
Web Browser Cache Management Techniques for Mobile
Full Browsing on NAND-based Mobile Devices

Keonsoo Ha
School of Computer Science and Engineering

Seoul National University
air21c@davinci.snu.ac.kr

Jihong Kim
School of Computer Science and Engineering

Seoul National University
jihong@davinci.snu.ac.kr

ABSTRACT
As wireless communication and mobile device technologies im-
prove, mobile full browsing is emerging as a killer application for
mobile devices. In order to use mobile full browsing efficiently
in terms of performance, energy, and download cost, mobile Web
browsers adopt Web browser cache. However, the I/O access pat-
terns of a Web browser cache make it difficult for these mobile
devices to use a NAND-based secondary storage efficiently. In this
paper, we propose Web browser cache management techniques for
mobile full browsing on NAND-based mobile devices. A proposed
filtering technique reduces useless write operations in NAND flash
memory by selectively caching frequently reused Web pages only.
A proposed NAND-aware packaging technique reduces garbage
collection overheads by combining small files into a single NAND
page. Our experimental results show that the proposed Web browser
cache management techniques reduce the total response timeof
a Web browser cache on average 28% over a conventional Web
browser cache management technique.

1. INTRODUCTION
Mobile full browsing, which allows users to access complete1

Web pages from mobile devices, has not been widely used because
many users find it unpleasant and cumbersome to navigate Web
pages using a mobile Web browser. For example, in order to navi-
gate complex Web pages from a typical cellular phone with a small
display, a user must scroll up and down many times with frequent
visits to hyperlinks for multiple subpages. Although manual and
automatic reauthoring techniques [1, 2] provided a partialsolution
for this problem, they were not widely adopted because manual
reauthoring severely limits the number of Web pages accessible
from mobile devices while automatic reauthoring does not produce
high-quality transcoded Web pages.

However, as faster mobile communication technologies, such as
HSDPA [3] and WCDMA [4], are widely available and the comput-
ing power of mobile devices improves, mobile full browsing (com-
bined with new interface techniques) is emerging as a killerappli-
cation for mobile devices. For example, Apple’s iPhone [5] has
been successful by supporting mobile full browsing efficiently us-
ing a touch screen technology. Other cellular phone manufacturers
have also introduced new cellular phones with a support for mobile
full browsing. For example, LG’s LH2300, Samsung’s SPH-M800,
and Nokia’s N73 are available in the market. One of the common
architectural characteristics of these new phones is that they all em-
ploy NAND flash memory as a secondary storage in addition to a
relatively small main memory. In this paper, we assume that our
target mobile devices are architected with a similar memoryhierar-
chy consisting of two levels, the first-level (i.e., L1) mainmemory
and the second-level (i.e., L2) NAND flash memory.

In order for these mobile devices to support full browsing effi-
ciently, a mobile Web browser must use a Web browser cache. As
1For example, ones accessible from a typical desktop PC.

commonly used for a similar purpose in a desktop Web browser,
a Web browser cache can improve the Web access performance
and reduce the energy consumption of the mobile devices during
Web surfing. Furthermore, it can reduce the download cost for
Web pages. For our target mobile devices with the two-level mem-
ory hierarchy structure, a Web browser cache is typically imple-
mented in two levels. L1 Web browser cache is implemented in
the main memory while L2 Web browser cache is implemented in
the NAND flash memory. The two-level hierarchical structureof a
Web browser cache takes advantages of both the main memory and
the NAND flash memory. Although the main memory is faster than
the NAND flash memory, its size is limited in mobile devices. By
storing less frequently used Web pages in the NAND flash memory,
we can have an effectively large and fast Web browser cache.

The two-level Web browser cache organization for our targetmo-
bile devices, however, requires a different cache management strat-
egy from ones used for a desktop Web browser. For example, in a
desktop PC, once downloaded into a local PC, a Web page is cached
into a local Web browser cache. Although this strategy of caching
all the downloaded files into a Web browser cache is reasonable
for a desktop PC, it incurs a significant performance overhead for
NAND-based mobile devices because of unique characteristics of
NAND flash memory. First, since overwrite operations are notal-
lowed in NAND flash memory, caching all the downloaded Web
pages into a Web browser cache can cause unnecessary block copy
operations during garbage collections. These extra data copy op-
erations can significantly degrade the performance of Web browser
cache, especially when cached Web pages are evicted from theWeb
browser cache without being reused. According to our observa-
tions, about 42% of cached Web pages are evicted without being
reused. (Note that in a desktop PC with a hard disk, these unused
files are not a problem because a hard disk can overwrite.) There-
fore, it is necessary to filter out those downloaded files which are
less likely to be reused.

Second, since a large number of files in the Web browser cache
are smaller than the page size of NAND flash memory, which is
4 KB, garbage collections in NAND flash memory are frequently
triggered. The garbage collection is triggered, for example, when
the number of free blocks is below a preset determined threshold.
In a log-based FTL, if the empty space of log blocks is exhausted,
the garbage collection is triggered. Even if a file is smallerthan
the page size, one complete page is allocated to the file. Because
of large internal fragmentations, the flash space is inefficiently uti-
lized, triggering garbage collections frequently.

In order to overcome the mismatch problems between the NAND
flash memory and the Web browser cache, we propose a new cache
management strategy for a mobile Web browser cache based on
NAND flash memory. First, we propose a filtering technique to
reduce useless write operations into NAND flash memory which
implements L2 Web browser cache. This technique prevents files
which are less likely reused from being written into NAND flash
memory. To decide if a file will be written to NAND flash memory

or not, our proposed technique considers each file’s historyin L1
Web browser cache. Second, we propose a packaging technique
to better handle a large number of small files in L2 Web browser
cache. Our proposed NAND-aware packaging technique combines
small files into a new file whose size is close to the page size
of NAND flash memory so that the internal fragmentation prob-
lem can be alleviated. Experimental results based on several Web
browser cache traces show that the proposed techniques reduce the
total response time of a Web browser cache on average 28% over
a conventional Web browser cache organization. In particular, the
total response time in L2 Web browser cache which includes the
garbage collection overhead is reduced on average 79%.

The rest of this paper is organized as follows. Section 2 summa-
rizes related works and Section 3 introduces motivations. Section
4 describes the details of the proposed techniques. Experimental
results are presented in Section 5. Finally, conclusions are given in
Section 6.

2. RELATED WORKS
Web cache management has been widely studied for several

years with a particular emphasis on replacement policies. GDS
(Greedy Dual-Size) [6], GDSP (GDS Popularity) [7], and LNC-R-
W3-U (Least Normalized Cost Replacement for the Web with Up-
dates) [8] are the examples of better known replacement policies.
In these algorithms, the main design goal is to enhance the perfor-
mance of a Web proxy cache, thus the performance of a memory
hierarchy in a server is not of interest. On the other hand, inour
work, the main design goal is to enhance the performance of a Web
browser cache of a mobile device. Therefore, we consider theper-
formance of a memory hierarchy as a main design requirement.

Compared to Web cache techniques in servers, there are not
many researches on mobile Web browser cache techniques. Yang
et al. proposed a replacement algorithm in a mobile Web browser
cache with memory and network bandwidth constraints [9]. They
combined their replacement algorithm with partial cachingand re-
placement. Jinet al. proposed Web caching and prefetching algo-
rithms in mobile devices using sequence-mining based prediction
algorithms [10]. In order to combine the caching replacement and
prefetching algorithms together, they formulated the caching profit
using the locality of a Web page, the size of a Web page, delay of
saving a Web page. Like the studies on Web proxy server cache,
the objective of the researches on mobile Web browser cache is to
enhance the performance of the Web browser cache by better re-
placement algorithms and prefetching algorithms. However, like
Web proxy cache studies, the performance of a secondary storage
was not considered in existing mobile Web browser cache investi-
gations. On the other hand, in our work, we enhance the perfor-
mance of a Web browser cache in mobile devices by considering
the characteristics of a secondary storage in mobile devices.

3. BASIC IDEA

3.1 NAND Flash Memory
NAND flash memory is organized with blocks and each block is

composed of multiple pages. Each page is a unit of read and write
operation, and each block is a unit of erase operation. Each block
has the endurance limitation in terms of the number of erasedoper-
ations. For example, one recent NAND flash memory consisted of
MLC chips can be erased at most 10,000 times.

Unlike a hard disk, NAND flash memory does not allow over-
write operations. When the data in a page is updated, the new
data is written to a free page and the old data must be invali-
dated. Because of this unique characteristic of NAND flash mem-
ory, a garbage collection scheme is needed to reclaim the invali-
dated pages. A garbage collection scheme should select a block
which has many invalid pages and erase the selected block to be

�������������������������� ��
	
 ����
�� ������ 	�	� ����
�� ����������������������

Figure 1: An example of extra operations during a garbage
collection in L2 Web browser cache

reused after copying the valid pages in the block to a new free
block. Since a garbage collection requires many read, write, and
erase operations, frequent invocations of a garbage collector can
significantly degrade the performance of NAND flash memory.

3.2 Motivations
In this section, we explain the main motivations of our work us-

ing simple examples. Consider a two-level Web browser cache
organization that consists of L1 Web browser cache and L2 Web
browser cache, which were implemented in the main memory and
NAND flash memory, respectively. Because NAND flash memory
cannot support overwrite operations, if infrequently reused files are
cached into L2 Web browser cache, they may cause a large number
of useless copy operations during a garbage collection.

Figure 1 shows an example of such extra block copy operations
during a garbage collection. There are three NAND flash memory
blocks B1, B2, and B3. Each block consists of four pages. Grey
colored pages store valid data but they are not reused. That is, copy-
ing the grey pages is useless for future computations, thus wasting
CPU cycles. In Figure 1, we denote such valid pages using ‘valid*’.
Suppose that blocks B1 and B2 are the victim blocks to be erased
during garbage collections. Before erasing the victim blocks, valid
data in the victim blocks are copied into a new free block (block
B3 is the free block in the figure). In this case, although datain
pages P0 and P1 of the block B1 are not reused, two read opera-
tions and two write operations are necessary for a copying B1to
B3. In fact, if we had known it a priori that P0 and P1 of the block
B1 are not reused, we could have avoided writing data to P0 and
P1. Therefore, two read operations and four write operations were
wasted.

If a large amount of data are not reused (e.g., P0 and P1 of B1),
the performance of a Web browser cache can be deteriorated. Table
1 shows how many files are not reused after they have been saved
in a Web browser cache. Three traces were collected from Web
browser opera [11] while Web surfing. (For more details on there
traces, refer Section 5.) Unused requests, which are used just once
before they are cached to the Web browser cache, take on average
42 % of all the Web pages requests in our traces, assuming thatthe
Web browser does not have any size limit. The statistics in Table
1 strongly suggest that we need an intelligent Web caching policy,
possibly filtering out unused files from the L2 Web browser cache.

To understand the influence of extra operations during garbage
collections on the performance of a Web browser cache, we ob-
served breakdowns of the times spent by garbage collectionsin L2
Web browser cache using three traces. As shown in Figure 2, about

Table 1: Amount of Unused Requests in Web Cache Workloads
Trace 1 2 3

Total Requests (MB) 152 210 168
Unused Requests (MB) 70 81 68

Percentage of unused requests (%)46 39 40

Figure 2: The breakdown of times spent during garbage collec-
tions of each trace ������� �!�"� � � �#$� %&'()

* $� %&'()��� �!�" ��� �!�" ��� �!�"% + , - . $ / 0 1 2 �*%+, -.$/ 012�
34

35 36 37
Figure 3: An example of internal fragmentations in L2 Web
browser cache

79% of the total garbage collection time are wasted by useless copy
operations.

The second motivation is based on our observations of down-
loaded file sizes. According to our observations for three traces, on
average 95% of requested files are smaller than the page size.Even
though a file is smaller than the page size, it takes a completepage,
thus incurring an internal fragmentation. Since this phenomenon
decreases the number of free blocks or reduces empty space of
log blocks dramatically, garbage collections are triggered more fre-
quently. Figure 3 shows an example of the internal fragmentation
problem. There are four blocks and 16 files. The size of the files
A, B, C, and D is 4 KB while the size of the rest of the files is 1
KB. In case of 4 KB files, each file occupies one page, taking one
block B0. On the other hand, although the total size of 1 KB files
is smaller than 16 KB, storing all 1 KB files requires three blocks.
Since a garbage collection module is more frequently launched as
there are more files accessed, a large number of small files will de-
grade the performance of the NAND flash memory. Therefore, a
new technique to reduce the number of internal fragmentations in
L2 Web browser cache is required.

4. WEB BROWSER CACHE MANAGE-
MENT TECHNIQUES

4.1 Overview of Web Browser Cache System
Our target mobile network system, which consists of Web

servers, the internet, AP (Access point)s, and mobile devices, is
presented in figure 4. Web servers store Web pages and the inter-
net is a network of networks which consists of Web servers. APs
are charge of connecting between mobile devices and the internet.
A mobile device consists of a network interface, a processor, L1
Web browser cache, and L2 Web browser cache.

Figure 5 shows the operations in the Web browser cache system
which we assume in our work. When a user visits a Web page
with an URL (Uniform Resource Locator) address, a Web browser

Internet

89:;9<=9< >? @ABCDEFGHBAEIJKA LM NAO OEDCPAE KJKQALR NAO OEDCPAE KJKQASTUVWXXUTYZ[\]̂ _^`\a^
89:;9<=9< 89:;9<=9<

Figure 4: A mobile system environment

finds files related to the requested Web page using a Web browser
database which enables a Web browser to find the requested file. If
a file exists in a Web browser cache and it is valid, a Web browser
obtains the file from a Web browser cache. A validation test isdone
by compared to the file in a Web server using the last modified time.
In other cases, a Web browser downloads the file from Web servers.

When a file is stored in a Web browser cache, it is written into
L1 Web browser cache. If the file is larger than the size of L1 Web
browser cache, it is written to L2 Web browser cache directly. In
the same manner, if a file is larger than the size of L2 Web browser
cache, it is not cached in a Web browser cache. After the stor-
ing a file in a Web browser cache, the file information such as the
file name and the URL address are updated in the Web browser
database. If a file in L2 Web browser cache is updated, the file in
L2 Web browser cache is invalidated because NAND flash memory
cannot support overwrite operations. The updated file is stored in
L1 Web browser cache.

If free space of L1 Web browser cache is not enough to cache a
requested file, cached other files in the L1 Web browser cache are
evicted by a replacement policy to make free space. In our work,
we use LRU (Least Recently Used) as a replacement policy. The
evicted files from the L1 Web browser cache are stored in L2 Web
browser cache. In the same way, if free space in L2 Web browser
cache is insufficient, same processes are done. The evicted files
from the L2 Web browser cache are removed and the information
about the evicted file in a Web browser database is also deleted.

To utilize fast access time of the main memory efficiently, fre-
quently accessed files in L2 Web browser cache can be migrated
to L1 Web browser cache. Several files in L1 Web browser cache
must be evicted to make free space for the migrated file. More-
over, some files in L2 Web browser cache may be evicted to make
free space for storing the evicted files. Thus, frequent migration
can degrade performance of a Web browser cache. To prevent a
migration from being triggered frequently, we assume that afre-
quently accessed file is migrated when a migration profit is larger

than the cost. The cost can be denoted as
l

f.size

N.pagesize

m

∗ NW ,

bc deffghijeg klkme nopq rstkuthvwtxuegtvyzlk{lytvy|hse b} def fghijeg klkme rstkuthv
Figure 5: The operations in the Web browser cache

wheref.size, N.pagesize, andNW are size of a migrated file,
size of a NAND flash memory page, and latency time of a write op-
eration in NAND flash memory, respectively. This is because that
the evicted files may be written to L2 Web browser cache taking
as much as the space which the migrated file has occupied. We as-

sume a migration profit as
l

f.size

N.pagesize

m

∗fileaccessInNAND∗NR,

wherefileaccessInNAND andNR are the number of accesses of a
file in L2 Web browser cache and latency time of a read operation
in NAND flash memory, respectively. (Access time to be taken in
main memory is not considered in this profit, because it is negligi-
ble because of its fast bandwidth.) If a migrated file is accessed as
many asfileaccessInNAND times in L1 Web browser cache after
a migration, the amount of the profit can be saved in terms of time.

Our proposed filtering technique and packaging technique are
applied when a file is evicted from L1 Web browser cache. The
details of the techniques are described in Section 4.2 and Section
4.3.

4.2 Filtering Technique
Filtering technique is to write requested Web pages into NAND

flash memory selectively to reduce useless copy operations.The
basic idea of this technique is to prevent files, which have been
accessed infrequently in L1 Web browser, from being writtento L2
Web browser cache. Since users tend to visit the Web pages which
they have visited habitually, more frequently accessed Webpages
in recent has a high probability of being reused. However, although
a Web page is frequently accessed in L1 Web browser cache, if it
is updated frequently in L2 Web browser cache, performance of
L2 Web browser cache can be reduced due to garbage collections.
Thus, this technique also considers the number of updates ofa file
in L1 Web browser cache.

In order for this technique to filter out the files which are in-
frequently accessed and frequently updated, this technique uses
two thresholds. One is ‘access threshold’ and another is ‘update
threshold’. When a file is evicted from L1 Web browser cache,
this algorithm compares the number of accesses and updates of the
evicted file to the thresholds. If the number of accesses of the file
is larger than the access threshold and the number of updatesof
the file is less than the update threshold, it is written to L2 Web
browser cache. In other cases, the evicted file is removed andthe
information about the file in a Web browser database is removed.

The thresholds must be changed to reflect users’ Web page ac-
cess patterns and Web page characteristics. If users’ Web page ac-
cesses are centralized into a small number of Web pages, the files
related to the Web pages are accessed more frequently. In this case,
a high access threshold is preferred, because it can avoid rarely
accessed files being cached into L2 Web browser cache. On the

Algorithm 1 Threshold changing algorithm

1: if (Missa + Missu) = scope then
2: if (Missa > PrevMissa) ∨ (Missa = scope) then
3: tha← tha + 1
4: else
5: tha← tha − 1
6: end if
7: if (Missu > PrevMissu) ∨ (Missu = scope) then
8: thu← thu − 1
9: else

10: thu← thu + 1
11: end if
12: PrevMissa←Missa

13: PrevMissu←Missu

14: Missa← 0
15: Missu ← 0
16: end if

other hand, if Web pages are visited evenly among all, a low ac-
cess threshold is preferred. Since tight filtering deletes most files,
a Web browser cannot obtain many files from Web browser cache.
In the same manner, if Web pages which users have visited are
updated frequently, a low update threshold is preferred to prevent
them from being stored in L2 Web browser cache. On the opposite
case, a high update threshold is preferred to avoid excessively tight
filtering.

In our proposed technique, Threshold changing algorithm is
charge of changing each threshold value dynamically.The basic
idea of this algorithm is to change the thresholds by evaluating cur-
rent threshold values. The proposed filtering technique predicts the
probabilities of both being reused and being updated of an evicted
file using current access threshold and update threshold. Ifcur-
rent thresholds are not proper for current Web page access pat-
terns, the number of misjudgments increases. For example, if an
access threshold was quite low, many files are evicted from L2Web
browser cache without being reused. It implies that the predictions
based on the access threshold were wrong. In our paper, we call the
wrong prediction by the access threshold ‘access miss-prediction’.
In the same manner, if an update threshold was quite high, many
files are invalidated by being updated in L2 Web browser cache.
It implies that the predictions based on the update threshold were
wrong. We call the wrong prediction by the update threshold ‘up-
date miss-prediction’. Therefore, the variances of the number of
access miss-predictions and update miss-predictions can be impor-
tant hints to evaluate current thresholds.

Changing threshold algorithm changes the thresholds usingthe
variances of the number of access miss-predictions and update
miss-predictions. Algorithm 1 shows how this algorithm works.
The access miss-prediction, denoted asMissa, increases when-
ever a file, which have not been reused, is evicted from L2 Web
browser cache. The update miss-prediction, denoted asMissu,
increases whenever a file is updated in L2 Web browser cache.
When the summation of access miss-predictions and update miss-
predictions is equal to a pre-defined valuescope, this algorithm
changes the thresholds. (We set thescope with 20 based on sev-
eral experiments.) This algorithm checks whether the number of
miss-predictions increases or not compared to the last evaluation.
If Missa is larger thanPrevMissa, which is the number of ac-
cess miss-predictions in the previous evaluation, the access thresh-
old tha increases. Since current access threshold is so low, the
number of access miss-predictions increases compared to the last
evaluation. Thus, the access threshold increases for tighter filter-
ing. Moreover, ifMissa is equal toscope, the access threshold
increases for the same reason. In the opposite case, the access
threshold decreases for looser filtering. If the access threshold is
equal to zero, it does not decrease. In the same manner, ifMissu

is larger thanPrevMissu, which is the number of update miss-
predictions in the previous evaluation, the update threshold thu

decreases. Since current update threshold is so high, the number
of update miss-predictions increases compared to the last evalua-
tion. Therefore, the update threshold decreases for tight filtering.
If the update threshold is equal to zero, it does not decrease. More-
over, if Missu is equal toscope, the update threshold decreases
for the same reason. In the opposite case, the update threshold in-
creases for looser filtering. After the changing thresholds, Missa

andMissu are copied to thePrevMissa andPrevMissu, re-
spectively. They are used in the next evaluation. Finally,Missa

andMissu are initialized with zero.

4.3 Packaging technique
Packaging technique is to combine files smaller than the page

size of NAND flash memory into a file of which size is close to
the page size. When a file is evicted from L1 Web browser cache,
this technique compares the size of the evicted file to the page size.
If the evicted file is smaller than the page size, a file is created to

store small files. For convenience of describing, we call thecre-
ated file for packaging ‘package file’. Since the evicted file makes
an internal fragmentation, it is copied to a package file instead of
being written to L2 Web browser cache. In order to utilize space
in a page of NAND flash memory as efficiently as possible, this
technique collects other small files to be packaged by scanning L1
Web browser cache. The order of scanning follows the order of
replacement in L1 Web browser cache. If a file, which is so small
that the summation of the file size and the size of the package file
is smaller than the page size, is found, this technique makesa repli-
cation of the file and copies it to the package file. A file, whichhas
been replicated, does not be considered again when other package
files scan for packaging. This technique does not change the order
of replacement in L1 Web browser cache, because it uses a replica-
tion instead of evicting a file. These processes are ended if the size
of a package file becomes same to NAND flash memory size or all
files in L1 Web browser cache are scanned. After the scanning,the
package file is written to L2 Web browser cache. Like a normal
file, the information of the package file is added to a Web browser
database when the package file is written to L2 Web browser cache.

Figure 6 presents an example of this technique. Assume that
file B is selected as a victim file by a replacement policy in L1
Web browser cache. This file is copied to a package file, because
it is smaller than a page of NAND flash memory. This algorithm
scans L1 Web browser cache and the replications of files C and D
are copied to the package file. The file between the files C and D
are not selected because of its large size. A dotted line and small
letters in the figure denote copying a replication and replications,
respectively. In the example in Figure 3, four 1KB files can be
packaged into a 4 KB file. Therefore, all 1 KB files can be stored
in a block.

To read a packaged file in a package file, a Web browser database
in a Web browser cache keeps the information about packaging.
When a file is packaged in a package file, information in a Web
browser database is updated. For a packaged file, the identification
of the package file and an offset in the package file are updated. If
a packaged file is requested, Web browser finds the file using the
identification and the offset in a Web browser database. On the
other hand, for a package file, the number of packaged files andto-
tal size of the packaged files are stored. When a file is packaged in a
package file, the number of packaged files and the size of the pack-
aged file increase. If a packaged file in a package file is invalidated
by being updated, the number of packaged files decreases one and
size of a package file decreases as the size of the invalidatedfile.
If the number of included files in a package file becomes zero, the
package file is removed from L2 Web browser cache.

To utilize fast access time of L1 Web browser cache, if a pack-
aged file is accessed frequently in L2 Web browser, the replication
of the file is created and it is copied to L1 Web browser. The condi-
tion for a migration triggering is same to the condition for normal
files, but this technique makes a replication instead of moving the
original file. This is why that a write operation is saved whenthe~ � ��� �

�
�������� ���� ��������

��� ��� ������� �����
�� ��� ������� �����

Figure 6: An example of the proposed packaging technique

Table 2: Characteristics of Traces
Trace 1 2 3

The number of files 3,980 3,966 4,299
Write request (MB) 85 102 101
Read request (MB) 67 108 67

Percentage of under 4KB (%) 98 98 89
Byte hit ratio (%) 44 51 40

Table 3: System Configuration Parameters
Main memory Size of Web caching : 2 MB

(L1 Web browser cache) Access Latency : 127.5 ns
NAND flash memory Size of Web caching : 15 MB

(L2 Web browser cache) Capacity : 512 MB
Read latency : 60 us
Write latency : 800 us
Erase latency : 1.2 ms
Page size : 4 KB
Block size : 512 KB

Network bandwidth 14.4 Mbps

replication is evicted from L1 Web browser cache if the original file
of the replication exists in L2 Web browser cache.

5. EXPERIMENTS
In order to evaluate the proposed techniques, we have devel-

oped a trace-driven Web caching simulator as well as a NAND
flash memory simulator. In order to collect I/O access tracesof
the Web browser cache, we used the I/O access trace program in
AccuSim [12]. Since the program captures all I/O traces froma
Web browser, we extracted the I/O traces of Web browser cache
from Web browser I/O access traces. We have collected the traces
from a desktop PC without a specific scenario to mimic usual full
browsing behaviors such as sending an e-mail, visiting portal sites,
and Web searching. Table 2 shows information of each trace such
as the number of requested files, the amount of read request, the
amount of write request, a percentage of requested file whichis
smaller than 4KB, and byte hit ratio. The byte hit ratio is obtained
assuming an infinite size of a Web browser cache. Table 3 sum-
marizes system configuration parameters used for our experiments.
We assume that users set the Web browser cache size as 2 MB for
L1 Web browser cache and 15 MB of NAND flash memory for L2
Web browser cache in 512 MB flash memory. The access latency
of the main memory is calculated based on [13]. We use the log-
based FTL [14] for evaluations and set the number of log blocks as
10.

Figure 7 shows the total response times in L2 Web browser for
each trace under three different management schemes. ‘None’, ‘F’,
‘P’, and ‘FP’ in the x-axis represent a conventional Web browser,
the filtering technique, the packaging technique, and the combi-
nation of the filtering technique and packaging technique, respec-
tively. ‘None’ is the base case for comparisons. The y-axis indi-
cates the total response time in L2 Web browser cache. The pro-
posed filtering technique and the proposed packaging technique re-
duce the total response times on average 72% and 38% over the
base case. Finally, the combined technique reduces the total re-
sponse time about on average 79% over the base case. This implies
that the proposed techniques improve the performance of L2 Web
browser cache by selective writing and deferring garbage collection
triggerings.

Figure 8 shows the breakdown of the total response times of the
Web browser cache. Since the network latency is very large and
about 55% of Web pages are downloaded through Web servers,

Figure 7: The breakdown of total response times in L2 Web
browser cache

it has the largest portion in the breakdown. On the other hand,
although many files are obtained directly from L1 Web browser
cache, it has the smallest portion in the breakdown because of its
fast access time. The filtering technique and the packaging tech-
nique reduce the total response times of the Web browser cache
on average about 25% and 9% comparing to the base case, respec-
tively. The combined technique reduces the total response times
about 28% on average. Moreover, we observed that the byte hit
ratios of each case are almost similar. It implies that the proposed
techniques can enhance the performance of a Web browser cache
by reducing overheads of a secondary storage.

6. CONCLUSIONS
We have proposed two new Web browser cache management

techniques appropriate for mobile devices that support mobile
full browsing. Taking account of NAND flash memory’s unique
characteristics, the proposed filtering technique effectively distin-
guishes files with high reusability from ones with low reusability.
By saving files with high reusability only into L2 Web browser
cache in NAND flash memory, the proposed filtering technique sig-
nificantly reduces the garbage collection overhead of NAND flash
memory over a conventional technique.

The proposed packaging technique minimizes internal fragmen-
tations which frequently occur when the size of downloaded files
is smaller than the page size of NAND flash memory. By intel-
ligently combining small files into larger files that fit within the
page boundary without introducing internal fragmentations, the
proposed packaging technique also reduces unnecessary garbage
collections. Experimental results demonstrate that the proposed
techniques can reduce the total response time of a Web browser
cache on average 28% over a conventional approach.

Our current work can be extended in several directions. For ex-
ample, as an immediate future work, we plan to implement the pro-
posed techniques in one of the open-source mobile phones such
as Openmoko’s Neo FreeRunner phone [15] to evaluate the per-
formance benefits of the proposed techniques in a practical set-
ting. Moreover, we will extend our experiments with variousFTLs.
Since the condition for a garbage collection triggering andthe pro-
cesses in a garbage collection depend on a FTL, considering char-
acteristics of FTLs in Web browser cache will be an interesting
issue.

7. ACKNOWLEDGMENTS
This work was supported by the Korea Science and Engineer-

ing Foundation (KOSEF) through the National Research Lab. Pro-
gram funded by the Ministry of Education, Science and Technol-
ogy (No.R0A-2007-000-20116-0). This work was also supported

Figure 8: The breakdown of total response times of Web
browser cache

in part by the Brain Korea 21 Project in 2008. The ICT at Seoul
National University provides research facilities for thisstudy.

8. REFERENCES
[1] K. Nagao, Y. Shirai, and K. Squire. “Semantic annotationand

transcoding: making Web content more accessible,” IEEE Mul-
timedia, vol. 8, no. 2, pp. 69-81, 2001.

[2] J. Chen, B. Zhou, J. Shi, and H. Zhang. “Function-based ob-
ject model towards website adaptation,” in Proc. International
Conference on World Wide Web, 2001.

[3] http://hspa.gsmworld.com
[4] http://www.umtsworld.com/technology/wcdma.htm
[5] http://www.apple.com/iphone
[6] P. Cao and S. Irani. “Cost-aware WWW proxy caching algo-

rithms,” in Proc. USENIX Symposium on Internet Technologies
and Systems, 1997.

[7] S. Jin and A. Bestavros. “Popularity-aware greedy dual-size
Web proxy caching algorithms,” in Proc. International Confer-
ence on Distributed Computing Systems, 2000.

[8] J. Shim, P. Scheuermann, and R. Vingralek. “Proxy cache algo-
rithms: design, implementation, and performance,” IEEE Trans-
action on Knowledge and Data Engineering, vol. 11, no. 4, pp.
549-562, 1999.

[9] C. Yang, K. Tien, and M. Wueng. “Browser cache manage-
ment for small wireless devices with memory and bandwidth
constraints,” in Proc. Parallel and Distributed Computing, Ap-
plications and Technologies, 2003.

[10] B. Jin, S. Tian, C. Lin, X. Ren, and Y. Huang. “An integrated
prefetching and caching scheme for mobile Web caching sys-
tem,” in Proc. International Conference on Software Engineer-
ing, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2007.

[11] www.opera.com
[12] A. R. Butt, C. Gniady, Y. C. Hu. “The performance impact

of kernel prefetching on buffer cache replacement algorithms,”
ACM SIGMETRICS Performance Evaluation Review, vol. 33,
no. 1, pp. 157-168, 2005.

[13] Samsung Electronics. “4M× 32Bit× 4 Banks Mobile
SDRAM,” http://www.samsung.com/global/system/business/
semiconductor/product/2007/6/11/MobileSDRAM/Mobile-
SDRSDRAM/512Mbit/K4M51323PC/ds_k4m51323pc.pdf,
2007.

[14] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A
space-efficient flash translation layer for compact flash systems,”
IEEE Transactions on Consumer Electronics, vol. 48, no. 2, pp.
366-375, 2002.

[15] http://wiki.openmoko.org

