs in Web browser cache will be an intengsti semiconductor/product/2007/6/11/MobileSDRAM/Mobile-

ISsue. SDRSDRAM/512Mbit/K4M51323PC/ds_k4m51323pc.pdf,

2007.

7. ACKNOWLEDGMENTS [14] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A
This work was supported by the Korea Science and Engineer- ~SPace-efficient flash translation layer for compact flastesys,”

ing Foundation (KOSEF) through the National Research Laty: P IEEE Transactions on Consumer Electronics, vol. 48, nop2, p

gram funded by the Ministry of Education, Science and Tethno 366-375, 2902-
ogy (No.ROA-2007-000-20116-0). This work was also supgmbrt [15] http:/wiki.openmoko.org

