
This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-931971-48-5

Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Fully Automatic Stream Management for
Multi-Streamed SSDs Using Program Contexts

Taejin Kim and Duwon Hong, Seoul National University; Sangwook Shane Hahn, Western
Digital; Myoungjun Chun, Seoul National University; Sungjin Lee, DGIST; Jooyoung Hwang

and Jongyoul Lee, Samsung Electronics; Jihong Kim, Seoul National University

https://www.usenix.org/conference/fast19/presentation/kim-taejin

Fully Automatic Stream Management for Multi-Streamed SSDs
Using Program Contexts

Taejin Kim, Duwon Hong, Sangwook Shane Hahn†, Myoungjun Chun,
Sungjin Lee‡, Jooyoung Hwang∗, Jongyoul Lee∗, and Jihong Kim

Seoul National University, †Western Digital, ‡DGIST, ∗Samsung Electronics

Abstract
Multi-streamed SSDs can significantly improve both the
performance and lifetime of flash-based SSDs when their
streams are properly managed. However, existing stream
management solutions do not adequately support the multi-
streamed SSDs for their wide adoption. No existing stream
management technique works in a fully automatic fashion
for general I/O workloads. Furthermore, the limited num-
ber of available streams makes it difficult to effectively man-
age streams when a large number of streams are required. In
this paper, we propose a fully automatic stream management
technique, PCStream, which can work efficiently for general
I/O workloads with heterogeneous write characteristics. PC-
Stream is based on the key insight that stream allocation de-
cisions should be made on dominant I/O activities. By iden-
tifying dominant I/O activities using program contexts, PC-
Stream fully automates the whole process of stream alloca-
tion within the kernel with no manual work. In order to over-
come the limited number of supported streams, we propose
a new type of streams, internal streams, which can be im-
plemented at low cost. PCStream can effectively double the
number of available streams using internal streams. Our eval-
uations on real multi-streamed SSDs show that PCStream

achieves the same efficiency as highly-optimized manual al-
locations by experienced programmers. PCStream improves
IOPS by up to 56% over the existing automatic technique by
reducing the garbage collection overhead by up to 69%.

1 Introduction

In flash-based SSDs, garbage collection (GC) is inevitable
because NAND flash memory does not support in-place up-
dates. Since the efficiency of garbage collection significantly
affects both the performance and lifetime of SSDs, garbage
collection has been extensively investigated so that the
garbage collection overhead can be reduced [1, 2, 3, 4, 5, 6].
For example, hot-cold separation techniques are commonly
used inside an SSD so that quickly invalidated pages are not

mixed with long-lived data in the same block. For more effi-
cient garbage collection, many techniques also exploit host-
level I/O access characteristics which can be used as useful
hints on the efficient data separation inside the SSD [7, 8].

Multi-streamed SSDs provide a special interface mecha-
nism for a host system, called streams1. With the stream in-
terface, data separation decisions on the host level can be
delivered to SSDs [9, 10]. When the host system assigns
two data D1 and D2 to different streams S1 and S2, respec-
tively, a multi-streamed SSD places D1 and D2 in differ-
ent blocks, which belong to S1 and S2, respectively. When
D1 and D2 have distinct update patterns, say, D1 with a
short lifetime and D2 with a long lifetime, allocating D1
and D2 to different streams can be helpful in minimizing
the copy cost of garbage collection by separating hot data
from cold data. Since data separation decisions can be made
more intelligently on the host level over on the SSD level,
when streams are properly managed, they can significantly
improve both the performance and lifetime of flash-based
SSDs [10, 11, 12, 13, 14]. We assume that a multi-streamed
SSD supports m+1 streams, S0, ..., Sm.

In order to maximize the potential benefit of multi-
streamed SSDs in practice, several requirements need to be
satisfied both for stream management and for SSD stream
implementation. First, stream management should be sup-
ported in a fully automatic fashion over general I/O work-
loads without any manual work. For example, if an applica-
tion developer should manage stream allocations manually
for a given SSD, multi-streamed SSDs are difficult to be
widely employed in practice. Second, stream management
techniques should have no dependency on the number of
available streams. If stream allocation decisions have some
dependence on the number of available streams, stream allo-
cation should be modified whenever the number of streams
in an SSD changes. Third, the number of streams supported
in an SSD should be sufficient to work well with multiple
concurrent I/O workloads. For example, with 4 streams, it

1In this paper, we use “streams” and “external streams” interchangeably.

USENIX Association 17th USENIX Conference on File and Storage Technologies 295

would be difficult to support a large number of I/O-intensive
concurrent tasks.

Unfortunately, to the best of our knowledge, no exist-
ing solutions for multi-streamed SSDs meet all these re-
quirements. Most existing techniques [10, 11, 12, 13] re-
quire programmers to assign streams at the application level
with manual code modifications. AutoStream [14] is the only
known automatic technique that supports stream manage-
ment in the kernel level without manual stream allocation.
However, since AutoStream predicts data lifetimes using the
update frequency of the logical block address (LBA), it
does not work well with append-only workloads (such as
RocksDB [15] or Cassandra [16]) and write-once workloads
(such as a Linux kernel build). Unlike conventional in-place
update workloads where data are written to the same LBAs
often show strong update locality, append-only or write-once
workloads make it impossible to predict data lifetimes from
LBA characteristics such as the access frequency.

In this paper, we propose a fully-automatic stream man-
agement technique, called PCStream, which works effi-
ciently over general I/O workloads including append-only,
write-once as well as in-place update workloads. The key
insight behind PCStream is that stream allocation decisions
should be made at a higher abstraction level where I/O ac-
tivities, not LBAs, can be meaningfully distinguished. For
example, in RocksDB, if we can tell whether the current I/O
is a part of logging activity or a compaction activity, stream
allocation decisions can be made a lot more efficiently over
when only LBAs of the current I/O is available.

In PCStream, we employ a write program context2 as such
a higher-level classification unit for representing I/O activity
regardless of the type of I/O workloads. A program context
(PC) [17, 18], which uniquely represents an execution path
of a program up to a write system call, is known to be ef-
fective in representing dominant I/O activities [19]. Further-
more, most dominant I/O activities tend to show distinct data
lifetime characteristics. By identifying dominant I/O activi-
ties using program contexts during run time, PCStream can
automate the whole process of stream allocation within the
kernel with no manual work. In order to seamlessly support
various SSDs with different numbers of streams, PCStream
groups program contexts with similar data lifetimes depend-
ing on the number of supported streams using the k-means
clustering algorithm [20]. Since program contexts focus on
the semantic aspect of I/O execution as a lifetime classifier,
not on the low-level details such as LBAs and access pat-
terns, PCStream easily supports different I/O workloads re-
gardless of whether it is update-only or append-only.

Although many program contexts show that their data life-
times are narrowly distributed, we observed that this is not
necessarily true because of several reasons. For example,

2Since we are interested in write-related system calls such as write() in
Linux, we use write program contexts and program contexts interchangeable
where no confusion arises.

when a single program context handles multiple types of data
with different lifetimes, data lifetime distributions of such
program contexts have rather large variances. In PCStream,
when such a program context PC j is observed (which was
mapped to a stream Sk), the long-lived data of PC j are moved
to a different stream Sk′ during GC. The stream Sk′ prevents
the long-lived data of the stream Sk from being mixed with
future short-lived data of the stream Sk.

When several program contexts have a large variance in
their data lifetimes, the required number of total streams can
quickly increase to distinguish data with different lifetimes.
In order to effectively increase the number of streams, we
propose a new stream type, called an internal stream, which
can be used only for garbage collection. Unlike external
streams, internal streams can be efficiently implemented at
low cost without increasing the SSD resource budget. In the
current version of PCStream, we create the same number of
internal streams as the external streams, effectively doubling
the number of available streams.

In order to evaluate the effectiveness of PCStream, we
have implemented PCStream in the Linux kernel (ver. 4.5)
and extended a Samsung PM963 SSD to support internal
streams. Our experimental results show that PCStream can
reduce the GC overhead as much as a manual stream man-
agement technique while requiring no code modification.
Over AutoStream, PCStream improves the average IOPS by
28% while reducing the average write amplification factor
(WAF) by 49%.

The rest of this paper is organized as follows. In Section
2, we review existing stream management techniques. Before
describing PCStream, its two core components are presented
in Sections 3 and 4. Section 5 describes PCStream in detail.
Experimental results follow in Section 6, and related work is
summarized in Section 7. Finally, we conclude with a sum-
mary and future work in Section 8.

2 Limitations of Current Practice in Multi-
Streamed SSDs

In this section, we review the key weaknesses of existing
stream management techniques as well as stream implemen-
tation methods. PCStream was motivated to overcome these
weaknesses so that multi-streamed SSDs can be widely em-
ployed in practice.

2.1 No Automatic Stream Management for
General I/O Workloads

Most existing stream management techniques [10, 11, 12]
require programmers to manually allocate streams for their
applications. For example, in both ManualStream3 [10] and
[11], there is no systematic guideline on how to allocate

3For brevity, we denote the manual stream allocation method used in
[10] by ManualStream.

296 17th USENIX Conference on File and Storage Technologies USENIX Association

Fig. 1: Lifetime distributions of append-only workload over addresses and times.

0.8

1

1.2

1.4

1.6

1 2 4 6 8

N
o
rm

a
li

z
e
d

 I
O

P
S

Number of Streams

Fig. 2: IOPS changes over the number of
streams.

streams for a given application. The efficiency of stream allo-
cations largely depends on the programmer’s understanding
and expertise on data temperature (i.e., frequency of updates)
and internals of database systems. Furthermore, many tech-
niques also assume that the number of streams is known a
priori. Therefore, when an SSD with a different number of
streams is used, these techniques need to re-allocate streams
manually. vStream [12] is an exception to this restriction by
allocating streams to virtual streams, not external streams.
However, even in vStream, virtual stream allocations are left
to programmer’s decisions.

Although FStream [13] and AutoStream [14] may be con-
sidered as automatic stream management techniques, their
applicability is quite limited. FStream [13] can be useful
for separating file system metadata but it does not work for
the user data separation. AutoStream [14] is the only known
technique that works in a fully automatic fashion by mak-
ing stream allocation decisions within the kernel. However,
since AutoStream predicts data lifetimes using the access fre-
quency of the same LBA, AutoStream does not work well
when no apparent locality on LBA accesses exists in appli-
cations. For example, in recent data-intensive applications
such as RocksDB [15] and Cassandra [16], the majority of
data are written in an append-only manner, thus no LBA-
level locality can be detected inside an SSD.

In order to illustrate a mismatch between an LBA-based
data separation technique and append-only workloads, we
analyzed the write pattern of RocksDB [15], which is a pop-
ular key-value store based on the LSM-tree algorithm [21].
Fig. 1(a) shows how LBAs may be related to data lifetimes
in RocksDB. We define the lifetime of data as the interval
length (in terms of the logical time based on the number of
writes) between when the data is first written and when the
data is invalidated by an overwrite or a TRIM command [22].
As shown in Fig. 1(a), there is no strong correlation between
LBAs and their lifetimes in RocksDB.

We also analyzed if the lifetimes of LBAs change under
some predictable patterns over time although the overall life-
time distribution shows large variances. Figs. 1(b) and 1(c)
show scatter plots of data lifetimes over the logical time
for two specific 1-MB chunks with 256 pages. As shown
in Figs. 1(b) and 1(c), for the given chunk, the lifetime of

data written to the chunk varies in an unpredictable fashion.
For example, at the logical time 10 in Fig. 1(b), the lifetime
was 1 but it increases about 2 million around the logical time
450 followed by a rapid drop around the logical time 500.
Our workload analysis using RocksDB strongly suggests that
under append-only workloads, LBAs are not useful in pre-
dicting data lifetimes reliably. In practice, the applicability
of LBA-based data separation techniques is quite limited to
a few cases only when the LBA access locality is obvious
in I/O activities such as updating metadata files or log files.
In order to support general I/O workloads in an automatic
fashion, stream management decisions should be based on
higher-level information which does not depend on lower-
level details such as write patterns based on LBAs.

2.2 Limited Number of Supported Streams
One of the key performance parameters in multi-streamed
SSDs is the number of available streams in SSDs. Since the
main function of streams is to separate data with different
lifetimes so that they are not mixed in the same block, it is
clear that the higher the number of streams, the more effi-
cient the performance of multi-streamed SSDs. For example,
Fig. 2 shows how IOPS in RocksDB changes as the number
of streams increases on a Samsung PM963 multi-streamed
SSD with 9 streams. The db bench benchmark was used for
measuring IOPS values with streams manually allocated. As
shown in Fig. 2, the IOPS is continuously improving until 6
streams are used when dominant I/O activities with different
data lifetimes are sufficiently separated. In order to support a
large number of streams, both the SBC-4 and NVMe revision
1.3, which define the multi-stream related specifications, al-
low up to 65,536 streams [9, 23]. However, the number of
streams supported in commercial SSDs is quite limited, say,
4 to 16 [10, 11, 14], because of several implementation con-
straints on the backup power capacity and fast memory size.

These constraints are directly related to a write buffering
mechanism that is commonly used in modern SSDs. In or-
der to improve the write throughput while effectively hid-
ing the size difference between the FTL mapping unit and
the flash program unit, host writes are first buffered before
they are written to flash pages in a highly parallel fashion for
high performance. Buffering host writes temporarily inside

USENIX Association 17th USENIX Conference on File and Storage Technologies 297

RocksDB

PrcssKVCmpctn()

FnshCmpctnFile()Write()

Run()

WriteToWAL()

AddRecord()

WriteImpl() logging compaction

Log File DB File

Fig. 3: An illustration of (simplified) execution paths of two
dominant I/O activities in RocksDB.

SSDs, however, presents a serious data integrity risk for stor-
age systems when a sudden power failure occurs. In order to
avoid such critical failures, in data centers or storage servers
where multi-streamed SSDs are used, SSDs use tantalum or
electrolytic capacitors as a backup power source. When the
main power is suddenly failed, the backup power is used to
write back the buffered data reliably. Since the capacity of
backup power is limited because of the limited PCB size and
its cost, the maximum amount of buffered data is also lim-
ited. In multi-streamed SSDs where each stream needs its
own buffered area, the amount of buffered data increases as
the number of streams increases. The practical limit in the
capacity of backup power, therefore, dictates the maximum
number of streams as well.

The limited size of fast memory, such as TCM [24] or
SRAM, is another main hurdle in increasing the number of
streams in multi-streamed SSDs. Since multi-stream related
metadata which includes data structures for the write buffer-
ing should be accessed quickly as well as frequently, most
SSD controllers implement data structures for supporting
streams on fast memory over more common DRAM. Since
the buffered data is the most recent one for a given LBA,
each read request needs to check if the read request should
be served from the buffered data or not. In order to support a
quick checkup of buffered data, probabilistic data structures
such as a bloom filter can be used along with other efficient
data structures, for accessing LBA addresses of buffered data
and for locating buffer starting addresses. Since the latency
of a read request depends on how fast these data structures
can be accessed, most SSDs place the buffering-related data
structure on fast memory. Similarly, in order to quickly store
buffered data in flash chips, these data structure should be
placed on fast memory as well. However, most SSD man-
ufacturers are quite sensitive in increasing the size of fast
memory because it may increase the overall SSD cost. The
limited size of fast memory, unfortunately, restricts the num-
ber of supported streams quite severely.

3 Automatic I/O Activity Management
In developing an efficient data lifetime separator for gen-
eral I/O workloads, our key insight was that in most appli-
cations, the overall I/O behavior of applications is decided

by a few dominant I/O activities (e.g., logging and flush-
ing in RocksDB). Moreover, data written by dominant I/O
activities tend to have distinct lifetime patterns. Therefore,
if such dominant I/O activities of applications can be auto-
matically detected and distinguished each other in an LBA-
oblivious fashion, an automatic stream management tech-
nique can be developed for widely varying I/O workloads
including append-only workloads.

In this paper, we argue that a program context can be used
to build an efficient general-purpose classifier of dominant
I/O activities with different data lifetimes. Here, a PC rep-
resents an execution path of an application which invokes
write-related system call functions such as write() and
writev(). There could be various ways of extracting PCs,
but the most common approach [17, 18] is to represent each
PC with its PC signature which is computed by summing
program counter values of all the functions along the execu-
tion path which leads to a write system call.

3.1 PC as a Unit of Lifetime Classification

In order to illustrate that using PCs is an effective way to
distinguish I/O activities of an application and their data
lifetime patterns, we measured data lifetime distributions
of PCs from various applications with different I/O work-
loads. In this section, we report our evaluation results for
three applications with distinct I/O activities: RocksDB [15],
SQLite [25], and GCC [26]. RocksDB shows the append-
only workload while SQLite shows a workload that updates
in place. Both database workloads are expected to have dis-
tinct I/O activities for writing log files and data files. GCC
represents an extensive compiler workload (e.g., compiling
a Linux kernel) that generates many short-lived temporary
files (e.g., .s, .d, and .rc files) as well as some long-lived
files (e.g., object files and kernel image files).

In RocksDB, dominant I/O activities include logging,
flushing, and compaction. Since these I/O activities are
invoked through different function-call paths, we can
easily identify dominant I/O activities of RocksDB us-
ing PCs. For example, Fig. 3 shows (simplified) execu-
tion paths for logging and compaction in RocksDB. The
sum of program counter values of the execution path
WriteImpl()→WriteToWAL()→ AddRecord() is used to
represent a PC for the logging activity while that of the
execution path Run()→ ProcessKeyValueCompaction()

→ FinishCompactionFile() is used for the compaction
activity. In SQLite, there exist two dominant I/O activities
which are logging and managing database tables. Similar to
the RocksDB, SQLite writes log files and database files us-
ing different execution paths. In GCC, there exist many dom-
inant I/O activities of creating various types of temporal files
and object files.

To confirm our hypothesis that data lifetimes can be dis-
tinguished by tracking dominant I/O activities and a PC is

298 17th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o

f
w

ri
te

s
x

 1
0

6
)

Logical Block Address

(a) RocksDB: Logging

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o

f
w

ri
te

s
x

 1
0

6
)

Logical Block Address

(b) RocksDB: Flushing

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o

f
w

ri
te

s
x

 1
0

6
)

Logical Block Address

(c) RocksDB: Compaction

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(d) SQLite: Logging

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(e) SQLite: Updating

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(f) GCC: Outputting Temp

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(g) GCC: Outputting Executable

Fig. 4: Data lifetime distributions of dominant I/O activities in RocksDB, SQLite and GCC.

a useful unit of classification for different I/O activities, we
have analyzed how well PCs work for RocksDB, SQLite and
GCC. Fig. 4 shows data lifetime distributions of dominant
I/O activities which were distinguished by computed PC val-
ues. As expected, Fig. 4 validates that dominant I/O activities
show distinct data lifetime distributions over the logical ad-
dress space. For example, as shown in Figs. 4(a)∼4(c), the
logging activity, the flushing activity and the compaction ac-
tivity in RocksDB clearly exhibit quite different data life-
time distributions. While the logged data written by the log-
ging activity have short lifetimes, the flushed data by the
flushing activity have little bit longer lifetimes. Similarly, for
SQLite and GCC, dominant I/O activities show quite distinct
data lifetime characteristics as shown in Figs. 4(d)∼4(g). As
shown in Fig. 4(d), the logging activity of SQLite generates
short-lived data. This is because SQLite overwrites logging
data in a small and fixed storage space and then removes
them soon. Lifetimes of temporary files generated by GCC
are also relatively short as shown in Fig. 4(f), because of the
write-once pattern of temporary files. But, unlike the other
graphs in Fig. 4, data lifetime distributions of Figs. 4(c)
and 4(e), which correspond to the compaction activity of
RocksDB and the updating activity of SQLite, respectively,
show large variances. These outlier I/O activities need a spe-
cial treatment, which will be described in Section 4.

Note that if we used an LBA-based data separator instead
of the proposed PC-based scheme, most of data lifetime
characteristics shown in Fig. 4 could not have been known.
Only the data lifetime distribution of the logging activity of
SQLite, as shown in Fig. 4(d), can be accurately captured by
the LBA-based data separator. For example, the LBA-based
data separator cannot decide that the data lifetime of data
produced from the outputting temp activity of GCC is short
because temporary files are not overwritten each time they
are generated during the compiling step.

3.2 Extracting PCs

As mentioned earlier, a PC signature, which is used as a
unique ID of each program context, is defined to be the sum
of program counters along the execution path of function
calls that finally reaches a write-related system function. In
theory, program counter values in the execution path can be
extracted in a relatively straightforward manner. Except for
inline functions, every function call involves pushing the ad-
dress of the next instruction of a caller as a return address to
the stack, followed by pushing a frame pointer value. By re-
ferring to frame pointers, we can back-track stack frames of a
process and selectively get return addresses for generating a
PC signature. Fig. 5(a) illustrates a stack of RocksDB corre-
sponding to Fig. 3, where return addresses are pushed before
calling write(), AddRecord() and WriteToWAL(). Since
frame pointer values in the stack hold the addresses of pre-
vious frame pointers, we can easily obtain return addresses
and accumulate them to compute a PC signature.

The frame pointer-based approach for computing a PC
signature, however, is not always possible because modern
C/C++ compilers often do not use a frame pointer for im-
proving the efficiency of register allocation. One example is
a -fomit-frame-pointer option of GCC [26]. This option
enables to use a frame pointer as a general-purpose register
for performance but makes it difficult for us to back-track
return addresses along the call chains.

We employ a simple but effective workaround for back-
tracking a call stack when a frame pointer is not available.
When a write system call is made, we scan every word in the
stack and check if it belongs to process’s code segment. If the
scanned stack word holds a value within the address range
of the code segment, it assumes that it is a return address.
Fig. 5(b) shows the scanning process. Since scanning the en-
tire stack may take too long, we stop the scanning step once
a sufficient number of return address candidates are found.
The larger the return address candidates, the longer the com-

USENIX Association 17th USENIX Conference on File and Storage Technologies 299

…

…

User Process Stack

Frame of

AddRecord()

Frame of

WriteToWAL()

Frame of

WriteImpl()

(a) with the frame pointer.

…

Ret.WriteImpl()

…

…

…

Ret.WriteToWAL()

…

Ret. AddRecord()

User Process Stack

Stack

Heap

Data Segment

Code Segment

User Process

Virtual Addr. Space

(b) without the frame pointer.

Fig. 5: Examples of PC extraction methods.

putation time. On the other hand, if the number of return
addresses is too small, two different paths can be regarded as
the same path. When the minimum number of addresses that
can distinguish the two paths of the program is found, the
scanning should be stopped to minimize the scanning over-
head. In our evaluation, five return addresses were enough to
distinguish execution paths.

Even though it is quite ad-hoc, this restricted scan is quite
effective in distinguishing different PCs because it is very
unlikely that two different PCs reach the same write() sys-
tem call through the same execution subpath that covers five
proceeding function calls. In our evaluation on a PC with
3.4 GHz Intel CPU, the overhead of the restricted scan was
almost negligible, taking only 300∼400 nsec per write()
system call.

4 Support for Large Number of Streams

The number of streams is restricted to a small number be-
cause of the practical limits on the backup power capac-
ity and the size of fast memory. Since the number of sup-
ported streams critically impacts the overall performance of
multi-streamed SSDs, in this section, we propose a new type
of streams, called internal streams, which can be supported
without affecting the capacity of a backup power as well as
the size of fast memory in SSDs. Internal streams, which are
restricted to be used only for garbage collection, significantly
improve the efficiency of PC-based stream allocation, espe-
cially when PCs show large lifetime variances in their data
lifetime distributions.

4.1 PCs with Large Lifetime Variances

For most PCs, their lifetime distributions tend to have small
variances (e.g., Figs. 4(a), 4(d), and 4(f)). However, we ob-
served that it is inevitable to have a few PCs with large life-
time variances because of several practical reasons. For ex-
ample, when multiple I/O contexts are covered by the same
execution path, the corresponding PC may represent several
I/O contexts whose data lifetimes are quite different. Such a
case occurs, for example, in the compaction job of RocksDB.

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o

f
w

ri
te

s
x

 1
0

6
)

Logical Block Address

(a) RocksDB: L2 Compaction

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o

f
w

ri
te

s
x

 1
0

6
)

Logical Block Address

(b) RocksDB: L4 Compaction

Fig. 6: Lifetime distributions of the compaction activity at
different levels.

RocksDB maintains several levels, L1, ..., Ln, in the persis-
tent storage, except for L0 (or a memtable) stored in DRAM.
Once one level, say L2, becomes full, all the data in L2 is
compacted to a lower level (i.e., L3). It involves moving data
from L2 to L3, along with the deletion of the old data in L2.
In the LSM tree [21], a higher level is smaller than a lower
level (i.e., the size of (L2) < the size of (L3)). Thus, data
stored in a higher level is invalidated more frequently than
those kept in lower levels, thereby having shorter lifetimes.

Unfortunately, in the current RocksDB implementation,
the compaction step is supported by the same execution
path (i.e., the same PC) regardless of the level. Therefore,
the PC for the compaction activity cannot effectively sepa-
rate data with short lifetimes from one with long lifetimes.
Fig. 6(a) and 6(b) show distinctly different lifetime distribu-
tions based on the level of compaction: data written from the
level 4 have a large lifetime variance while data written from
the level 2 have a small lifetime variance.

Similarly, in SQLite and GCC, program contexts with
large lifetime variations are also observed. Fig. 4(e) shows
large lifetime variances of data files in SQLite. Since client
request patterns will decide how SQLite updates its tables,
the lifetime of data from the updating activity of SQLite
is distributed with a large variance. Similarly, the lifetime
of data from the outputting temporary files of GCC can
significantly fluctuate as well depending on when the next
compile step starts. Fig. 4(g) shows long lifetimes of ob-
ject files/executable files after a Linux build was completed
(with no more re-compiling jobs). However, the lifetime of
the same object files/executable files may become short when
if we have to restart the same compile step right after the pre-
vious one is finished (e.g., because of code changes).

For these outlier PCs with large lifetime variations, it is
a challenge to allocate streams in an efficient fashion un-
less there are more application-specific hints (e.g., the com-
paction level in RocksDB) are available. As an ad-hoc (but
effective) solution, when a PC shows a large variance in its
data lifetime, we allocate an additional stream, called an in-
ternal stream, to the PC so that the data written from the PC
can be better separated between the original stream and its
internal stream. In order to support internal streams, the to-
tal number of streams may need to be doubled so that each
stream can be associated with its internal stream.

300 17th USENIX Conference on File and Storage Technologies USENIX Association

Write

PC Extractor

Write Req (LBA, size, sID, …)

Kernel

Device

Lifetime Manager

PC2Stream Mapper
PC Attribute Table

Stream 0

Stream M

……

Delete

PC Lifetime Stream ID

Internal Stream M

LBA wtime PC valid

Live LBA Table

Internal Stream 0Internal
Stream

Manager

…

Fig. 7: An overall architecture of PCStream.

4.2 Implementation of Internal Streams

As described in Section 2.2, it is difficult to increase the num-
ber of (normal) streams. However, if we restrict that inter-
nal streams are used only for data movements during GC,
they can be quite efficiently implemented without the con-
straints on the backup power capacity and fast memory size.
The key difference in the implementation overhead between
normal streams and internal streams comes from a simple ob-
servation that data copied during GC do not need the same
reliability and performance support as for host writes. Un-
like buffered data from host write requests, valid pages in
the source block during garbage collection have no risk of
losing their data from the sudden power-off conditions be-
cause the original valid pages are always available. There-
fore, even if the number of internal streams increases, unlike
normal streams, no higher-capacity backup capacitor is nec-
essary for managing buffered data for internal streams.

The fast memory requirement is also not directly increased
as the number of internal streams increases. Since internal
streams are used only for GC and most GC can be handled
as background tasks, internal streams have a less stringent
performance requirement. Therefore, data structures for sup-
porting internal streams can be placed on DRAM without
much performance issues. Furthermore, for a read request,
there is no need to check if a read request can be served
by buffered data as in normal streams because the source
block always has the most up-to-date data. This, in turn, al-
lows data structures for internal streams to be located in slow
memory. Once an SSD reaches the fully saturated condition
where host writes and GC are concurrently performed, the
performance of GC may degrade a little because of the slow
DRAM used for internal streams. However, in our evalu-
ation, such cases were rarely observed under a reasonable
overprovisioning storage capacity.

5 Design and Implementation of PCStream

In this section, we explain the detailed implementation of
PCStream. Fig. 7 shows an overall architecture of PCStream.
The PC extractor is implemented as part of a kernel’s system

call handler as already described in Section 3, and is respon-
sible for computing a PC signature from applications. The
PC signature is used for deciding the corresponding stream
ID4 from the PC attribute table. PCStream maintains vari-
ous per-PC attributes in the PC attribute table including PC
signatures, expected data lifetimes, and stream IDs. In order
to keep the PC attribute table updated over changing work-
loads, the computed PC signature with its LBA information
is also sent to the lifetime manager, which estimates expected
lifetimes of data belonging to given PCs. Since commer-
cial multi-streamed SSDs only expose a limited number of
streams to a host, the PC2Stream mapper groups PCs with
similar lifetimes using a clustering policy, assigning PCs in
the same group to the same stream. Whenever the lifetime
manager or the PC2Stream mapper are invoked, the PC at-
tribute table is updated with new outputs from these mod-
ules. Finally, the internal stream manager, which was imple-
mented inside an SSD as firmware, is responsible for han-
dling internal streams associated with external streams.

5.1 PC Lifetime Management
The responsibility of the lifetime manager is for estimating
the lifetime of data associated with a PC. Except for outlier
PCs, most data from the same PC tend to show similar data
lifetimes with small variances.

Lifetime estimation: Whenever a new write request R ar-
rives, the lifetime manager stores the write request time, the
PC signature, PCi, and the LBA list of R into the live LBA
table. The live LBA table, indexed by an LBA, is used in
computing the lifetime of data stored at a given LBA which
belongs to PCi. Upon receiving TRIM commands (that delete
previously written LBAs) or overwrite requests (that update
previously written LBAs), the lifetime manager searches the
live LBA table for a PC signature PC f ound with the LBA
list which includes the deleted/updated LBAs. The new life-
time lnew of PC f ound is estimated using the lifetime of the
matched LBA from the live LBA table. The average of the
existing lifetime lold for PC f ound and lnew is used to update
the PC f ound entry in the PC attribute table. Note that the writ-
ten time entry of the live LBA table is updated differently
depending on TRIM commands or overwrite requests. The
written time entry becomes invalid for TRIM while it is up-
dated by the current time for an overwrite request.

Maintaining the live LBA table, which is indexed by an
LBA unit, in DRAM could be a serious burden owing to its
huge size. In order to mitigate the DRAM memory require-
ment, the lifetime manager slightly sacrifices the accuracy
of computing LBA lifetime by increasing the granularity of
LBA lifetime prediction to 1 MB, instead of 4 KB. The live
LBA table is indexed by 1 MB LBA, and each table entry
holds PC signatures and written times over a 1 MB LBA
range. For example, for a 256 GB SSD, 4 KB-granularity

4We call i the stream ID of Si.

USENIX Association 17th USENIX Conference on File and Storage Technologies 301

requires 4 billion entries while 1 MB-granularity requires 16
million entries. For a 9 byte-sized entry, LBA table requires
about 144 MB memory. Due to the coarse-grained mapping,
multiple requests within an address unit are considered as re-
quests to the same address, which are updates. Therefore, the
data lifetime can be recognized shorter than the real lifetime.
However, even if long-lived data are misallocated to the short
lifetime stream, the internal stream effectively suppresses the
increase in WAF.

PC attribute table: The PC attribute table keeps PC sig-
natures and its expected lifetimes. To quickly retrieve the ex-
pected lifetime of a requested PC signature, the PC attribute
table is managed through a hash data structure. Each hash
entry requires only 12 bytes: 64-bit for a PC signature and
32-bit for a predicted lifetime. The table size is thus small
so that it can be entirely loaded in DRAM. From our evalua-
tions, the maximum number of unique PCs was up to 30. So
the DRAM size of the PC attribute table was sufficient with
360 KB.

In addition to the main function of the PC attribute ta-
ble that maintains the data lifetime for a PC, the memory−
resident PC attribute table has another interesting benefit for
the efficient stream management. Since a PC signature of
an I/O activity is virtually guaranteed to be globally unique
across all applications (the uniqueness property), and a PC
signature does not change over different executions of the
same application (the consistency property), the PC attribute
table can capture a long-term history of programs’ I/O be-
haviors. Because of the uniqueness and consistency of a PC
signature, PCStream can exploit the I/O behavior of even
short-lived processes (e.g., cpp and cc1 for GCC) that are
launched and terminated frequently. When short-lived pro-
cesses are frequently executed, the PC attribute table can
hold their PC attributes from their previous executions, thus
enabling quick but accurate stream allocation for short-lived
processes.

The consistency property is rather straightforward because
each PC signature is determined by the sum of return ad-
dresses inside a process’s virtual address space. Unless a pro-
gram’s binary is changed after recompilation, those return
addresses remain the same, regardless of the program’s ex-
ecution. The uniqueness property is also somewhat obvious
from the observation that the probability that distinct I/O ac-
tivities that take different function-call paths have the same
PC signature is extremely low. This is even true for multiple
programs. Even though they are executed in the same vir-
tual address space, it is very unlikely that I/O activities of
diverged programs taking different function-call paths have
the same PC. In our experiment, there was no alias for the
PC value. Consequently, this immutable property of the PC
signature for a given I/O activity makes it possible for us to
characterize the given I/O activity in a long-term basis with-
out risk of PC collisions.

5.2 Mapping PCs to SSD streams

After estimating expected lifetimes of PC signatures, the
PC2Stream mapper attempts to group PCs with similar life-
times into an SSD stream. This grouping process is neces-
sary because while commercial SSDs only support a limited
number of streams (e.g., 9), the number of unique PCs can be
larger (e.g., 30). For grouping PCs with similar lifetimes, the
PC2Stream mapper module uses the k-means algorithm [20]
which is widely used for similar purposes. In PCStream, we
use the difference in the data lifetime between two PCs as a
clustering distance and generates m clusters of PCs for m
streams. This algorithm is particularly well suited for our
purpose because it is lightweight in terms of the CPU cycle
and memory requirement. To quickly assign a proper stream
to incoming data, we add an extra field to the PC attribute
table which keeps a stream ID for each PC signature. More
specifically, when a new write request comes, a designated
SSD stream ID is obtained by referring to the PC attribute
table using request’s PC value as an index. If there is no such
a PC in the table, or a PC does not have a designated stream
ID, the request gets default stream ID, which is set to 0.

For adapting to changing workloads, re-clustering opera-
tions should be performed regularly. This re-clustering pro-
cess is done in a straightforward manner. The PC2Stream
mapper scans up-to-date lifetimes for all PCs in the PC at-
tribute table. Note that PC’s lifetimes are updated whenever
the lifetime manager gets new lifetimes while handling over-
writes or TRIM requests, as explained in Section 5.1. With
the scanned information, the PC2Stream mapper recomputes
stream IDs and updates stream fields of the PC attribute
table. In order to minimize the unnecessary overhead of
frequent re-clustering operations, re-clustering is triggered
when 10% of the PC lifetime entries in the PC attribute table
is changed.

5.3 Internal Stream Management

As explained in Section 4.1, there are a few outlier PCs with
large lifetime variances. In order to treat these PCs in an ef-
ficient fashion, we devise a two-phase method that decides
SSD streams in two levels: the main stream in the host level
and its internal stream in the SSD level. Conceptually, long-
lived data in the main stream are moved to its internal stream
so that (future) short-lived data will not be mixed with long-
lived data in the main stream. Although moving data to the
internal stream may increase WAF, the overhead can be hid-
den if we restrict data copies to the internal stream during
GC only. Since long-lived data (i.e., valid pages) in a victim
block are moved to a free block during GC, blocks belong
to an internal stream tend to contain long-lived data. For in-
stance, PCStream assigns the compaction-activity PC1 to the
main stream S1 in the first phase. To separate the long-lived
data of PC1 (e.g., L4 data) from future short-lived data of the

302 17th USENIX Conference on File and Storage Technologies USENIX Association

Java application

PC Extractor
(converting)

Kernel

JVM

write

Modified
native library

Modified method

Java PC

Java PC Extractor

Runtime Data Area

JVM
StackHeap

Method
Area

Passing Java PC

…
JNI

Run() Do_log()

PC

Fig. 8: Extracting PCs for JVM.

same PC1 (e.g., L1 data), valid pages of the S1 are assigned
to its internal stream for the second phase during GC.

We have implemented the internal stream manager with
the two-phase method in Samsung’s PM963 SSD [27]. To
make it support the two-phase method, we have modified its
internal FTL so that it manages internal streams while per-
forming GC internally. Since the internal stream manager as-
signs blocks for an internal stream and reclaims them inside
the SSD, no host interface changed is required.

5.4 PC Extraction for Indirect Writes
One limitation of using PCs to extract I/O characteristics is
that it only works with C/C++ programs that directly call
write-related system calls. Many programs, however, often
invoke write system calls indirectly through intermediate
layers, which makes it difficult to track program contexts.

The most representative example may be Java programs,
such as Cassandra, that run inside a Java Virtual Machine
(JVM). Java programs invoke write system calls via the Java
Native Interface (JNI) [28] that enables Java programs to call
a native I/O library written in C/C++. For Java programs,
therefore, the PC extractor shown in Fig. 7 fails to capture
Java-level I/O activities as it is unable to inspect the JVM
stack from the native write system call which is indirectly
called through the JNI. Another example is a program that
maintains a write buffer that is dedicated to dealing with all
the writes from an application. For example, in MySQL [29]
and PostgreSQL [30], every write is first sent to a write
buffer. Separate flush threads later materialize buffered data
to persistent storage. In that case, the PC extractor only cap-
tures PCs of flush threads, not PCs of I/O activities that orig-
inally generate I/Os, because the I/O activities were executed
in different threads using different execution stacks.

The problem of indirect writes can be addressed by col-
lecting PC signatures at the front-end interface of an inter-
mediate layer that accepts write requests from other parts
of the program. In the case of Java programs, a native I/O
library can be modified to capture write requests and com-
putes their PC signatures. Once a native library is modified,
PCStream can automatically gather PC signatures without
modifying application programs. Fig. 8 illustrates how PC-

Stream collects PC signatures from Java programs. We have
modified the OpenJDK [31] source to extract PC signatures
for most of the write methods in write related classes, such
as OutputStream. The stack area in the Runtime Data

Areas of JVM is used to calculate PC signatures. The calcu-
lated PC is then passed to the write system call of the kernel
via the modified native I/O libraries. For the JIT compila-
tion, the codes are dynamically compiled and optimized, so
the computed PC value of the same path can be different.
However, if the code cache space is sufficient, the compiled
code is reused, so there is no problem in using the PC. In the
experiment, there was enough space in the code cache.

Unlike Java, there is no straightforward way to collect PCs
from applications with write buffers. This is because the im-
plementation of write buffering is different depending on ap-
plications. Additional efforts to manually modify code are
unavoidable. However, the scope of this manual modifica-
tion is limited only to the write buffering code, and applica-
tion logics themselves don’t need to be edited or annotated.
Moreover, in the virtual machine (VM) environment, modifi-
cation of the VM itself is inevitable. PCStream can get PC of
guest OS, but it is difficult to transfer directly to the device.
We can transfer PC information to the system call layer of
host OS through modification of virtualization layer.

6 Experimental Results

6.1 Experimental Settings
In order to evaluate PCStream, we have implemented it
in the Linux kernel (version 4.5) on a PC host with Intel
Core i7-2600 8-core processor and 16 GB DRAM. As a
multi-streamed SSD, we used Samsung’s PM963 480 GB
SSD. The PM963 SSD supports up to 9 streams; 8 user-
configurable streams and 1 default stream. When no stream
is specified with a write request, the default stream is used.
To support internal streams, we have modified the existing
PM963 FTL firmware. For detailed performance analysis,
we built a modified nvme-cli [32] tool that can retrieve the
internal profiling data from PCStream-enabled SSDs. Using
the modified nvme-cli tool, we can monitor WAF values
and per-block data lifetimes from the extended PM963 SSD
during run time.

We compared PCStream with three existing schemes:
Baseline, ManualStream [10], and AutoStream [14]. Base-

line indicates a legacy SSD that does not support multi-
ple streams. ManualStream represents a multi-streamed SSD
with manual stream allocation. AutoStream represents the
LBA-based stream management technique proposed in [14].

We have carried out experiments with various bench-
mark programs which represent distinct write characteristics.
RocksDB [15] and Cassandra [16] have append-only write
patterns. SQLite [25] has in-place update write patterns and
GCC [26] has write-once patterns. For more realistic evalu-

USENIX Association 17th USENIX Conference on File and Storage Technologies 303

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo.

Mean

N
o

rm
al

iz
ed

 I
O

P
S

Baseline AutoStream PCStream ManualStream

Fig. 9: A comparison of normalized IOPS.

ations, we also used mixed workloads running two different
benchmark programs simultaneously.

In both RocksDB and Cassandra experiments, Yahoo!
Cloud Serving Benchmark (YCSB) [33] with 12-million
keys was used to generate update-heavy workloads (work-
load type A) which consist of 50/50 reads and writes. Since
both RocksDB and Cassandra are based on the append-only
LSM-tree algorithm [21], they have three dominant I/O ac-
tivities (such as logging, flushing, and compaction). Cassan-
dra is written in Java, so its PC is extracted by the modi-
fied procedure described in Section 5.4. In SQLite evalua-
tions, TPC-C [34] was used with 20 warehouses. SQLite has
two dominant I/O activities such as logging and updating ta-
bles. In GCC experiments, a Linux kernel was built 30 times.
For each build, 1/3 of source files, which were selected ran-
domly, were modified and recompiled. Since GCC creates
many temporary files (e.g., .s, .d, and .rc) as well as long-
lived files (e.g., .o) from different compiler tools, there are
more than 20 dominant PCs. To generate mixed workloads,
we run RocksDB and GCC scenarios together (denoted by
Mixed 1), and run SQLite and GCC scenarios at the same
time (denoted by Mixed 2). In order to emulate an aged SSD
in our experiments, 90% of the total SSD capacity was ini-
tially filled up with user files before benchmarks run.

6.2 Performance Evaluation

We compared the IOPS values of three existing techniques
with PCStream. Fig. 9 shows normalized IOPS for six bench-
marks with four different techniques. For all the measured
IOPS values5, PCStream improved the average IOPS by 45%
and 28% over Baseline and AutoStream, respectively. PC-

Stream outperformed AutoStream by up to 56% for com-
plex workloads (i.e., GCC, Mixed1 and Mixed 2) where the
number of extracted PCs far exceeds the number of sup-
ported streams in PM963. The high efficiency of PCStream

under complex workloads comes from two novel features
of PCStream: (1) LBA-oblivious PC-centric data separation

5For RocksDB, Cassandra, and SQLite, the YCSB benchmark and TPC-
C benchmark compute IOPS values as a part of the benchmark report. For
GCC, where an IOPS value is not measured during run time, we computed
the IOPS value as a ratio between the total number of write requests (mea-
sured at the block device layer) and the total elapsed time of running GCC.

0

1

2

3

4

5

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo.

Mean

W
A

F

Baseline AutoStream PCStream ManualStream

Fig. 10: A comparison of WAF under different schemes.

and (2) a large number of streams supported using internal
streams. AutoStream, on the other hands, works poorly ex-
cept for SQLite where the LBA-based separation can be ef-
fective. Even in SQLite, PCStream outperformed AutoStream

by 10%.

6.3 WAF Comparison
Fig. 10 shows WAF values of four techniques for six bench-
marks. Overall, PCStream was as efficient as ManualStream;
Across all the benchmarks, PCStream showed similar WAF
values as ManualStream. PCStream reduced the average WAF
by 63% and 49% over Baseline and AutoStream, respectively.

As expected, Baseline showed the worst performance
among all the techniques. Owing to the intrinsic limitation of
LBA-based data separation, AutoStream performs poorly ex-
cept for SQLite. Since PCStream (and ManualStream) did not
depend upon LBAs for stream separations, they performed
well consistently, regardless of write access patterns. As a re-
sult, PCStream reduced WAF by up to 69% over AutoStream.

One interesting observation in Fig. 10 is that PCStream

achieved a lower WAF value than even ManualStream for
GCC, Mixed 1, and Mixed 2 where more than the maxi-
mum number of streams in PM963 are needed. In Manual-
Stream, DB applications and GCC were manually annotated
at offline, so that write system calls were statically bound
to specific streams during compile time. When multiple pro-
grams run together as in three complex workloads (i.e., GCC,
Mixed 1 and Mixed 2), static stream allocations are difficult
to work efficiently because they cannot adjust to dynamically
changing execution environments. However, unlike Manual-

Stream, PCStream continuously adapts its stream allocations
during run time, thus quickly responding to varying execu-
tion environments. For example, 10 PCs out of 25 PCs are
remapped by 7 reclustering operations for Mixed 1 work-
load.

6.4 Per-stream Lifetime Distribution Analysis
To better understand the benefit of PCStream on the WAF
reduction, we measured per-stream lifetime distributions for
the Mixed 1 scenario. Fig. 11 shows a box plot of data life-
times from the 25th to the 75th percentile. As shown in

304 17th USENIX Conference on File and Storage Technologies USENIX Association

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

AutoStream PCStream ManualStream

L
if

et
im

e
(#

 o
f

w
ri

te
s

1
0

6
)

40th percentile
50th percentile
60th percentile

25th percentile

75th percentile

Fig. 11: A Comparison of per-stream lifetime distributions.

Fig. 11, streams in both PCStream and ManualStream are
roughly categorized as two groups, G1 = {S1, S2, S3, S4, S5}
and G2 = {S6, S7, S8}, where G1 includes streams with short
lifetimes and small variances (i.e., S1, S2, S3, S4, and S5) and
G2 includes streams with large lifetimes and large variances
(i.e., S6, S7, and S8). The S0 does not belong to any groups as
it is assigned to requests whose lifetimes are unknown. Even
though the variance in the S0 is wider than that in Manual-

Stream, PCStream showed similar per-stream distributions as
ManualStream. In particular, for the streams in G2, PCStream
exhibited smaller variance than ManualStream, which means
that PCStream separates cold data from hot data more effi-
ciently. Since PCStream moves long-lived data of a stream
to its internal stream, the variance of streams with large life-
times tend to be smaller over ManualStream.

AutoStream was not able to achieve small per-stream vari-
ances as shown in Fig. 11 over PCStream and ManualStream.
As shown in Fig. 11, all the streams have large variances
in AutoStream because hot data are often mixed with cold
data in the same stream. Since the LBA-based data separa-
tion technique of AutoStream does not work well with both
RocksDB and GCC, all the streams include hot data as well
as cold data, thus resulting in large lifetime variances.

6.5 Impact of Internal Streams

In order to understand the impact of internal streams on dif-
ferent stream management techniques, we compared the two
versions of each technique, one with internal streams and
the other without internal streams. Since internal streams
are used only for GC, they can be combined with any ex-
isting stream management techniques. Fig. 12 shows WAF
values for five benchmarks with four techniques. Overall, in-
ternal streams worked efficiently across the four techniques
evaluated. When combined with internal streams, Baseline,
AutoStream, PCStream, and ManualStream reduced the aver-
age WAF by 25%, 22%, 17%, and 12%, respectively. Since
the quality of initial stream allocations in Baseline and Au-

toStream was relatively poor, their WAF improvement ratios
with internal streams were higher over PCStream and Man-

ualStream. Although internal streams were effective in sepa-
rating short-lived data from long-lived data in both Baseline

and AutoStream, the improvement from internal streams in
these techniques is not sufficient to outperform PCStream

and ManualStream. Poor initial stream allocations, which
keep putting both hot and cold data to the same stream, un-

0

1

2

3

4

5

w/o IS w/ IS w/o IS w/ IS w/o IS w/ IS w/o IS w/ IS

Baseline AutoStream PCStream ManualStream

W
A
F

RocksDB SQLite GCC Mixed 1 Mixed 2

Fig. 12: The effect of internal streams on WAF.

fortunately, offset a large portion of benefits from internal
streams.

6.6 Impact of the PC Attribute Table
As explained in Section 5, the PC attribute table is useful to
maintain a long-term history of applications’ I/O behavior by
exploiting the uniqueness of a PC signature across different
applications. To evaluate the effect of the PC attribute table
on the efficiency of PCStream, we modified the implemen-
tation of the PC attribute table so that the PC attribute table
can be selectively disabled on demands when a process ter-
minates its execution. For example, in the kernel compilation
scenario with GCC, the PC attribute table becomes empty
after each kernel build is completed. That is, the next kernel
build will start with no existing PC to stream mappings.

Fig. 13 show how many requests are assigned to the de-
fault S0 stream over varying sizes of the PC attribute table.
Since S0 is used when no stream is assigned for an incoming
write request, the higher the ratio of requests assigned to S0,
the less effective the PC attribute table. As shown in Fig. 13,
in RocksDB, Cassandra, and SQLite, the PC attribute table
did not affect much the ratio of writes on S0. This is because
these programs run continuously for a long time while per-
forming the same dominant activities repeatedly. Therefore,
although the PC attribute table is not maintained, they can
quickly reconstruct it. On the other hand, the PC attribute ta-
ble was effective for GCC, which frequently creates and ter-
minates multiple processes (e.g., cc1). When no PC attribute
table was used, about 16% of write requests were assigned
to S0. With the 4-KB PC attribute table, this ratio was re-

0

5

10

15

20

RocksDB Cassandra SQLite GCC

R
eq

u
es

t
P

o
rt

io
n

 (
%

)

No table 4-KB table 80-KB table 360-KB table

Fig. 13: The effect of the PC attribute table.

USENIX Association 17th USENIX Conference on File and Storage Technologies 305

0%

20%

40%

60%

80%

100%

BS PC BS PC BS PC BS PC

RocksDB SQLite GCC Mixed 1

C
P

U
 l

o
ad

idle

system

user

Fig. 14: A comparison of cpu load.

duced to 12%. With the 360-KB PC attribute table, only 9%
of write requests were assigned to S0. This reduction in the
S0 allocation ratio reduced the WAF value from 1.96 to 1.54.

6.7 CPU Overhead Evaluation

As described in Sections 3 and 5, PCStream requires addi-
tional CPU usage to compute and clustering PCs. We used
the sar command in linux to evaluate the additional CPU
load on PCStream. Fig. 14 shows the CPU utilization of the
baseline (BS) and PCStream (PC) technique. The percent-
age of CPU utilization that occurred while executing at the
user level and kernel level was represented by user and sys-
tem, respectively. idle indicates the percentage of time that
the CPU was idle. For all cases, the increased CPU load due
to PCStream was less than 5%.

7 Related Work
There have been many studies for multi-streamed SSDs
[10, 11, 12, 13, 14, 35]. Kang et al. first proposed a multi-
streamed SSD that supported manual stream allocation for
separating different types of data [10]. Yang et al. showed
that a multi-streamed SSD was effective for separating data
of append-only applications like RocksDB [11]. Yong et al.
presented a virtual stream management technique that al-
lows logical streams, not physical streams, to be allocated
by applications. Unlike these studies that involve modifying
the source code of target programs, PCStream automates the
stream allocation with no manual code modification.

Yang et al. presented an automatic stream management
technique at the block device layer [14]. Similar to hot-cold
data separation technique used in FTLs, it approximates the
data lifetime of data based on update frequencies of LBAs.
The applicability of this technique is, however, quite limited
to in-place update workloads only. PCStream has no such
limitation on the workload characteristics, thus effectively
working for general I/O workloads including append-only,
write-once as well as in-place update workloads.

Ha et al. proposed an idea of using PCs to separate hot data
from cold one in an FTL layer [19]. Kim et al. extended it
for multi-streamed SSDs [35]. Unlike these works, our study
treats the PC-based stream management problem in a more
complete fashion by (1) pinpointing the key weaknesses of

existing multi-streamed SSD solutions, (2) extending the ef-
fectiveness of PCs for more general I/O workloads including
write-once patterns, and (3) introducing internal streams as
an effective solution for outlier PCs. Furthermore, PCStream
exploits the globally unique nature of a PC signature for sup-
porting short-lived applications that run frequently.

8 Conclusions

We have presented a new stream management technique,
PCStream, for multi-streamed SSDs. Unlike existing tech-
niques, PCStream fully automates the process of mapping
data to a stream based on PCs. Based on observations that
most PCs are effective to distinguish lifetime characteristics
of written data, PCStream allocates each PC to a different
stream. When a PC has a large variance in their lifetimes,
PCStream refines its stream allocation during GC and moves
the long-lived data of the current stream to the correspond-
ing internal stream. Our experimental results show that PC-
Stream can improve the IOPS by up to 56% over the existing
automatic technique while reducing WAF by up to 69%.

The current version of PCStream can be extended in sev-
eral directions. First, PCStream does not support applications
that rely on a write buffer (e.g., MySQL). To address this, we
plan to extend PCStream interfaces so that developers can
easily incorporate PCStream into their write buffering mod-
ules with minimal efforts. Second, we have only considered
write-related systems calls to collect PCs, but many applica-
tions (e.g., MonetDB [36]) heavily access files with mmap-
related functions (e.g., mmap() [37] and msync()). We plan
to extend PCStream to work with mmap-intensive applica-
tions.

Acknowledgments

We thank Youjip Won, our shepherd, and the anonymous
reviewers for their valuable feedback and comments. This
work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government
(Ministry of Science and ICT) (NRF-2015M3C4A7065645
and NRF-2018R1A2B6006878). The ICT at Seoul Na-
tional University provided research facilities for this study.
Sungjin Lee was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ko-
rea government (MSIT) (NRF-2018R1A5A1060031, NRF-
2017R1E1A1A01077410) (Corresponding Author: Jihong
Kim)

306 17th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] M. Chiang, P. Lee, R. and Chang, Using Data Cluster-
ing to Improve Cleaning Performance for Flash Mem-
ory, Software-Practice & Experience, vol. 29, no. 3, pp.
267-290, 1999.

[2] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,
Write Amplification Analysis in Flash-Based Solid
State Drives, In Proceedings of the ACM International
Systems and Storage Conference (SYSTOR), 2009

[3] W. Bux, and I. Iliadis, Performance of Greedy Garbage
Collection in Flash-Based Solid-State Drives, Perfor-
mance Evaluation, vol. 67, no. 11, pp. 1172-1186,
2010.

[4] C. Tsao, Y. Chang, and M. Yang, Performance En-
hancement of Garbage Collection for Flash Storage De-
vices: An Efficient Victim Block Selection Design, In
Proceedings of the Annual Design Automation Confer-
ence (DAC), 2013.

[5] S. Yan, H. Li, M. Hao, M. Tong, S. Sundararaman, A.
Chien, and H. Gunawi, Tiny-tail Flash: Near-perfect
Elimination of Garbage Collection Tail Latencies in
NAND SSDs, In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), 2017.

[6] J. Hsieh, T. Kuo, and L. Chang, Efficient Identification
of Hot Data for Flash Memory Storage Systems, ACM
Transactions on Storage, vol. 2, no. 1, pp. 22-40, 2006.

[7] S. Hahn, S. Lee, and J. Kim, To Collect or Not to
Collect: Just-in-Time Garbage Collection for High-
Performance SSDs with Long Lifetimes, In Proceed-
ings of the Design Automation Conference (DAC),
2015.

[8] J. Cui, Y. Zhang, J. Huang, W. Wu, and J. Yang, Shad-
owGC: Cooperative Garbage Collection with Multi-
Level Buffer for Performance Improvement in NAND
flash-based SSDs, In Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition
(DATE), 2018.

[9] SCSI Block Commnads-4 (SBC-4), http://www.

t10.org/cgi-bin/ac.pl?t=f&f=sbc4r15.pdf.

[10] J. Kang, J. Hyun, H. Maeng, and S. Cho, The Multi-
streamed Solid-State Drive, In Proceedings of the
Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2014.

[11] F. Yang, D. Dou, S. Chen, M. Hou, J. Kang, and S.
Cho, Optimizing NoSQL DB on Flash: A Case Study
of RocksDB, In Proceedings of IEEE the International
Conference on Scalable Computing and Communica-
tions (ScalCom), 2015.

[12] H. Yong, K. Jeong, J. Lee, J. Kim, vStream: Virtual
Stream Management for Multi-streamed SSDs, In Pro-
ceedings of the USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2018.

[13] E. Rho, K. Joshi, S. Shin, N. Shetty, J. Hwang, S. Cho.
and D. Lee, FStream: Managing Flash Streams in the
File System, In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), 2018.

[14] J. Yang, R. Pandurangan, C. Chio, and V. Balakr-
ishnan, AutoStream: Automatic Stream Management
for Multi-streamed SSDs, In Proceedings of the ACM
International Systems and Storage Conference (SYS-
TOR), 2017.

[15] Facebook, https://github.com/facebook/

rocksdb.

[16] Apache Cassandra, http://cassandra.apache.

org.

[17] C. Gniady, A. Butt, and Y. Hu, Program-Counter-based
Pattern Classification in Buffer Caching, In Proceed-
ings of the Symposium on Operating Systems Design
and Implementation (OSDI), 2004.

[18] F. Zhou, J. Behren, and E. Brewer, Amp: Program
Context Specific Buffer Caching, In Proceedings of
USENIX Annual Technical Conference (ATC), 2005.

[19] K. Ha, and J. Kim, A Program Context-Aware Data
Separation Technique for Reducing Garbage Collection
Overhead in NAND Flash Memory, In Proceedings of
International Workshop on Storage Network Architec-
ture and Parallel I/Os (SNAPI), 2011.

[20] J. Hartigan, and M. Wong, Algorithm as 136: A k-
means Clustering Algorithm, Journal of the Royal Sta-
tistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100-108, 1979.

[21] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, The
Log-Structured Merge-Tree (LSM-Tree), Acta Infor-
matica, vol. 33, no. 4, pp. 351-385, 1996.

[22] J. Corbet, Block Layer Discard Requests, https://
lwn.net/Articles/293658/.

[23] NVM Express Revision 1.3, http://nvmexpress.

org/wp-content/uploads/NVM_Express_

Revision_1.3.pdf.

[24] S. Frank, Tightly Coupled Multiprocessor System
Speeds Memory-Access Times, Electronics, vol. 57,
no. 1, 1984.

[25] SQLite, https://www.sqlite.org/index.html.

USENIX Association 17th USENIX Conference on File and Storage Technologies 307

[26] R. Stallman, and GCC Developer Community, Us-
ing the GNU Compiler Collection for GCC version
7.3.0, https://gcc.gnu.org/onlinedocs/gcc-7.
3.0/gcc.pdf.

[27] Samsung, Samsung SSD PM963, https:

//www.compuram.de/documents/datasheet/

Samsung_PM963-1.pdf

[28] S. Liang, Java Native Interface: Programmer’s Guide
and Specification, 1999.

[29] MySQL, https://www.mysql.com.

[30] PostgreSQL, https://www.postgresql.org.

[31] OpenJDK, http://openjdk.java.net/.

[32] NVM-Express user space tooling for Linux, https://
github.com/linux-nvme/nvme-cli.

[33] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, Benchmarking Cloud Serving Systems
with YCSB, In Proceedings of the ACM Symposium on
Cloud Computing (SoCC), 2010.

[34] The Transaction Processing Performance Coun-
cil, Benchmark C, http://www.tpc.org/tpcc/

default.asp.

[35] T. Kim, S. Hahn, S. Lee, J. Hwang, J. Lee and J. Kim,
PCStream: Automatic Stream Allocation Using Pro-
gram Contexts, In Proceedings of the USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage), 2018.

[36] MonetDB, https://www.monetdb.org.

[37] Linux Programmer’s Manual, mmap(2) - map files
or devices into memory, http://man7.org/linux/
man-pages/man2/mmap.2.html.

308 17th USENIX Conference on File and Storage Technologies USENIX Association

