Performance Monitoring and Tuning for

a Single-Chip Multiprocessor Digital Signal Processor

Jihong Kim

Texas Instruments
P.O. BOX 655303, M/S 8374
Dallas, TX 75265, USA

" Abstract

A new generation of high performance programmable
digital signal processors (DSPs) has a highly-integrated
parallel architecture, incorporating special-purpose hard-
ware features, on-chip memory and multiple processors
into a single chip. For such single-chip multiprocessor
DSPs, however, a sophisticated performance monitoring
tool is essential to achieve the mazimum performance.
In this paper, we discuss the requirements and function-
ality of performance monitoring tools suitable for single-
chip multiprocessor DSPs. As a specific example, we de-
scribe a performance monitoring tool developed for Texas
Instruments’ TMS320C80 (MVP), MVP Performance
Monitor (MPM), which satisfies these requirements and
functionality. The effectiveness of the MPM is demon-
strated using an 8x 8 block-based discrete cosine trans-
form (DCT) implementation. An overall speed-up of
4.67 was achieved by using the MPM.

1 Introduction

Support for performance monitoring and tuning in com-
plex systems such as parallel systems has long been an
active research area. In recent years, the emphasis has
been on evaluating the performance of large-scale paral-
lel programs. For example, many performance tools have
been developed for tuning parallel programs in shared-
memory multiprocessors or distributed systems (1, 2, 3].
In this article, we discuss performance monitoring and
tuning for a much smaller parallel architecture, single-
chip multiprocessor digital signal processors {DSPs).

In order to meet the heavy computing requirements
of emerging multimedia applications dealing with real-
world data types such as video and voice, a new gen-
eration of high performance programmable DSPs has
a highly-integrated parallel architecture, incorporating
special-purpose hardware features, on-chip memory and

0-7803-3529-5/96/$5.00 © 1996 [EEE

Yongmin Kim

Dept. of Electrical Engineering, Box 352500
University of Washington
Seattle, WA. 98195, USA

N\

4 One or more PEx
Processing Processing
Hlement (PE)) * 7 ° \ Hement (PE)
o Extemsl
Interconnection Neiwork Consrofier/ <4 Memory
tnstruction | loswuctionf | DA Usa
Cache Cache Mezory | | Memory
Multibank Data Memory _J

Figure 1: Single-chip multiprocessor DSP architectural
model.

multiple processors into a single chip. A generic archi-
tectural model of these DSPs is shown in Fig. 1. The
DSP has large on-chip memory, a separate I/O con-
troller and one or more processing elements (PEs). These
functional blecks are all connected through some form
of an interconnection network such as shared buses or
crossbar switch network. Because of the large data re-
quirement in multimedia applications, data movement
by the I/O controller is performed in parallel with data
processing by PEs, thus improving the overall perfor-
mance. Most of the high performance DSPs such as
Analog Devices’” ADSP-21060 Super Harvard Architec-
ture (SHARC) DSP [4], Motorola DSP96002 Processor
[5} and Texas Instruments TMS320C80 (MVP) [6] be-
long to this architectural family.

In order to develop an efficient DSP program for a
single-chip multiprocessor DSP, good understanding of
not only the algorithms and DSP’s intricacies, but also
the system-wide program behavior is necessary. With-
out system-wide performance understanding, a DSP pro-
gram can suffer from various performance bottlenecks
such as resource conflicts and unbalanced synchroniza-
tion. This extra overhead could significantly degrade
the overall performance of a DSP program. Unfortu-
nately, this bottleneck is often difficult to predict and

76

identify even for experienced DSP programmers. Con-
sidering that the main reason of using DSPs is to obtain
high performance, there is a strong need for performance
monitoring tools for a single-chip multiprocessor DSP.

In Section 2, the DSP-specific requirements for perfor-
mance monitoring tools are discussed and the impor-
tant performance parameters for our target DSPs are
identified. Then, as a specific example, we describe a
performance monitoring tool developed for Texas Instru-
ments’ TMS320C80 (MVP), MVP Performance Monitor
(MPM), which satisfies these requirements and function-
ality. An overview of the MVP and MPM is presented
in Section 3. In Section 4, the effectiveness of the MPM
is demonstrated using an 8x8 block-based 2-D discrete
cosine transform (DCT) implementation.

2 Performance Monitoring Tools for
Digital Signal Processors

2.1 Performance Instrumentation

proach

Ap-

In general, there are four performance instrumentation
levels: hardware, system software, run-time system soft-
ware and application code [7]. However, target appli-
cation codes are typically executed directly on top of
the hardware in DSP-based systems without much sys-
tem software or run-time system support to mii_limize
the overhead. So, more information from the hardware
and application levels is necessary to further improve the
performance of DSP applications.

For DSP-based performance optimization, none
of the hardware-based monitoring and software
instrumentation-based monitoring approaches are ad-
equate. In DSP applications, overall performance is
often dominated by small code segments (e.g., part of
a single procedure). For these code segments, software
instrumentation points are not easily defined because
there are not enough meaningful primitive-level activ-
ities within these small code segments. Furthermore,
these segments are often written in assembly language,
making it more difficult to pinpoint primitive-level
activities for performance monitoring. Since the per-
formance of small code segments is being monitored in
DSP applications, the software instrumentation code
added to DSP applications can significantly distort
the run-time behavior of DSP applications, resulting
in inaccurate performance data. On the other hand,
a hardware-based monitor does not provide enough
higher-level information necessary due to its limited
monitoring scope.

In order to collect accurate hardware performance data
as well as higher-level information without perturbing
the system’s behavior by monitoring process, we be-
lieve that a software monitor approach based on a hard-
ware simulator model is more appropriate. If an ac-
curate hardware simulator model is available, this ap-
proach supports both detailed hardware data collection
and higher-level analysis information without introduc-
ing any significant artifact into measurements. Devel-
oping an accurate hardware simulator would generally
require a significant amount. of effort. In DSP-based sys-
tems, however, this is not an extra burden because an
accurate DSP simulator model is typically available from
the DSP manufacturer. For example, most low-level
DSP programs are typically developed using a simulator
for a particular DSP. Thus, a performance monitoring
tool for a specific DSP can be developed by extending
the existing DSP simulator.

2.2 Performance Monitoring Tools Re-
quirements

In this section, we collect the desirable features of DSP-
based performance monitoring tools. Ideal performance
monitoring tools to be used in developing DSP applica-
tions should have (at least) the following properties:

s Performance monitoring integrated into the debug-
ging tools [8].

e Familiar and uniform user interface.

[]

Meaningful analysis results at a reasonable cost.

o User extensibility.

As discussed in [8], we believe that it is important to han-
dle debugging and performance monitoring in a unified
way; there is a continuum between debugging for cor-
rect functionality and debugging to achieve the desired
performance objectives. An ideal performance monitor-
ing tool should be seamlessly integrated into debugging
tools, especially in DSP-based systems where the de-
bugging tools play a central role in developing applica-
tion programs. An ideal performance monitoring tool
should also present a uniform and familiar user interface
throughout all its components, so as to relieve the users
from learning many different interfaces. For example, the
user should be able to use the same commands to control
the program’s flow in both the function debugging mode
and performance debugging mode.

Useful performance monitoring results should be ob-
tained at a reasonable cost. In DSP applications, a mul-
tiple number of small code segments such as tight loops

77

are often the candidates of in-depth performance moni-
toring and analysis. If performance monitoring takes an
excessive amount of time to produce measurements and
analysis, results, its usefulness is significantly reduced.
A performance monitoring tool should be extensible by
the user. For example, in a single-chip multiprocessor,
it is impossible to expect all the possible combinations
of events in advance. There should be a provision that
allows the user to select the types of events to be moni-
tored.

2.3 Performance Monitoring Parameters

For our target DSPs whose model was described in Sec-
tion 1, there are three main performance factors: (1)
balance between I/O time (by 1/O controller) and com-
pute time (by processing elements (PEs)), (2) instruction
cache behavior, and (3) interconnection network con-
tentions among PEs and 1/0O controller.

Since our target DSPs can perform data processing and
data movement concurrently, analyzing data processing
and data movement requirements for a given function is
very important. In order to arrive at an optimal pro-
gram implementation, it is necessary to know whether
a specific implementation of an individual subtask (of a
program) is I/O-bound or compute-bound. Additionally,
it is also necessary to know the degree of I/O-boundness
or compute-boundness of each subtask. For example, if
one subtask is found to be I/O-bound, its degree of I/O-
boundness can guide us in implementing other subtasks
of a program, trying to reach a balance between I/0 time
and compute time for the overall program.

"The second important performance parameter is on-chip
instruction cache behavior. Since one I/O controller
serves both instruction cache misses and data movement
requests from PEs in target DSPs, instruction cache
misses affect not only the compute time of a specific
function but also its I/O time. Thus, cache misses di-
rectly affect the overall program’s execution time. Be-
cause DSP programs are typically dominated by small
code segments and the cache-miss service time varies de-
pending on the I/O controller’s workload, a simple count
of the total number of cache misses would not provide
enough information to understand and improve the pro-
gram’s cache behavior. More detailed information such
as source address, frequency and service time for each
cache miss is necessary.

The third performance factor is interconnection network
contentions among PEs and I/0 controller. Contentions
among PEs would increase the total compute time while
contentions between PEs and I/O controller would in-
crease either the compute time or I/O time depending

Advanced [Advanced] |Advanced] Advancod Master Video
DSP O DSP 1 DSP2 - DSP3 Processor, Conirollers| *
L G LG LG | LG 1 f .
1 \:l o4 3 ;{ o XJI !:I, o4 Y)I x:I 4] o i3
—

Transfcr | e
Controller

Crossbar kol

il I]Hwﬁl'

D shared SRAM . instruction cache

ITAG

0 mpsram

@ data cache

Figure 2: High-level block diagram of the TMS320C80.

on the interconnection network priorities of PEs’ and
I/O controller’s accesses. For interconnection network
contentions, the total number of contentions for each
PE and I/O controller provides enough information to
improve DSP programs because the interconnection net-
work priorities for PEs and I/O controller tend to remain
relatively constant and they can be modified based on the
total number of contentions.

3 MVP Performance Monitor (MPM)

In this section, we describe the MVP Performance Moni-
tor (MPM) as an example DSP-based performance moni-
toring tool. The MPM is based on a cycle-accurate MVP
simulator. It satisfies the requirements of the DSP-based
monitoring tools and supports three important perfor-
mance parameters discussed in Section 2. Before the
MPM is described, we briefly describe the TMS320C80
(MVP) processor first. (For the detailed description, see
a reference [6].)

3.1 Overview of TMS320C80 (MVP) Pro-
cessor :

The TMS320C80 can be described as a single-chip, het-
erogeneous, MIMD multiprocessor connected via a cross-
bar to multiple on-chip shared memory modules. It com-
bines a RISC processor and four advanced DSPs as well
as an intelligent direct memory access (DMA) controller
and two video controllers into a single-chip device. It
is capable of processing more than 2 billion operations
per second (BOPS) with its 2.4 Gbytes/sec on-chip data
transfer rate. In order to reduce the data transfer over-
head with the external memory/devices, a large on-chip
memory (25 2-kbyte modules) is provided as well.

Fig. 2 shows a high-level block diagram of the major
functional blocks of the TMS320C80. The Master Pro-

78

cessor (MP) is a general-purpose RISC processor with
an integral IEEE 754 compatible floating-point unit. In
a typical operation mode, the MP serves as the main su-
pervisor and distributor of tasks within the TMS320C80.
The four Parallel Processors (PPs) or advanced DSPs
(ADSP 0-3) have a highly parallel architecture optimized
for multimedia, video/image compression, image/signal
processing and computer graphics. Each ADSP is capa-
ble of performing up to 15 RISC-equivalent operations in
a single clock cycle via a long instruction word (64 bits)
mechanism and has many powerful features not found
in conventional DSPs. For example, each ADSP has
three-operand 32-bit arithmetic and logical unit (ALU)
which can be. optionally split into two 16-bit or four
8-bit units. The Video Controllers (VC) provide sup-
ports for programmable video timing to control both
capture and display. The processors and on-chip shared-
memory modules are fully interconnected through the
high-performance crossbar switch network.

While five processors (the MP and four ADSPs) provide
the computing power:for the TMS320C80, the Trans-
fer Controller (T'C), a dedicated memory controller with
sophisticated data transfer logic, manages all the data
transfer requests and cache misses from these proces-
sors. The TC prioritizes different types of data transfer
reguests and transfers data within and between the on-
chip and external memories. Because of the high data
bandwidth required for multimedia applications and the
- overhead of-accessing off-chip memory directly, five pro-
cessors typically work with data brought into the on-chip
.. shared meraory by the TC. Since the processors and the
TG can-operate in parallel, most data movement by the
TC is hidden from the processors in the optimized imple-
mertation; while a processor is working on the current
block of data residing in the shared memory, the TC is
servicing a request for the next block in parallel. The
TC which works as a dedicated memory controller for
the whole MVP chip supports highly sophisticated data
transfer logic. The TC’s main data transfer mechanism
is a packet transfer (PT), a transfer of data blocks be-
tween two areas of the MVP memory. Packet transfers
are initiated by the MP, ADSPs, VC or external devices
as requested to the TC under the software or hardware
control. Once a processor has submitted a transfer re-
quest, it can continue program execution without waiting
for the completion of the transfer.

3.2 Architectural Overview of MPM

The MVP Performance Monitor (MPM) supports three
types of performance parameters identified in Section 2.3
with custom monitoring, cache monitoring, and con-
tention monitoring, respectively. The overall architec-

“MPM
MP!
¥

£ ; T 1
X Yo . A
" Cache . . Contention Custom TC
- . .Monitor .+ Monitor Monitor Monitor
o o e e et e
TIs MVP . . it : | i
. Debugger -~ = —t
Aot gg‘ Shared LM‘,ssage:
Memory |
i
& E‘
§ Extended MVP Communication & ’MIMJNIX'
. \C++ Simulator Synchronization Module | process

-

3
e Extended MVP Simulator (SimMVP) Jowons”

Figure 3: Overall software architecture of the MPM.

ture of the MPM is shown in Fig. 3. The MPM was
tightly integrated with the Texas Instruments MVP De-
bugger tool which is widely used in developing MVP pro-
grams. The user can interactively switch between the
performance monitoring mode using the MPM and the
function debugging mode using the MVP Debugger. The
performance monitoring mode runs about three times
slower than the function debugging mode which runs 700
to 1,000 instructions per second on a SUN SPARCsta-
tion 20. This speed has been found to be adequate for
monitoring the performance of multiple code segments
switching interactively between the two modes. The core
of the MPM is the extended MVP simulator. The ex-
tended MVP simulator consists of the MVP C++ simu-
lator which accurately models the MVP up to a half-
cycle! resolution, customized MPM extensions to the
MVP C++ simulator which include three types of moni-
toring support and TC debugging capability, and a com-
munication and synchronization module (CSM) which is
responsible for communicating with the MPM user in-
terface. The MPM user interface spawns a child process
which monitors the user-specified monitoring event.

For cache monitoring, the collected information on cache
misses for the code segment S is displayed, including the
total number of cache misses, the total cache-miss service
time, the total number of non-compulsory cache misses,
and the total cache-miss service time for non-compulsory
cache misses. It also displays the summary of all the
cache misses in a table where the source and destination
addresses for each cache miss, the average service time
for each cache miss, and its frequency are listed. Based
on this information, the user can restructure the MVP
program or adjust the program size to reduce the number
of non-compulsory cache misses. Contention monitoring
displays the total number of crossbar switch contentions

lin case of the MVP running at 50 MHz, a full clock cycle is 20
ns, $0 a half cycle is 10 ns.

79

‘s Castam Monitbring Dispiay for.063

Figure 4: An example display for the custom monitoring
result.

for each processor.

Custom monitoring is used to observe a user-defined
event unlike cache and contention monitoring where
monitoring events are predetermined by the MPM. In
the current version of the MPM, a user-defined event is
specified by ADSP checkpoints which are the addresses
of selected ADSP instructions. During custom monitor-
ing, the execution of ADSP checkpoints is recorded. The
result from custom monitoring is displayed graphically as
shown in Fig. 4. The-z axis of this graph indicates the
MVP clock cycle numbers. The lines in the upper row of
Fig. 4 display the status of data movements (i.e., packet
transfers) requested by a specific ADSP. The thick line
indicates a time interval when the packet transfer ser-
vice is delayed because the TC is busy servicing higher-
priority requests while the thin line represents a time
interval when the requested packet transfer is actually
serviced by the TC. The line? in the lower row of Fig. 4
shows a time interval when the specified ADSP check-
point is being executed. The user can measure each of
these intervals by clicking the mouse button.

One of main uses of custom monitoring is to evalu-
ate whether an implemented MVP program is compute-
bound or I/0-bound. In the MVP, ADSPs (or MP) sub-
mit data transfer requests to its I/O controller (the TC)
and check for the data transfer completion by polling a
predetermined register. Therefore, by custom monitor-
ing the ADSP polling instruction for the packet transfer
completion, it can be determined if the requested data
transfer has been completed.:

4 Performance Tuning Example: 8x8
Block-Based 2-D Discrete Cosine
Transform (DCT) Implementation

In this section, we describe our experience in using the
MPM to improve the performance of the 8x8 block-
based 2-D discrete cosine transform (DCT) implementa-

2If an ADSP instruction at the checkpoint is executed only once,
a point (instead of a line) will be displayed in the graph.

tion on the MediaStation 5000 (MS5000). The MS5000
is a TMS320C80-based multimedia system [9]. The pro-
gram first divides an N x M 8-bit’ input image into many
(N/8xA{/8) nonoverlapping 8x8 blocks. Then, 2-D
DCT is performed on each 8x8 block by row-wise 8-point
DCTs followed by column-wise 8-point DCTs. The out-
put block has the same spatial resolution (8x8) as the in-
put block. With the 8 bits/pixel input gray scale image,
the range of 2-D DCT output coefficients is from -2048
to +2047 due to the repeated multiplications (with the
cosine values) and accumulations. Thus, the DCT co-
efficients are stored as 16-bit fixed-point numbers. Out
of 16 bits, the four least significant bits represent the
fractional part while the upper twelve bits represent the
integer part. :

The 2-D DCT program consists of two tasks, 8-bit to
16-bit conversion {(convert task) and 16-bit 8x8 block-
based 2-D DCT (dct task). The separate 8-bit to 16-
bit convert task is necessary to prepare the input data
properly for the 16-bit 2-D dct task.? Among various fast
DCT algorithms, Lee’s algorithm was used in the dct task
[10]. Two processing cores for the convert and dct tasks
were highly optimized, heavily utilizing many advanced
features of the ADSP. The convert processing core takes
1.25 cycles per output pixel while the dct processing core
takes 352 cycles per 8x8 block, or 5.5 cycles per output
pixel. Four ADSPs running in parallel at 50 MHz, with
each ADSP processing a quarter of the image, would
take a total of 8.84 ms to perform the 8x8 2-D DCT
for a 512x512 input image. 1.63 ms would be taken for
the convert task while the dct task would take 7.21 ms.
However, these estimates are pure processing times and
do not include any overhead at all.

Using the two routines as building blocks, the first ver-
sion of the integrated program was implemented by com-
bining the two processing cores within a single ADSP-
level function as shown in Fig. 5. One 8x8 8-bit input
block is brought into the on-chip memory at a time and
one 8x8 16-bit DCT coeflicient block is written out to
the external memory. The convert processing core and
dct processing core share the same data flow in this im-
plementation. The performance of this version was sur-
prisingly bad. It took 44.5 ms, about 35.7 ms slower

31f we use 8-bit input pixels in the 16-bit 2-D dct task producing
the 16-bit fixed-point DCT coefficients, an extra shifting is required
after every multiplication between a 16-bit cosine value and an 8-
bit input pixel to change the multiplication result back to a 16-bit
number. Additionally, in order to perform two 16-bit arithmetic
operations simultaneously by splitting the ALU, two 16-bit multi-
plication results need to be packed into a 32-bit word. With the
preconverted 16-bit input pixels, however, the extra shifting and
packing operations become unnecessary by utilizing the hardware
swapper of the ADSP’s multiplier unit, which cannot be used with
8-bit pixels. : .

80

rMP lunson for XxB hlock-based 2.0 DCT]

y 1

ey

Comenon data How for 1w 125K3,

O cxersal won-ehip

{
i

i

f [on-clup o exwmsl

!

T
16-hit Bx§ 2-12 DCT
processing core
-t

Figure 5: Program structure of the first-version 2-D DCT
program.

than the theoretical estimate of 8.84 ms.

Through cache monitoring in the two processing cores,
we identified that there were about 1,100 to 1,200 ex-
tra cycles spent for servicing instruction cache misses
in-each iteration (each 8x8 block processing). We did
not expect this large number of cache-miss service cy-
cles because the combined number of ADSP assembly-
language instructions used in the convert (20 instruc-
tions) and dct (55 instructions) processing cores is 75,
which is much less than the maximum number (256) of
instructions that can fit into the ADSP’s 2-kbyte instruc-
tion cache.* The large number of cache misses happened
between the successive subroutine calls to the convert
and dct processing core routines. The MVP linker was
putting these routines in the instruction cache without
any 64-instruction block consideration, e.g., starting a
routine in the beginning of a cache block. Furthermore,
the MVP linker did not place these two routines closely
when building an executable module. So each core rou-
tine required two 64-instruction cache blocks. Four 64-
instruction blocks for two core routines and a couple of
additional 64-instruction blocks for the ADSP-level C
code (i.e., for statement block) caused cache misses for
each subroutine call. The overhead due to these non-
compulsory cache misses caused the performance loss of
between 22.5 ms and 24.6 ms.

In order to reduce the number of cache misses between
the convert and dct tasks, in the second version, the two
processing cores were put into separate ADSP-level func-
tions as shown in Fig. 6. In this version, the converted
image was stored in the external memory of the MS5000
before it was discrete cosine-transformed by the second
ADSP-level function. The convert task for each ADSP

4The 2-kbyte instruction cache is divided into four blocks, each
of which can store 64 64-bit instructions. Therefore, four differ-
ent code segments can be simultaneously stored in the instruction
cache.

IMP Tanction for §-hit 1o 16-bit cnnvcrxmn}‘—‘«h{ MP function for 16-bit 8x8 2-D DCT l

Y |
y

¥

Data flow for DCT task
£33 exiernal o on-chip

T3 on-chip fo cxternat

i
[Data flow for convert sk !
D rsTeepms el i
! [STZTehir pinel] (Mot !
! I]
- [16-bit 8x% 2-D DCT
Convert processing core | processing core
] e

Tl

N

be =
T

Figure 6: Program structure of the second-version 2-D
DCT program.

Figure 7: Custom monitoring result in the ADSP2 for
the 8-bit to 16-bit conversion ADSP-level function.

brings 512 8-bit pixels (or four rows of 128 pixels) into the
on-chip memory at a time instead of a single 8x8 8-bit
input block for more efficient data movements. For this
organization, cache monitoring showed no extra cache
miss in both ADSP-level functions. The execution time
was reduced to 16.3 ms from 44.5 ms, an improvement
of 28.2 ms. The improvement was about 4 to 6 ms larger
than one that can be explained by the large number of
cache misses. This is because unnecessary cache misses
affect the transfer time as well as the processing time,
and the significant reduction in cache misses improves
the overall I/Q performance as well. '

However, both ADSP-level functions became I/O-bound.
For example, Fig. 7 shows the custom monitoring result
in the ADSP2 after the convert task. It clearly shows that
the convert task is I/O-bound. In custom monitoring, we
set an ADSP checkpoint to be the address of the ADSP
polling instruction which checks for the packet transfer
completion. The solid lines in the lower row in Fig. 7 in-
dicate that the ADSP?2 is executing this polling instruc-
tion for a large number of cycles before the Téquested
packet transfer is completed. The long thick lines in the
upper row of Fig. 7 show that the packet transfer.service
is delayed for many cycles due to the TC’s unavailabil-
ity. The thin lines indicate the time intervals when the
requested packet transfer is actually serviced by the TC.
Because of its simple computation steps.in the process-
ing core, the convert task spends about two thirds of its

81

I MP functinn for 318 blsck-based 2-D DCT]

\

Commaon dats how tor twe tasks

£1 cxwnal mon-chip

£33 omechip 1o sxternal

Figure 8: Program structure of the third-version 2-D
DCT program.

I MP finciion tur %58 block-based 2-D DCT I

!

Commuon dita fow for twar tasks
EEET] external to on-chyp
= -

Figure 10: Program structure of the fourth-version 2-D
DCT program.

Figure 9: Custom monitoring result in the ADSP2 for
the ADSP-level function with the two processing cores
combined into a single one.

computing cycles waiting for the packet transfer comple-
tion according to Fig. 7 while the dct task spends more
than 50% waiting for the packet transfer completion.

In order to reduce the overall I/O time, we combined the
two processing cores into a single one as shown in Fig. 8
in the third version program. With the same data flow,
the execution time was reduced to 11.6 ms due to the
decreased 1/0 time. The new combined processing core
did not have any non-compulsory cache miss. However,
custom monitoring indicated that the implementation is
still I/O-bound. Fig. 9 illustrates this I/O-boundness for
the ADSP2 although a better balance has been achieved
between the I/0 time and processing time by combining
two 1/O-bound routines into a single routine. Comparing
Fig. 9 to Fig. 7, the total length of the solid lines in the
lower row is much shorter in Fig. 9, meaning that the
ADSP2 spends much less time checking for the packet
transfer completion. However, the ideal 2-D DCT im-
plementation should not have any solid line in the lower
row.

The fact that the third version was still I/ O-bound forced
us to make an in-depth analysis of the current data flow.
We did not expect this version to be I/0-bound because
the combined processing core was supposed to take only
6.75 cycles per output pixel while the number of pure I/O

Figure 11: Custom monitoring result in the ADSP2 for
the ADSP-level function with two processing ¢ores com-
bined into a single one and processing four 8 x8 blocks
at a time.

cycles was only 48 cycles/64 pixels,® or 0.75 cycles per
output pixel. With four ADSPs submitting data transfer
requests at the same time, the effective data transfer rate
for the MVP is four times larger than 0.75 cycles per
output pixel. On a close examination, we found out that
the row-time access overhead was a big contributor to the
large I/O time because accessing an 8x8 block requires
frequent memory page boundary crossings.®

In order to reduce the row-time access overhead, we in-
creased the number of 8 x8 blocks being brought in and
processed at a time to 4 from 1. The overall program
structure for this version is shown in Fig. 10. This ver-
sion became compute-bound as shown in Fig. 11. An
ADSP checkpoint was executed only once well after the
requested packet transfer was completed. This can be

5Using two cycles per memory access and 64-bit data width, it
takes 16 cycles to read in 64 8-bit data (64 bytes) and takes another
32 cycles to write back 64 16-bit data, a total of 128 bytes.

%The main memory subsystem of the MS5000 supports 2-kbyte
pages. With 512x512 images, two row-time accesses are necessary
to read an input 8x8 block (8 bits/pixel) and four row-time ac-
cesses are necessary to write back the 8x8 results (16 bits/pixel).
‘With two cycles per memory access and 64-bit data width, pure
data transfer would take 48 cycles. The extra cycles necessary for
six row-time accesses are about 90. Thus, it takes 2.16 cycles per
output pixel on each ADSP. With four ADSPs running in parallel,
the total data transfer rate for the MVP becomes 8.63 cycles per
output pixel, which is greater than the combined processing core’s
6.75 cycles per output pixel.

82

Table 1: Summary of several optimization steps for
the 8x8 2-D DCT program and its performance on a
512x512 input image

L Program Organization } Performance Speed—upL]
First version 44.5 s 1.00
Two ADSP-level functions 16.3 ms 2.73
Combined processing core 11.6 ms 3.84
Four 8x8 blocks at a time 9.53 ms 4.67

“Speed-up over the first version

observed by a single dot in the middle of the lower row of
Fig. 11. This single checkpoint execution was performed
much later than the packet transfer completion (which
is represented by the end of thin line in the upper row.).
The execution time for the fourth version program was
9.53 ms.

Table 1 summarizes the four versions of the 2-D DCT
program. The overall speed-up of 4.67 was achieved by
tuning the performance based on the monitoring results
from the MPM. The final version’s execution time of 9.53
ms is slightly larger than the theoretical minimum of 8.84
ms. However, further performance improvement would
be much more difficult, and the achievable performance
gain would be small compared to the amount of effort
necessary.

5 Conclusion

Achieving good performance on high performance single-
chip multiprocessor DSPs is challenging. There is al-
most no end in optimizing any complex algorithm. We
have discussed the need, requirements and functionality
of performance monitoring tools for the DSP-based sys-
tems, and have developed the MPM, an integrated MVP
performance monitor as an example.

The MPM helps the programmer in identifying the DSP-
specific performance bottlenecks. It presents the moni-
tored results in a way that gives the programmer a clear
view of program execution and areas of potential im-
provement so that the overall performance can be im-
proved and optimized with the judicious use of the MPM
and gained experience/intuition. The tight integration
between the familiar functional debugger and perfor-
mance monitor makes the MPM easy and efficient in
fine-tuning the DSP applications. We have demonstrated
that the performance of image computing algorithms can
be improved significantly using the MPM with a reason-
able amount of effort.

References

(1)

[10]

83

‘dyn parallel

T. Anderson and E. Lazowska, “Quartz: a tool
for tuning parallel program performance,” in Proc.
1990 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, May
1990, pp. 115-125.

D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields,
B. Schwartz and L. Tavera, “Scalable performance
analysis: the pablo performance analysis environ-
ment,” in Proc. Scalable Parallel Libraries Confer-
ence, 1993, pp. 104-113.

B. Miller, M. Callaghan, J. Cargille, J.
Hollingsworth, R. Trvin, K. Karavanic, K.
Kunchithapadam and T. Newhall, “The para-
performance measurement téol,”
Computer, vol. 28, no. 11, pp. 37-46, 1995.

J. Leonard, “EDN’s 1994 DSP-chip directory,”
EDN, vol. 39, no. 12, pp. 75-135, 1994.

M. El-Sharkawy, Signal Processing, Image Pro-
cessing and Graphics Applications with Motorola’s
DSP96002 Processor, PTR Prentice-Hall, Engle-
wood Cliffs, NJ, 1994.

K. Guttag, R. Gove, and J. Van Aken, “A single-p
multiprocessor for multimedia: The MVP,” IEEE
Computer Graphics & Applications, vol. 12, no. 6,
pp. 53-64, 1992

D. Reed, “Performance instrumentation techniques
for parallel systems,” in Performance Evaluation
of Computer and Communications Systems, L. Do-
natiello and R. Nelson, Eds., Lecture Notes in Com-
puter Science 729, Springer-Verlag, Berlin, 1993,
pp- 463-490.

D. Krumme and A. Couch, “Integrated debugging
and performance monitoring for parallel programs,”
in Proc. 15th Annual International Computer Soft-
ware and Applications Conference, September 1991,
pp. 317-318.

W. Lee, Y. Kim, R. Gove and C. Read, “MediaS-
tation 5000: integrating video and audio,” [EEE
MultiMedia, vol. 1, no. 2, pp. 50-61, 1994.

B. Lee, “A new algorithm to compute the discrete
cosine transform,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-32, no. 6,
pp- 1243-1245, 1984.

