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Abstract
Host Performance Booster (HPB) was proposed to improve
the performance of high-capacity mobile flash storage sys-
tems by utilizing unused host DRAM memory. In this pa-
per, we investigate how HPB should be managed so that the
user experience of smartphones can be enhanced from HPB-
enabled high-performance mobile storage systems. From our
empirical study on Android environments, we identified two
requirements for an efficient HPB management scheme in
smartphones. First, HPB should be managed in a foreground
app-centric manner so that the user-perceived latency can be
greatly reduced. Second, the capacity of the HPB memory
should be dynamically adjusted so as not to degrade the user
experience of the foreground app. As an efficient HPB man-
agement solution that meets the identified requirements, we
propose an integrated host-SSD mapping table management
scheme, HPBvalve, for smartphones. HPBvalve prioritizes the
foreground app in managing mapping table entries in the HPB
memory. HPBvalve dynamically resizes the overall capacity
of the HPB memory depending on the memory pressure status
of the smartphone. Our experimental results using the pro-
totype implementation demonstrate that HPBvalve improves
UX-critical app launching time by up to 43% (250 ms) over
the existing HPB management scheme, without negatively
affecting memory pressure. Meanwhile, the L2P mapping
misses are alleviated by up to 78%.

1 Introduction
User experience (UX) design is one of the topmost tasks in de-
signing modern smartphones. In order to create a high-quality
UX from a smartphone, it is essential for the smartphone to
react promptly to user inputs without a noticeable delay. For
example, when an application (app) is launched, if there exists
a considerable user-perceived delay, the quality of UX would
be significantly degraded. Since user-perceived delays play a
key role in realizing high-quality UX, many researchers have
investigated various system resource management schemes
so that user-perceived delays can be minimized for the user-
facing foreground (FG) apps [1–4].

Although existing techniques have explored the most plau-
sible sources that influence user-perceived delays, a storage
system has not been actively investigated from the perspective
of user-perceived delays. As the capacity of a mobile storage
system quickly increases (e.g., a 1-TB Universal Flash Stor-
age (UFS) device [5]), the read latency of the mobile storage
system is emerging as a key factor that can negatively affect
user-perceived delays [1, 4, 6, 7]. Since the overall quality of
UX is determined by how promptly a smartphone responds to
a user’s input, storage responsiveness has a significant corre-
lation with improved user responsiveness. There are two main
reasons why the read latency of the mobile storage system has
a high impact on the UX quality. First, the read latency of a
mobile storage system accounts for the largest portion of the
total latency of a host request in modern smartphones [1]. For
example, when an app is launched on an Android smartphone,
approximately more than half of the total app launching time
is taken by the storage read time [1, 6].

Second, the read latency of a mobile storage system varies
significantly because of the limited SRAM capacity in the
mobile storage system. Since SRAM in the mobile storage
system is used for implementing a logical-to-physical (L2P)
mapping table, which is an essential component of a flash-
based storage system, the performance of the mobile stor-
age system is highly dependent on the capacity of SRAM.
Unfortunately, the capacity of SRAM is quite limited for
large-capacity mobile storage systems. Under this design con-
straint, an L2P mapping table is commonly managed by an
on-demand scheme (e.g., DFTL [8]) that only loads a small
portion of the entire L2P mapping entries in (fast) SRAM
while the complete L2P mapping table is stored in (slow)
flash memory. When most host read requests cannot find their
L2P mapping entries from SRAM, their read latency can be
significantly longer, thus causing a large increase in user-
perceived delays. For example, in our exploratory evaluation,
we observed that the app launching time increases by up to
50% when the SRAM only contains a portion of the L2P
mapping entries as opposed to when it contains all entries.

To overcome the performance problem from the limited
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SRAM capacity within a mobile storage system, Host Per-
formance Booster (HPB) [9, 10] was introduced to store L2P
mapping entries in the host memory. It was first shipped in
production by Google’s Pixel 3 in 2018 with Linux kernel
v4.9.96 [11] shortly after its introduction. By exploiting the
host memory as a (fast) L2P mapping cache in addition to
the SRAM of a mobile storage system, HPB can improve I/O
performance by reducing costly SRAM L2P cache misses that
require slow flash read accesses. Although several researchers
have successfully shown that exploiting the host memory is an
effective approach for improving I/O performance [9, 12–14],
few work has treated the problem of utilizing the host mem-
ory for high-performance I/O from the UX perspective in a
holistic fashion. The main goal of our work is to compre-
hensively investigate how HPB should be managed so that
the UX of smartphones can be enhanced from HPB-enabled
high-performance mobile storage systems.

In order to understand how HPB should be managed in
a UX-aware fashion, we evaluate how various UX-related
performance metrics are affected by different HPB settings
on Android environments. To this end, we measure perfor-
mance metrics that are relevant to UX quality, such as the
app launching, switching, and loading times. We measure this
systematically using repeatable and reproducible benchmarks
to enable accurate and reliable UX-quality evaluation, elim-
inating the possibility of human errors. From our empirical
study, we identify two key requirements for an efficient HPB
management scheme in smartphones. First, the existing HPB
management scheme [15] is FG app-oblivious in that the app
status is not actively considered in managing the HPB mem-
ory. For example, HPB only focuses on caching L2P entries
with high reference counts without considering its impact
on UX. In order to improve UX from a smartphone, HPB
memory should be managed in an FG app-centric manner so
that the user-perceived delay of a user-facing FG app can be
effectively minimized. Second, the capacity of the HPB mem-
ory reserved from the host memory should be dynamically
adjusted during run time so that no apps suffer extra memory
pressure from the HPB-allocated DRAM. For example, when
a large amount of memory is statically reserved for HPB, the
low memory killer daemon (LMKD) [16] is triggered more
frequently to relieve increased memory pressure, significantly
degrading the UX. Allocating small-size memory to avoid
such cases is not ideal either as it negates the potential perfor-
mance improvement from deploying HPB.

As an efficient HPB management solution that meets two
key requirements, we propose HPBvalve (Hvalve in short), an
integrated host-SSD mapping management scheme for HPB-
enabled smartphones. Unlike the existing HPB management
scheme [15], Hvalve prioritizes FG app in caching entries to
HPB by integrating app status (FG or BG) for every submitted
I/O. For further UX improvement, Hvalve detects every app
launch event which is one of the most important activities of
smartphones that highly impacts UX. Then, Hvalve utilizes

the profiled launch-time-referenced L2P list ahead of time to
reduce user-perceived delays of an app launch. Additionally,
Hvalve adjusts the maximum capacity of the reserved HPB
memory according to the current memory pressure status of
a smartphone. When memory pressure is monitored, Hvalve
selectively returns HPB memory to apps. Through dynamic
HPB memory size adjustment, Hvalve can utilize the unused
host memory efficiently while preventing inadvertent UX
regression from using HPB.

In order to validate the effectiveness of the proposed Hvalve,
we develop a prototype Hvalve that supports the internal oper-
ational logic of Hvalve on a hardware development kit (HDK)
based on the Snapdragon 888 SoC [17] (see Section 6.1 for
details). Our experimental results show that Hvalve can effec-
tively manage the HPB memory, reducing the user-perceived
delays of an FG app by up to 43% over the existing scheme
without increasing the overall memory pressure.

The remainder of this paper is organized as follows. We
first review how HPB-enabled smartphones work in Section 2
and review related work in Section 3. In Section 4, we present
the key design requirements of a UX-aware HPB management
scheme based on our empirical observations. In Section 5,
we describe the design and implementation of Hvalve. The
experimental results are reported in Section 6. Finally, we
conclude with a summary in Section 7.

2 Background
In this section, we briefly explain the basics of L2P map-
ping structures and policies of the conventional and the HPB-
enabled storage systems.

2.1 Controller-side L2P Mapping Structure
The latency of I/O requests submitted to a UFS device varies
greatly depending on how the underlying L2P mapping
scheme works. As the capacity of UFS devices increases,
its L2P mapping table size also increases accordingly. Keep-
ing such a large mapping table in a small SRAM inside the
UFS device is technically impossible. Therefore, the UFS
device employs an on-demand cache scheme that stores the
entire L2P mapping table in flash, caching popular mapping
entries in SRAM. On a cache hit, the UFS device provides
excellent performance. On a cache miss, however, it suffers
from long I/O latency because the missing L2P entry must be
fetched from the flash first before serving an I/O request.

Fig. 1 illustrates how the UFS deals with I/O requests
from the host in detail. When a read request is received ( 1 ),
the flash translation layer (FTL), which is responsible for
translating a logical page address (LPA - file-system managed
address) to a physical page address (PPA - storage device
managed address), looks up cached L2P entries in SRAM
( 2 ). If the desired L2P entry is found in cache, the FTL reads
the requested data from the flash by consulting the translation
information and returns it to the host. To keep track of hot
entries, the FTL internally maintains a pseudo-LRU list for
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Figure 1: A read operation path.

L2P entries. The hit L2P entry moves to the head of the list.
If the FTL fails to find the matched entry, it has to choose and
evict a victim entry to make room in the SRAM. The entry at
the tail of the list is evicted and the FTL reads in the wanted
L2P entry from the flash to the SRAM ( 3 ). Finally, the FTL
reads the data from the flash ( 4 ), and delivers the read data
to the host ( 5 ).

The on-demand cache scheme performs well when the
size of the SRAM cache is large enough to accommodate
most of the hot L2P entries. However, the capacity of a UFS
device scales much faster than that of SRAM, which makes
it difficult to cache sufficient hot entries in the SRAM. For
example, the latest UFS device offers up to 1 TB [5] capacity,
but its internal SRAM capacity is known to be only several
hundred kilobytes [18]. Considering that the mapping table
size is estimated as 0.1% of the UFS capacity, only the top
0.0005% of the table entries can be cached in the SRAM when
its size is 512 KB, which is too small to keep hot entries.

2.2 Host-side L2P Mapping Structure
The constrained capacity of SRAM results in inconsistent
I/O latency, which degrades UX. To overcome this problem,
Jeong et al. [9] have introduced a Host Performance Booster
(HPB) which extends a storage mapping space by exploiting
the host memory. The HPB borrows a specific portion of the
host memory and then keeps popular L2P entries to improve
a mapping cache hit ratio.

Fig. 1 illustrates how the UFS device handles a read request
when the HPB is enabled. The HPB manager is implemented
in the UFS device driver of the Android kernel and manages
the host memory space dedicated to caching L2P entries. Be-
fore sending a read request to the UFS, the HPB manager first
searches for its L2P mapping entry in the host memory using
the logical block address (LBA) of the request. If the desired
L2P entry is found, the corresponding PPA is piggybacked on
the read request ( 1 ), which is then submitted to the UFS ( 2 ).
Upon the receipt of the request, the FTL in the UFS first veri-
fies the integrity of the given PPA [9] and then directly issues
a page read request to fetch the data of the designated PPA
( 3 ). It is unnecessary to look up the device-side mapping
table. Finally, the FTL delivers the data to the host ( 4 ).

The HPB manager is responsible for selecting which L2P

entries to fetch from UFS and keep in the HPB-designated
host memory, based on its predefined conditions. A single
HPB entry is 4 KB in size and stores 512 L2P entries. The
HPB manager retrieves 512 L2P entries from UFS through
one fetch command. The fetch command involves a normal 4-
KB block read request to UFS, so the latency of a single fetch
command is comparable to regular read latency. Whenever
PPAs of L2P entries are changed due to internal operations
such as a garbage collection on the UFS device side, the HPB
manager is informed of the invalidated PPAs.

Using HPB, the overall I/O performance can be greatly
improved by minimizing L2P misses. However, this benefit
comes at the cost of reduced working memory space for apps.
When integrating the HPB to the system, the following two
technical issues should be carefully considered. The first is to
properly decide the size of the HPB-designated memory. If
the HPB size is too small, I/O performance gains by the HPB
would be marginal. Conversely, if it is overly provisioned,
the performance of apps would drop significantly as the HPB
steals too much system memory which was to be used for apps.
The second is to appropriately choose L2P entries to cache
within the limited HPB memory, in a UX-centric manner.
While HPB parameters are set vendor-specifically [10], to the
best of our knowledge, there are currently no HPB systems
in production that actively consider the state of apps [11, 19–
28]. The current upstream HPB device driver (included in
the Android Common Kernel since v5.10 [15]) employs the
counter-based caching policy and the timer-based eviction
policy for efficient HPB memory management. However, we
argue that both of these policies fail to improve user-perceived
delays which we discuss in Section 4.

3 Related Work
Classifications of FG and BG apps are pivotal in maintain-
ing good UX on both mobile [29–31] and desktop environ-
ments [32]. Academia also follows this trend and makes use
of FG/BG separation to further improve UX. Marvin [33] and
Acclaim [34] modify the memory management subsystem
and improve the FG app’s performance by de-prioritizing BG
apps’ memory pages. ASAP [7] categorizes memory pages
and prefetches FG app-related pages to improve app switching
time. FastTrack [1] accelerates FG I/O requests by resolving
I/O priority inversion caused by BG apps.

Despite the great impact of storage performance on UX,
little attention has been paid to optimizing L2P caching under
mobile device environments. To the best of our knowledge,
FOAM [6] is the only work that sophisticates an L2P cache
to enhance user-perceived performance. FOAM assigns dif-
ferent priorities to L2P entries, depending on the type of apps
(FG or BG) and the type of I/O requests (read or write) that
access them. They argue that the FG apps and the read re-
quests precede other counterparts in terms of user-perceived
performance. As such, FOAM divides the L2P cache into four
partitions, FG-read (FR), FG-write (FW), BG-read (BR), and
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BG-write (BW), and it accordingly moves the L2P entries
across partitions whenever they are referenced. When choos-
ing a victim, FOAM evicts the partitions from the lowest to
the highest priority (i.e., BR, BW, FR, and FW).

While FOAM enhances UX by prioritizing the eviction of
L2P entries associated with BG apps, it has two limitations.
First, FOAM only assumes an in-device cache, having no con-
sideration of an HPB-enabled system. Thus, its effectiveness
is limited to the latest mobile environments where HPB is
used due to the increased mapping table size. Second, FOAM
does not perform well when the FG and BG apps are switched
quickly. This situation happens when the user runs multiple
apps simultaneously. In this case, because the effective dis-
tinction between the FG and BG apps is not clear, the eviction
policy of FOAM might lead to an unintended result.

4 Empirical Study of HPB on Smartphones
In this section, we empirically investigate how much the per-
formance of FG apps is affected by the storage L2P cache.
We first examine how the storage mapping cache affects the
quality of UX on smartphones. Then, we assess the effective-
ness of the existing HPB cache management policy and how
it should be managed to boost UX.

4.1 Evaluation Study Setup
We conduct a set of experiments with a mobile hardware de-
velopment kit based on the Snapdragon 888 SoC [17]. As for
the benchmarks, we use nine popular smartphone apps 1 that
are categorized into three types: games, social media, and util-
ities. We run the nine apps according to a predefined scenario
that mimics real-world app-usage patterns of smartphones. In
evaluating the UX, there exist various metrics such as app
launching [35–41], app switching [7] and app loading [1].
These metrics are directly affected by the I/O performance as
numerous libraries and files have to be loaded. In this section,
we target app launching and loading times for the key metrics
to assess the impact of L2P cache misses on UX, as they are
the biggest contributors to the user-perceived latency.

We modify HPB in the Android kernel to implement vari-
ous HPB cache management policies and to collect various
performance-related statistics (e.g., user-perceived latency
and mapping cache hit ratios). Unfortunately, it is impossible
to modify the firmware of UFS products. As an alternative,
we develop a custom-emulated UFS device that mimics the
behavior of production UFS devices using an Ultra-Low La-
tency SSD (ULL-SSD) [42]. The ULL-SSD has very low I/O
latency (<20 µs) with extremely low variations, which makes
it the perfect vehicle to emulate a slower UFS device.

We attach a 1-TB ULL-SSD as the main storage device
for our custom-emulated UFS device. In between the HPB

1Asphalt9 (AP), Clash Royale (CR), Genshin Impact (GI), Facebook
(FB), Instagram (IG), Twitter (TW), Airbnb (AB), Facebook Messenger
(FBM), and Uber (UB) (see Section 6.1 for app usage scenarios).
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Figure 2: Impact of L2P cache misses on user-perceived la-
tency.

and the ULL-SSD, we run a UFS layer that implements UFS
firmware algorithms, including L2P address translation, map-
ping cache management policies, and garbage collection. To
emulate the I/O latency of UFS devices over the ULL-SSD,
we also include a UFS I/O latency model 2 on the UFS layer.
The UFS layer borrows a part of the host memory space and
uses it as an L2P cache. For the UFS layer, we assign 512 KB
of memory as an L2P cache space [18]. The HPB-allocated
host memory size is set to 256 MB out of the 12 GB of host
DRAM. Note that 1 GB of memory is required to cache the
entire L2P mapping table. Since we use the same system
and benchmark setups used in Section 6, more details of the
experimental settings are explained in Section 6.1.

4.2 Impact of L2P Cache Misses on UX
In order to understand how much L2P cache misses affect the
quality of UX, we quantitatively measure the user-perceived
latency when an app is being launched and loaded. We mea-
sure the app launching time of apps from social media and
utilities, and the app loading time of games while executing
the app-usage scenario as described in Section 6.1.

Fig. 2 shows our experimental results. We compare the app
launching time of three system setups: UFS, UFS+HPB, and
OPTIMAL. UFS only uses a small cache (i.e., 512 KB) to keep
L2P entries. In addition to the UFS-level cache, UFS+HPB
expands the capacity of the L2P cache by borrowing the
host memory, 256 MB in our setup. OPTIMAL represents the
optimal case that assumes the underlying UFS has sufficient
memory space to keep the entire L2P entries. The OPTIMAL
setup neither suffers from extra I/Os caused by L2P cache
misses nor needs to steal host memory to expand its L2P cache
size. Note that the difference in the latency between apps is
due to different amounts of data needed for the execution of
each app. By monitoring the memory consumption of each
app, we observe that the maximum memory consumption gap
is approximately 1 GB (between FBM and GI).

As expected, OPTIMAL exhibits the best performance across
all apps, outperforming UFS and UFS+HPB by up to 50% for
UB and 43% for IG, respectively. These results confirm that

2We acquired the numbers for the latency model through a discussion
with a storage vendor since the official datasheet is not publicly available.
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L2P cache misses greatly impact user-perceived delays. Even
worse, absolute launch-time gaps are much wider than our
expectations: 220 ms between OPTIMAL and UFS; 183 ms be-
tween OPTIMAL and UFS+HPB, on average. In order to deliver
high-quality UX, reducing every millisecond matters [43, 44].
This is further emphasized by the recent mobile hardware
trend of shipping displays with higher refresh rates [45–48].
For example, just 3.5 ms of delay can result in a noticeable
stutter with a 144-Hz display [49]. It is important to opti-
mize the user-perceived latency since it is well-known in
the industry that a delay of just 100 ms can have significant
consequences in online marketplaces [43].

We make two prominent observations from the above re-
sults. First, even though UFS+HPB borrows relatively a large
amount of memory – 256 MB that can cache 25% of the entire
L2P entries in its cache – from the host, it shows a marginal
improvement in the app launching time. According to our
observations (see Section 4.3), the L2P cache management
policy fails to cache useful L2P entries that have a high im-
pact on user-perceived latency. Instead, it often caches less
important entries associated with BG apps, wasting valuable
memory. Second, UFS+HPB shows worse performance than
UFS for some apps – CR, IG, and UB. Our analysis reveals
that stealing too much memory from the host incurs severe
memory pressure. This leads to the frequent killing of apps,
which results in many additional I/Os when the killed apps
are launched again (see Section 4.4).

4.3 Impact of HPB Management Policy on UX
To figure out the root causes of why HPB performs poorly
with a large mapping cache memory, we compare the hit ratios
of FG and BG apps. We observe that FG apps suffer from
higher miss ratios than BG apps, regardless of the cache size.
Fig. 3 counts the number of I/Os issued by FG and BG apps
and also displays how many of them are hit by the HPB cache.
Except for UB, FG apps experience more L2P cache misses
than BG apps.

We analyze detailed behaviors of state-of-the-art HPB man-
agement techniques. We find that the low hit ratios of FG
apps are mainly due to wrong decisions made by a reference
count-based L2P fetch policy and a timer-based eviction pol-
icy employed by the HPB manager in the Android kernel [15].
The HPB manager measures reference counts of LBAs and

Figure 4: Read I/O access patterns of FG apps.

fetches L2P entries from the storage that have a large number
of reads. However, as shown in Fig. 3, the number of read
I/Os issued by BG apps is relatively larger than those by FG
apps. L2P entries associated with BG apps are likely to have
larger reference counts than those of FG apps. This results in
unintended consequences that the HPB fetches L2P entries for
BG apps. Simply fetching LBAs with large reference counts
cannot guarantee improved UX.

The timer-based eviction policy is another root cause that
makes the HPB inefficient. Even when the HPB cache space
is not full, HPB evicts a cached L2P entry that is not refer-
enced for a predefined time (e.g., 100 seconds in the Android
Common Kernel v5.10 [15]). This timer-based eviction pol-
icy also does not consider the app usage patterns of the user,
and thus often evicts L2P entries associated with FG apps.
In general, after using an FG app for a while, a user moves
to another app and then returns to the former FG app again.
If the former FG app has not been used for a relatively long
time, the timer-based policy would have evicted its L2P en-
tries. When the user re-launches the former FG app, its L2P
entries will no longer exist in the HPB memory, which results
in mapping misses and may increase user-perceived delays.

Random I/O patterns that typically occur when an app is
launched make it challenging for the HPB to provide high
L2P hit ratios. Fig. 4 illustrates partial LBA access patterns
of FG apps when they are launched and run for a while. As
shown in Fig. 4, we observe that many small random reads,
which span a wide range of LBAs, are heavily issued at the
beginning of app launches. This randomness results in high
L2P cache misses. Fig. 5 illustrates trends of the number
of L2P cache misses over time for some selected apps in
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Fig. 4. As expected from I/O patterns in Fig. 4, many L2P
cache misses are concentrated in the early stages of an app’s
execution. For example, UB experiences 74% and 90%, and
AP experiences 20% and 51% of its cache miss in the first
tenth and the first fifth of its total execution time respectively.
It is worth noting that even if a smartphone user does not
manually close the used apps, it is practically infeasible to
keep all apps open in BG due to memory constraints [16, 33,
50], even on devices with large amounts of DRAM [51]. Thus,
random I/Os are inevitable in the mobile environment, and
improving them is a key factor in providing a better UX.

4.4 Impact of HPB Size on UX
HPB shares the same host memory with the Android platform.
To provide optimal performance to users, the size of HPB
memory should be carefully tuned. Allocating large amounts
of host memory to HPB is beneficial in improving L2P hit
ratios. On the other hand, as mentioned in Section 4.2, assign-
ing too much memory to HPB might result in UX degradation
due to an increase in memory pressure. To prevent HPB from
over-consuming memory, the HPB manager employs a timer-
based eviction policy. However, as shown in Section 4.3, its
FG app-oblivious decisions often cause side effects resulting
in evictions of the FG app’s cached L2P entries.

To understand how much the HPB memory size affects
the user-perceived latency, we observe how the number of
read I/Os changes while varying the HPB size usage from 0
to 1 GB. In our evaluation setup, 1 GB of memory is large
enough to keep all of the L2P entries in HPB. With recent mo-
bile devices with more and more DRAM (e.g., 18 GB) [52],
this amount may sound trivial. However, memory pressure is
still often observed in Android systems [51, 53]. Contrary to
server or desktop systems, Android tries to maximize mem-
ory utilization to maximize its caching capabilities by de-
fault [54]. Also, due to the general trend of apps using more
resources [55], Android is often susceptible to high memory
pressure even with a large capacity of memory. Consequently,
relieving memory pressure on the Android system depends
on low memory killer by terminating the least important apps.
Thus, statically reserving a large amount of memory for im-
proving storage performance is a short-sighted decision with

no consideration of its impact on the overall UX.
From the experimental results shown in the Fig. 6, we

make two key observations on the impact of the different
HPB sizes. First, the optimal HPB size, which results in the
minimal number of flash reads (i.e., app reads + L2P reads), is
different for each individual app. For example, IG shows the
minimum number of flash reads with 512 MB whereas UB
only needs 16 MB. Second, the number of FG apps issued I/Os
(app reads) gradually increases as more and more memory
is allocated to the HPB. Fig. 6 counts the number of I/Os
issued from FG apps and the HPB. As the HPB size increases,
thanks to the improved L2P hit ratios, L2P reads from the
HPB tend to decrease. While at the same time, since HPB
increases the memory pressure of the system, FG apps tend to
issue an increased number of read I/Os (e.g., UB issues 142%
more read I/Os with 1-GB HPB memory when compared to
none of the host memory is allocated to the HPB).

Under memory pressure, Android starts killing apps to re-
lieve memory pressure. LMKD uses pressure stall information
(PSI) [50] provided by the Linux kernel to detect memory
pressure situations, and decides when and how to kill apps.
Using PSI, LMKD monitors memory pressure levels and kills
the least important app repeatedly until the memory pressure
is relieved. If the system consumes more memory, it naturally
leads to LMKD killing more apps. As shown in Table 1, killed
apps (cold state) not only take much longer to launch, up to
6.2×, but it also incurs much more I/Os, up to 12×, further
degrading the UX [7, 34]. Hence, the HPB size is a trade-off
regarding the overall UX which should be carefully tuned.

To understand how HPB affects the behavior of LMKD
(e.g., how often it kills and how important the victim app
is), we analyze the LMKD kill counts for each priority cate-

Warm state Cold state
Launching time (ms) I/O counts Launching time (ms) I/O counts

AP 352.6 250 2188.6 2164
CR 239 217 668.4 2879
UB 366.4 28 563 60
IG 482.3 349 1245.1 4224

Table 1: App launching time and the corresponding I/O counts
of two different launching states.
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Figure 7: Number of LMKD killed apps and the proportion
of the killed apps’ priority with different HPB sizes.

gory. Fig. 7 shows the histogram of LMKD kill counts with
different HPB sizes. The higher the priority is, the more user-
perceptible the app is (e.g., the second-highest apps are the
user recently used ones but in the BG) [56]. As expected, an
increase in the HPB size results in a greater number of apps
and a higher proportion of high-priority apps being killed by
LMKD. Even though the existing HPB scheme might provide
better L2P hit ratios, UX degradation is inevitable.

Based on our observations, we conclude that the state-of-
the-art timer-based HPB size adjustment policy is suboptimal
in two aspects. First, while the timer-based HPB size adjust-
ment could lower the HPB’s memory usage, it cannot dynam-
ically relieve memory pressure as HPB is unaware of the
current memory pressure status. Second, when users run mul-
tiple apps simultaneously the system will suffer from severe
memory pressure due to the increased memory utilization by
both user apps and the HPB. In such a case, the timer-based
eviction policy is unable to proactively and selectively evict
cached entries as most HPB cached entries are recently ref-
erenced. Managing HPB memory with unawareness of the
memory pressure status poses a significant risk of degrading
the UX. To achieve the best HPB performance, the size of
HPB memory should be dynamically adjusted by consider-
ing the memory pressure status while not sacrificing the L2P
cache performance.

5 Design and Implementation of HPBvalve

Our empirical study presented in Section 4 reveals that the
naïve integration of HPB to Android does not guarantee im-
proved UX. Moreover, the existing techniques neither effi-
ciently cache or evict L2P entries in the HPB memory, nor
decide a proper size of the HPB memory from the perspective
of maximizing the user-perceived performance.

To improve the user-perceived latency of smartphones, we
should minimize the L2P cache misses of I/O requests from
FG apps. If UX-sensitive I/O requests are always hit by the
HPB memory, smartphone users experience the equivalent
performance as if the entire L2P entries are cached. At the
same time, to prevent user-noticeable and important apps from
being killed by LMKD, we should wisely adjust the HPB size
according to the status of the system memory pressure.

To accomplish the above goals, the existing HPB layer
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needs to be improved in two aspects. First, HPB should iden-
tify which I/Os are user-latency sensitive or not. Once identi-
fied, HPB should appropriately manage associated L2P entries
in the L2P cache, particularly in an FG app-centric manner.
Second, HPB should be aware of the memory pressure sta-
tus of the Android system. Then, it should decide whether to
increase or decrease the HPB memory size for higher L2P
cache hit ratios or for relieving memory pressure.

Keeping the above observations in mind, we propose an
integrated host-SSD mapping management scheme, called
HPBvalve (Hvalve in short), which addresses the limitations
of existing techniques. We aim to design Hvalve to be sim-
ple yet effective for its wide adoption in real-world devices.
To this end, Hvalve leverages information that is already col-
lected by other existing modules in the Android platform,
which enables Hvalve to exploit a variety of information in a
vertically-integrated manner at a low cost.

5.1 Overall Architecture of HPBvalve
Fig. 8 illustrates an overall architecture of Hvalve that is com-
posed of five key modules – App-Detector, Mem-Detector, FG-
Profiler, L2P-Manager, and HPB-Regulator. Hvalve has a cross-
layered design that spans across a wide range of system lay-
ers from the Android platform to the kernel. Two modules,
App-Detector and Mem-Detector, implemented in the Android
platform monitor the system status and collect a set of infor-
mation, including (i) the type of apps (i.e., FG or BG) that
issue I/Os, (ii) app state changes, and (iii) the memory pres-
sure status. This information is then delivered to the HPB
device driver in the Android kernel. Based on the delivered
information, three modules implemented in the kernel, FG-
Profiler, L2P-Manager, and HPB-Regulator, manage HPB in a
UX-centric manner by (i) separately managing and profiling
L2P entries of FG apps, (ii) prefetching the profiled L2P en-
tries on every app launch, and (iii) adjusting the HPB size
dynamically depending on the memory pressure status.

5.2 FG App-centric HPB Management
In this section, we explain how Hvalve manages L2P entries
using the FG app-centric caching policy.

FG/BG classification: In order to identify user-latency-
sensitive I/O requests, every submitted I/O has to be distin-
guished whether it is submitted by an FG or a BG app. To this
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end, we extend the kernel and Android framework so that the
kernel I/O stack becomes aware of the app-level information.
With our extension, every I/O request holds its caller UID (a
unique number that the Android system assigns to every app).
When a regular I/O system call is invoked, a new struct
bio is allocated under the same process context. Since the
same process context is maintained, the caller’s process con-
trol block (struct task_struct) is accessible from the bio
allocation step. We add a new member field in the bio to copy
the caller’s UID from the PCB. The new UID field can be
used in deciding whether a bio belongs to an FG or BG app.

In order to distinguish whether the submitted I/O is from
an FG app, the UID embedded in the request header has to
be compared to the UID of a current FG app. App-Detector is
designed to detect an FG app in the system. The App-Detector
keeps track of every app state change (e.g., a new FG launch-
start and launch-end) by referring to Android’s activity task
manager [57]. Upon every app state change detected, App-
Detector delivers a state change message to Hvalve. For exam-
ple, when a new FG launch is detected, App-Detector delivers
a launch-start signal (e.g., a new FG app is launched) to the
HPB in the kernel along with its UID. Hvalve makes use of
the delivered information for distinguishing every FG app-
submitted I/O. If an I/O request passed to the block layer has
a different UID from the App-Detector-passed current FG app’s
UID, it is considered as a BG I/O. This makes it possible for
Hvalve to manage HPB memory to assign higher priority to
L2P entries of an FG app (i.e., UX-sensitive L2P entries).

L2P management: In order to prioritize L2P entries of
FG apps, the L2P-Manager manages cached L2P entries in
three separate LRU lists depending on their importance –AFG
(an active FG app), IFG (inactive FG apps), and BG (BG
apps) lists, as illustrated in the Fig. 8. The reason for Hvalve
managing cached entries with three different LRU lists is
to differentiate the priority upon eviction. With these three
separate LRU lists, Hvalve is able to give different priorities
to the cached entries that are referenced by a user currently
interacting FG app, previously user-interacted FG apps, and
BG apps. Whenever an L2P of the current FG app gets cached
to the HPB memory, it is first inserted into the AFG list. If a
user launches a new FG app, the L2P entries in the AFG list
get demoted to the IFG list as they now belong to the previous
FG app. On the other hand, if an L2P entry from a BG app
gets cached to the HPB memory, it directly goes into the BG
list. Moving between lists, inserting or removing entries from
each list is trivial as all lists are implemented with hash lists.
With these three different LRU lists, Hvalve is able to manage
the HPB memory in an FG app-centric manner.

Caching policy of Hvalve: Hvalve respects the HPB’s
counter-based caching policy, thus it also caches frequently
referenced L2P entries to the HPB memory. In addition to
this, Hvalve cache L2P entries that satisfy the following condi-
tions. First, for every HPB cache miss that originated from the
current FG app, the L2P-Manager immediately caches the cor-
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responding L2P entry to the HPB memory to prevent further
cache misses of the said L2P. Second, a set of L2P entries of
the launched FG app are directly cached to the HPB memory
with the help of the FG-Profiler upon every app launch signal.
FG-Profiler is designed to collect information on the current
FG app to help HPB prioritize FG L2P entries to improve the
launching time as well as the total user-perceived latency.

FG app profiling and prefetching: As discussed in Sec-
tion 4.3, every app has its unique I/O patterns. To better man-
age the L2P cache based on apps’ unique I/O characteristics,
FG-Profiler maintains an LRU list of recently used FG apps,
each containing two separate L2P profiling lists: app launch
list and app running list. The app launch list contains a list of
LBAs that are referenced during an app launch (i.e., from a
launch-start signal to a launch-end signal, delivered by App-
Detector). The app running list holds a list of LBAs that are
accessed during the execution of the app (i.e., after a launch-
end signal).

Fig. 9 illustrates an example of how the FG-Profiler main-
tains the L2P profiling lists of FG apps. Once it receives a
launch-start message, it adds or moves the new FG app to the
head of the app-LRU list. Until a launch-end signal arrives, it
profiles every L2P entry needed by the launched app.

Fig. 10 shows an overview of how the L2P-Manager
prefetches L2P entries for every app launch. When the App-
Detector is notified of a launch-start of a new FG app it sends
a launch-start signal to HPB ( 1 ). Upon every launch-start
signal, the Hvalve tracked UID of the current FG app gets
updated to the UID of the new FG app. Then, the FG-Profiler
searches for the previously created profiling list of the new FG
app ( 2 ). If the profiled list is found, the FG-Profiler requests
the L2P-Manager, ( 3 ), to prefetch the L2P entries from the list.
This hides mapping miss penalties of the new FG app during
an app launching, as well as running.

Since every L2P prefetch request results in a new flash page
read operation, the FG-Profiler first prioritizes prefetching L2P
entries from the launch list. Only after prefetching the L2P
entries profiled in the launch list, the entries in the running list
are requested to be prefetched. The L2P-Manager preferentially
fetches the FG-Profiler-requested L2P entries from the UFS
( 4 ). Those prefetched FG L2P entries are then inserted to
the tail of the FG LRU list, AFG, rather than the head of the
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list ( 5 ). This is to differentiate priority upon victim selection
between the actually referenced entries by the FG app and the
Hvalve-prefetched entries. Even if the prefetched entries are
inserted into the tail of the AFG list, Hvalve does not attempt
to evict them until they are demoted to the IFG or BG lists.

Managing L2P lists per app is not only efficient for better
L2P hit ratios of FG apps, but also space-efficient in utilizing
the host memory. The profiling list is maintained as a pair
of the start chunk of the accessed LBA and the length of the
neighboring referenced chunks. Each of the profiling lists
only requires a few tens of kilobytes for most apps, 7 KB on
average. Moreover, to prevent the per-app L2P profiling lists
from excessively consuming the host memory, we statically
limit the maximum size of the total profiling lists to 1 MB.
Hvalve does not provide special handling for deduplicating
entries between app lists. Since the size of an entry of the
profiled per-app list is only 4 bytes, it is unlikely that signif-
icant memory gain can be achieved by removing duplicate
entries between lists. If the number of profiled apps exceeds
the predefined limit, the FG-Profiler frees the least recently
used app from the list to allow the newly launched FG app to
be profiled. Our current implementation sets this number to
20, which corresponds to the average smartphone usage [34].
This keeps the entire per-app L2P lists in less than 1 MB of
memory – a negligible space overhead. It can also be easily
extended to dynamically adjust if needed (see Section 6.3 for
more details).

5.3 Dynamic HPB Size Adjustment
To the best of our knowledge, there exist no techniques that op-
timally decide the HPB size to provide the best performance
by considering its impact on the overall UX quality. Hvalve
neither insists on statically allocating small HPB size to min-
imize its impact on memory pressure nor large HPB size to
boost L2P hit ratios. Instead, Hvalve proposes a dynamic HPB
size adjustment scheme that adjusts the HPB size based on the
monitored memory pressure status. Hvalve adaptively controls
the HPB memory size for higher I/O performance while no
user-interacting apps are mistakenly killed by LMKD. Hvalve
is unique in that I/O performance improvements are achieved

without negatively affecting UX-critical factors.
With Hvalve, if a non-memory-intensive app runs and the

system has enough free memory, the HPB size can increase to
cover the entire L2P mapping table. This enables us to maxi-
mally exploit the full benefits of HPB. However, whenever the
system starts to experience memory pressure, Hvalve immedi-
ately adjusts the HPB size accordingly, returning memory for
apps to use. As a result, the degradation of UX by excessively
assigning host memory to HPB does not occur.

Fig. 11 illustrates how Hvalve dynamically adjusts the al-
located HPB memory. As discussed in Section 4.4, Android
employs LMKD which selectively kills running apps to re-
lieve memory pressure. Once LMKD decides on a victim app
to kill, the Mem-Detector notifies the HPB-Regulator with the
target’s UID before LMKD starts killing the victim app ( 1 ).
The HPB-Regulator decides how important the victim app is
by checking the per-app L2P profiling list ( 2 ). If the victim
app is not found in the per-app L2P profiling list (i.e., not
a user recently used app), the signal is ignored and leaves
LMKD to continue killing the victim app. On the other hand,
if the victim app exists in the per-app L2P profiling list, it is
treated as an important app (i.e., a user recently interacted
app). Then to prevent the important app from being killed by
LMKD, Hvalve preferentially reclaims the HPB memory by
aggressively evicting low-priority cached L2P entries.

To decide how much memory to free from HPB, the proper-
ties of the LMKD victim app are taken into consideration. As
LMKD calculates the expected amount of memory to be freed
upon its victim selection, Hvalve attempts to free as much as
the LMKD desired amount. When the HPB-Regulator tells L2P-
Manager how much HPB memory to free ( 3 ), it delivers how
many cached entries in the HPB memory should be evicted
to prevent the LMKD killing its victim app.

The L2P-Manager considers the priority of cached L2P en-
tries when choosing which entries to evict. Hvalve marks
every cached L2P entry with its last-referenced UID, and
stores to an LRU list (e.g., AFG, IFG or BG) depending on
the type of the app it belongs to. With the three separate LRU
lists, Hvalve can make a fine-grained decision on which entry
to evict first as Hvalve is aware of which entries belong to the
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BG apps (BG list), a user recently used FG apps (inactive FG
list), and a currently user-facing FG app (active FG list). The
L2P-Manager starts to evict entries from the tail of the BG list,
( 4 ). If there are no more entries from the BG list to evict,
the ones from the inactive FG list are tried next. L2P-Manager
never evicts entries from the active FG list to avoid UX degra-
dation. The entries in the inactive FG list will naturally get
evicted by the L2P-Manager if it is left unused for a long time.
On the other hand, the entries in the BG list can be promoted
to the FG list if an FG app references entries in the BG list.

The proposed dynamic HPB size adjustment policy of
Hvalve may result in an increase in the execution time of the
LMKD’s app-killing process. This occurs when there is an
insufficient number of HPB cached entries that can be evicted
to alleviate the memory pressure. In such a case, LMKD has
to resume the paused app-killing process to reserve free mem-
ory space. The increased amount of execution time, however,
is marginal compared to the relatively longer procedure of
LMKD. In addition, from a long-term perspective, the dy-
namic HPB size adjustment is much more beneficial to the
overall UX quality as it prevents user apps from being killed.
A more detailed analysis is described in Section 6.3.

6 Experimental Results
In this section, we evaluate the overall quality of UX when
Hvalve is applied to an HPB-enabled system.

6.1 Experimental Setup
To evaluate the effectiveness of the proposed techniques,
we implement the App-Detector, Mem-Detector, FG-Profiler, L2P-
Manager, and HPB-Regulator of HPBvalve on a Snapdragon
888 Mobile HDK [17], which is illustrated in Fig. 12. Our
evaluation platform uses the same board support package
that is used on other production smartphones using the same
SoC. This HDK has 12 GB of DRAM (effectively 8 GB)
and PCIe 3.0 x2 connectivity, which we use to connect PCIe
peripherals. We use Android 12 and Linux kernel v5.4.161 to
implement Hvalve. As it is practically infeasible to modify the
UFS firmware, we use an ultra-low latency NVMe SSD [42]
described in Section 4.1 and implement a lightweight FTL in
the kernel to mimic UFS storage, which consumes approxi-
mately 4 GB of memory to run our test scenarios. We have
written about 1,000 LOC to implement Hvalve, which we
open-sourced on GitHub3, including the changes made to the
Android platform and the kernel.

We use am start command [35] to measure app launching
and switching times. For apps with multiple loading stages,
the am start command is unable to measure the total time
taken until the device is ready to take user inputs. For exam-
ple, GI goes through three separate loading stages until the
gameplay button appears while the am start command only

3The source code is available at https://github.com/cares-davinci/Hvalve.
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Figure 12: Prototype HPBvalve setup and app usage scenarios.

measures the time taken until the first stage. To precisely mea-
sure the app loading time, we employ an external high-speed
camera, which captures 120 frames per second that match the
refresh rate of our evaluation platform’s display.

As for the benchmarks, we evaluate nine popular mobile
apps listed in Section 4.1. To automatically run multiple mo-
bile apps under realistic app usage scenarios, we use the An-
droid debug bridge (adb) [58]. The predefined app usage
scenarios are described in Fig. 12. To avoid cherry-picking
sequences that would favor Hvalve, the sequence of the nine
apps is randomized and run multiple times to reduce variables.
The chosen random sequence is executed for each technique
for a fair comparison.

Even though the same randomized sequence was run for
each technique, there still exists run-to-run variations due
to noises such as network conditions, random advertisement
occurrences, and others. In order to minimize run-to-run vari-
ations, we fully automated the evaluation process to repeat the
same scenario twenty times for each case. We also disabled
the checkpoint on the underlying file system, f2fs [59], so
that the entire userdata partition could be rolled back to the
previous state to further minimize variances. After running
twenty times, we averaged the results of fifteen runs, exclud-
ing the five outliers. We compared Hvalve with the typical
HPB system that employs FOAM [6] as its L2P eviction pol-
icy, UFS+HPB, and an ideal system where all L2P entries are
cached in memory, OPTIMAL, and a conventional UFS sys-
tem without HPB, UFS. We also compared Hvalve-Only with
HPB-Only where the underlying UFS SRAM is not consid-
ered to evaluate the effectiveness of caching policy of Hvalve.

6.2 Performance Evaluation
In order to validate the effectiveness of Hvalve, we assess
the impact of FG app-centric HPB management and dynamic
HPB size adjustment techniques on the overall UX quality
compared against UFS+HPB.

6.2.1 FG app-centric HPB management
User-perceived latency: As for the most important perfor-
mance evaluation metrics in deciding the quality of UX, we
assess the app launching, switching, and loading times of
various HPB configurations.
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Fig. 13(a) shows the experimental results of the app launch-
ing time. The average app launching time of Hvalve is im-
proved by 28% and 23% when compared to UFS and UFS+HPB,
respectively. The maximum and minimum app launching
time improvements between Hvalve and UFS+HPB are 43%
for UB and 7% for FB where the corresponding absolute app
launching time improvements are 237 ms and 23 ms, respec-
tively. We also compare the app launching time of Hvalve to
OPTIMAL. The minimum and the maximum absolute launch-
time differences between OPTIMAL and Hvalve are only by
4 ms (+0.85%) for AB and 55 ms (+4.7%) for IG. On the
other hand, UFS+HPB takes 40 ms (+8.5%) for AB and 514 ms
(+43.1%) for IG more when compared to OPTIMAL.

We also measure the app switching time – the latency of
when a user switches back to an app that is recently launched.
As shown in Fig. 13(b), Hvalve outperforms UFS+HPB for
all cases. The maximum app switching time difference be-
tween Hvalve and OPTIMAL is only 4.6 ms (+3.15%) with
FB while it is 13.4 ms (+8.65%) on UFS+HPB in the same
scenario. The minimum increase in app switching time of
Hvalve compared to OPTIMAL is 0.5 ms (+0.12%) with TW,
while the gap between UFS+HPB and OPTIMAL of the same
case is 4 ms (+0.95%). Since a comparatively small number
of I/Os are issued while an app is being switched compared
to the app launch process, as described in Table 1, the per-
formance increase with Hvalve for the app switching time is
quite marginal compared to the other two metrics.

We also evaluate the app loading time of games by using
an external high-speed camera to measure the time from a
user launch of an app until the device is ready to take user
inputs. As shown in Fig. 13(c), the app loading time of all
three games is improved which provides almost the same
user-perceived latency as OPTIMAL. The minimum increase in
app loading time of Hvalve compared to OPTIMAL is 111.4 ms
(+2%) with CR while the gap between UFS+HPB and OPTIMAL
of the same case is 308.45 ms (+5.5%). The maximum app
loading time difference between Hvalve and OPTIMAL is only
205 ms (+1.6%) with AP while it is 1589 ms (+12.5%) on
UFS+HPB with the same scenario. When comparing Hvalve
to OPTIMAL, the increase in user-perceived latency, mainly
caused by mapping misses, is very marginal.

As discussed in Section 4.2, every millisecond of respon-
siveness greatly impacts the UX. According to our evalua-
tion results, the storage mapping miss penalties, resulting in
user-perceived delays, are significantly alleviated with Hvalve.
These benefits come from the FG app-centric HPB manage-
ment policy employed in Hvalve, which gives higher priority
to L2P entries of FG apps to be managed in the HPB memory.
To summarize, Hvalve alleviates the storage mapping miss
penalties of the baseline UFS+HPB by 80% for app launching
time and by 86% for app loading time on average.

L2P miss patterns: To analyze the impact of our proposed
FG app-centric HPB management of Hvalve on FG apps, we
first observe how much L2P miss distributions differ from
UFS+HPB over an app execution. Due to the page limit, we
include four representative apps, AP, CR, UB, and IG, two
from games and one each from social media and utilities.

As examined in Section 4.2, most of the L2P cache misses
occur during the early stages of the total app execution time.
Fig. 14 shows the distributions of L2P misses over the execu-
tion time of each FG app. Such mapping misses that occur
in the early stage are one of the root causes that increase
user-perceivable delays. Hvalve significantly reduces the peak
number of L2P misses during the early stage as well as the
total number of the L2P cache misses compared to UFS+HPB.
The maximum L2P miss reduction in the first tenth of the to-
tal normalized execution time is 88% with CR over UFS+HPB,
while the minimum is 45% with AP. During the first fifth of
the app execution time, 71% and 75% of the mapping misses
are alleviated for UB and IG, respectively.

The peak L2P misses are greatly reduced not only in the
early stages, but also throughout the entire execution time.
This advantage comes from both the caching and the eviction
policy of Hvalve. Hvalve prepares L2P lists by prefetching
when an app is being launched, and those of the prefetched
or cached entries of the current FG L2P entries never get
evicted from HPB memory as long as it remains as an FG.
The mapping miss penalties included in the user-perceived
latency, which could severely degrade the overall quality of
UX, are greatly reduced.

Hit ratios: In addition to the reduced user-perceived la-
tency and L2P misses, we also quantitatively evaluate the
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effectiveness of the FG app-centric L2P management policy
of Hvalve, by comparing HPB-Only to Hvalve-Only where the
underlying UFS SRAM is not considered. Fig. 15 illustrates
the HPB hit ratios of each FG app. The hit ratios of Hvalve-
Only outperform HPB-Only for all cases. In order to evaluate
the effectiveness of the L2P prefetching scheme of Hvalve,
we observe how the hit ratios of each FG app change over a
few numbers of consecutive app launches.

As the number of app launch counts increases, the hit ratios
of Hvalve keep increasing while the hit ratios of HPB-Only re-
main consistently low. The largest hit ratio difference between
HPB-Only and Hvalve-Only is 84.79% with UB. This result
proves that the L2P prefetching mechanism successfully im-
proves the performance of FG apps by hiding miss penalties.
The above results also confirm that Hvalve is effective in pro-
viding a better quality of UX as it actively reflects the app
usage patterns of individual smartphone users in managing
the HPB memory.

6.2.2 Dynamic HPB size adjustment
We compare Hvalve with UFS+HPB to evaluate the impact of
our proposed dynamic HPB size adjustment scheme on UX.
While Hvalve dynamically adjusts the HPB size depending
on the monitored memory pressure status, UFS+HPB statically
allocates the HPB size and adjusts it with a simple timer-based
eviction policy. In this evaluation, we set UFS as a baseline,
which does not require extra host memory to load storage
mapping entries (i.e., no impact on the memory pressure).

Fig. 16(a) shows a log-scaled histogram of the number of
LMKD killed apps with seven different priority categories.
As no extra host memory is used for allocating HPB memory
(i.e., no extra memory pressure), UFS results in the lowest
number of kills on every priority category. On the other hand,
the result of UFS+HPB shows much more apps were killed on
every priority category when compared to UFS. The number of
killed apps in the top three priority categories was increased
by 5× with UFS+HPB when compared to the UFS. While pro-

viding much higher L2P cache hit ratios, Hvalve reduces the
number of apps killed by LMKD in the top three priority cat-
egories by 70% compared to UFS+HPB. Therefore, we again
prove that simply integrating HPB into the system inevitably
increases the memory pressure resulting in high-priority user
apps being killed.

To further investigate the consequences of high-priority
apps being killed by LMKD, Fig. 16(b) shows the change in
the number of read I/Os issued by FG apps, normalized to the
number of read I/Os of UFS. The number of read I/Os with
UFS+HPB is increased by 13% on average when compared to
UFS, while Hvalve is only increased by 5% as it reduces the
impact on the FG apps as well.

To demonstrate how each UFS+HPB and Hvalve adjust the
allocated HPB memory, Fig. 17 illustrates changes in HPB
memory size along with the reported memory pressure signals.
Unsurprisingly, UFS+HPB allocates and frees HPB memory in
a non-harmonized manner with the overall memory pressure
status. Even when the memory pressure is present, UFS+HPB
still allocates host memory to HPB (i.e., adding more memory
pressure to the system) which increases the possibility of
important apps getting killed by LMKD.

On the other hand, Hvalve allocates host memory to the
HPB memory and also effectively returns the HPB memory to
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user apps in a harmonized manner with the memory pressure
signals. As a consequence, shown in Fig. 16(a), the number of
important apps killed by LMKD with Hvalve is much lower
than that of UFS+HPB. This is because Hvalve proactively
prevents LMKD from killing high-priority apps by promptly
returning the HPB-allocated memory to the user apps under
the monitored memory pressure signals.

6.3 Overhead Analysis
Space overhead: Unlike the existing HPB technique, Hvalve
consumes extra memory space for maintaining the per-app
profiling lists to prefetch L2P entries upon every FG app
launch. To avoid excessive memory consumption in manag-
ing the per-app profiling lists, Hvalve profiles only a moderate
number (e.g., 20) of recently used apps (which has a high im-
pact on UX). The total profiling app list size is also regulated
to 1 MB. The number of profiled L2P entries of each app
differs based on the app access patterns. The total memory
consumption for per-app profiling lists of the nine apps we use
throughout the evaluations only consumes 99 KB of memory.
It can be further minimized by merging neighboring groups
as each node can be transformed into a compact profiling list
that contains <Start LBA, Length>.

Performance overhead: While Hvalve manages the
cached L2Ps with three separate LRU lists, AFG, IFG, and
BG, moving cached entries between the LRU lists does not
necessitate exhaustive search overhead since all lists are man-
aged with hash lists. Retrieval and relocating a specific cached
L2P entry from one list to another list can be done in O(1)
time complexity. The process of promoting or demoting an
entry from one list to another is also simple as it requires
updating only a few associated pointers.

The overhead of dynamic HPB size adjustment is also
negligible as the process of returning HPB memory can be
executed comparatively faster than that of the LMKD’s app-
killing process. Hvalve takes about 1.8 ms on average to
free HPB memory whereas the app-killing process of LMKD
typically takes hundreds of milliseconds. Although unlikely,
in the worst case when Hvalve cannot evict sufficient cached
entries to free the requested amount of memory, an extra time
overhead (a few ms) can incur as LMKD must resume the

suspended app-killing procedure. Despite the potential of
Hvalve increasing the LMKD’s execution time, preferentially
freeing the HPB memory under memory pressure is more
advantageous to the overall system performance. For example,
if an app is killed by LMKD and re-launched after a while, the
evicted app-related data has to be reloaded. On the other hand,
re-fetching the HPB entries only requires a much smaller
number of I/Os.

Energy Consumption: Employing Hvalve does not require
extra energy consumption, since the two proposed HPB man-
agement schemes of Hvalve do not introduce severe search
or space overheads to the system. As the total execution time
of apps is reduced by integrating Hvalve, the total energy
consumption with Hvalve is even decreased by 3.51% com-
pared to UFS+HPB. When comparing to OPTIMAL, UFS+HPB
increases the total energy consumption by 4.02% while Hvalve
only increases by 0.56%. Hvalve successfully mitigates the
negative impacts of UFS+HPB on resource consumption and
the overall quality of UX.

7 Conclusion
In this paper, we present a novel FG app-centric L2P mapping
cache management scheme, HPBvalve, for the HPB-enabled
system. Hvalve is motivated by the fact that the existing HPB
management scheme fails to improve the UX of smartphones
due to two main reasons revealed through our empirical in-
vestigations. First, the priority of app status (FG or BG) is not
considered while managing cached L2P entries in the HPB
memory. Second, the memory pressure of the system could
get critically high as host memory is allocated to the HPB
without considering the memory pressure status. To improve
the overall quality of UX upon these shortcomings of the
existing HPB, Hvalve prioritizes the FG app in managing the
cached L2P entries in HPB memory and dynamically adjusts
the size of the HPB-designated host memory by monitoring
the current memory pressure status. This allows Hvalve to
reduce app kills in the top three priority categories by 70%
while achieving significantly higher L2P hit ratios for FG
apps. Our experimental results show that Hvalve successfully
improves the overall UX quality of smartphones and provides
almost equivalent performance as if most entries are cached
in the HPB memory.
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