
ePRO-MP: energy PRofiler and Optimizer for MultiProcessors

Wonil Choi, Hyunhee Kim, Wook Song, Jiseok Song, and Jihong Kim

{choi11, hh0726, answer03, danielsong, jihong}@davinci.snu.ac.kr

School of Computer Science and Engineering, Seoul National University

http://davinci.snu.ac.kr/

Abstract

We present a software development tool, ePRO-MP, for
profiling and optimizing energy and performance of mobile
multithreaded applications. We demonstrate ePRO-MP
using two optimization problems.

1. Introduction

For mobile multiprocessor applications, achieving both high
performance and low energy consumption becomes a
challenging task. In order to meet these design
requirements, programmers should understand the
performance and the energy consumption of their
applications, thus making system development tools play an
important role. Furthermore, automatic optimization
support is becoming more important in multiprocessor-
based embedded systems because an efficient
implementation often requires exploring a large design
space as the number of cores increases and the co-running
threads share the limited system resources.
In this paper, we describe ePRO-MP which profiles and
optimizes the performance and energy consumption of
multi-threaded mobile applications. One unique feature of
ePRO-MP is that it profiles the energy consumption of a
target application without using an extra power
measurement equipment. The proposed ePRO-MP also
helps programmers to improve the performance and energy
consumption of embedded design problems without
programmers’ intervention. In the experiments described
later, we show that ePRO-MP can improve the performance
and energy consumption by 6.1% and 4.1%, respectively,
by optimizing the number of threads assigned for two co-
running applications. We also demonstrate that ePRO-MP
can improve the performance and energy consumption by
60.5% and 43.3%, respectively, over a baseline version for
the producer-consumer application.

2. Overview of ePRO-MP

Figure 1 shows an overall architecture of ePRO-MP which
consists of a target system and a host system. In this paper,
we use ARM11 MPCore [3] where four ARM11 cores are
integrated on a single chip as a target system and each of
the cores supports various types of hardware performance
counters. We also use a Pentium-4 desktop PC as a host
system. For performance monitoring, ePRO-MP estimates
various performance metrics such as the cache miss rate and
IPC by using the hardware performance counters of each
core.

Target System

Multithreaded
Application

Analysis (Host) System

Energy
Model

Comm.
Module

Energy
Estimator
/Analyzer

Performance
Analyzer

GUI At Program Level
At Thread Level

At Function Level
Performance Profile

Energy Profile

Performance
Monitoring
Program

(perfsuite)

Performance
Profiling
Module

Automatic
Optimizer

ARM11 MPCore
Hardware Performance Counters

HW Control Driver
Kernel Extension

(perfctr)

Interface
(PAPI)

Operating System (Linux)

Energy
Profiling
Module

ePRO-MP

Synchronization
Analyzer

Automatic
Optimization

Module

Figure 1: An Overview of ePRO-MP

In the target system, three logical modules, a target
application, an operating system, and a performance
profiling module, are running. The target application which
will be profiled becomes multi-threaded parallel programs
using the POSIX thread library. For an OS, we use Linux
2.6 for ARM11 MPCore. The performance profiling
module collects performance data during runtime.
On the other hand, the host system consists of five main
modules, communication module, performance and energy
analyzer modules, graphical user interface module, and
automatic optimization module. The communication
module transfers performance profiling data from the target
system to the host system. The collected performance data
is analyzed by two analyzers, performance analyzer and
energy analyzer. The performance analyzer classifies and
arranges the performance profiling results while the energy
analyzer applies the energy model to the performance
profiling data to estimate the energy consumption. The
analysis results are presented in multiple levels. The current
version of ePRO-MP adopts the GUI of the Eclipse
platform. Finally, the automatic optimization module uses
the feedback from the profiling results for various
optimizations.

3. Energy Profiling Module

ePRO-MP employs the regression-based modeling
approach for energy profiling. Our methodology for
developing the energy model consists of four main steps. In
Random Program Generation step, we build an energy
model that can accurately predict the energy consumption
of an arbitrary program based on hardware performance
counters and generate various random test programs with
different execution characteristics. In Automatic Run of
Random Programs step, training data for regression
analysis are produced by executing the random programs

generated by the random program generator. At the same
time, the energy consumption value is gathered from power
measurement equipment. Analysis is applied to the training
data gathered in the previous step in Model Generation
Using Regression Analysis Regression step. Finally, in
Verification step, we verify our power model using several
benchmark programs as well as the random test programs
used in the model generation step. We showed that an
average error was about 3%.
For the current energy model, five performance events, the
number of instructions (Instr), the number of L1 data cache
accesses (DL1Access), the number of L2 cache accesses
(L2Access), the number of stall cycles due to data
dependency (DataDep), and the number of coherence
transactions (cohTrans), are selected. The power model for
ARM11 MPCore is given as follows:

)/1()/(timeAccessDLBtimeInstrAPower ×+×=
)/()/2(timeDataDepDtimeAccessLC ×+×+

constFtimeCohTransE +×+)/(

4. Profile-Based Automatic Optimizer

Based on performance and energy profile results, we
propose profile-based automatic optimizer. In the current
implementation, ePRO-MP’s automatic optimization
function optimizer tries to find the optimal number of
threads for co-running applications and producer-consumer
applications using a simple heuristic.
Figure 2 shows the result of the automatic optimization of
co-running applications, Matrix-Multiplication (MM) and
Insert-Sort (IS). Over the baseline (4, 4) configuration as
shown in Figure 2(a), the (3, 1) thread configuration for
MM and IS improves the total execution time by 6.1% and
reduces the total energy consumption by 4.1% as shown in
Figure 2(b). The performance and the energy consumption
results of producer-consumer applications are shown Figure
3 where Matrix-Multiplication (MM) is used for producer
and Matrix-Transpose (MT) is used for consumer. The
results are normalized to the baseline (2, 2) thread
allocation. Exploring thread allocation problem space with
varying tile size, the (4, 1) thread configuration for MM and
MT improves the total execution time by 60.5% and
reduces the energy consumption by 43.3%.

A

B
(a) Profiling Result of (4, 4) Thread Allocation for (MM, IS)

A

B
(b) Profiling Result of (3, 1) Thread Allocation for (MM, IS)

Figure 2: Optimization Results of MM-IS Application

Figure 3: Optimization Results of MM-MT Application

5. Conclusion

We described ePRO-MP, an energy and performance
profiler and optimizer for embedded multiprocessors.
ePRO-MP provides both energy profiling information and
performance profiling information that can be important in
developing high-performance and low-energy embedded
multi-threaded applications without power measurement
equipment. Experimental results show that we can improve
the performance and the energy consumption over the
baseline thread allocation by 6.1% and 4.1%, respectively.
For producer-consumer application, the execution time and
the energy consumption were reduced by 60.5% and 43.3%,
respectively.

6. References

[1] W. Baek, Y. Kim, and J. Kim, “ePRO: A Tool for Energy
and Performance Profiler for Embedded Applications,” In
International SoC Design Conference, 2004.
[2] G. Contreras and M. Martonosi, “Power Prediction for Intel
XScale Processors Using Performance Monitoring Unit
Events,” In International Symposium on Low Power
Electronics and Design, 2005.
[3] ARM11 MPCore,
http://www.arm.com/products/CPUs/ARM11MPCoreMultipro
cessor.html
[4] R. Kufrin, “PerfSuite: An Accessible, Open Source
Performance Analysis Environment for Linux,” In
International Conference on Linux Clusters, 2005.
[5] “Linux x86 Performance Monitoring Counters Driver,”
http://www.csd.uu.se/mikpe/linux/perfctr/
[6] J. Dongarra, K. London, S. Moore, P. Mucci, and D.
Terpstra, “Using PAPI for hardware performance monitoring
on Linux systems,” Proceedings of International Conference
on Linux Clusters, 2001.

Acknowledgement

This work was supported by the Korea Science and
Engineering Foundation (KOSEF) grant funded by the
Korea government (MEST) (No. R0A-2007-000-20116-0).
This work was supported by World Class University
(WCU) program through the Korea Science and
Engineering Foundation funded by the Ministry of
Education, Science and Technology (R33-2008-000-10095-
0). This work was also supported in part by the Brain Korea
21 Project in 2008 and Samsung Electronics Inc.. The ICT
at Seoul National University provides research facilities for
this study.

