
Copyright 2018. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 12, No. 4, December 2018, pp. 157-169

User-Centric Thermal Management for Smartphones
Wook Song

Samsung Research, Samsung Electronics, Seoul, Korea

wook16.song@samsung.com

Jihong Kim*

Department of Computer Science and Engineering, Seoul National University, Seoul, Korea

jihong@davinci.snu.ac.kr

Abstract
For high-performance smartphones, keeping the on-chip temperature under a given critical temperature is a major con-

cern. In order to prevent the temperature from rising above the critical point, modern smartphones widely adopt the

dynamic thermal management (DTM) scheme, which limits the maximum CPU frequency when the CPU reaches high

temperatures (thus making the CPU temperature drop). In this paper, we propose a novel DTM scheme based on user-

perceived response time analysis called SmartDTM. Unlike existing DTM schemes that can significantly degrade the

quality of user experience, SmartDTM explicitly accounts for the quality of the user experience in making DTM deci-

sions. We divide an execution of a given user-interactive session into two intervals, one where the system response time

directly affects the user experience and the other where the system response time does not affect the user experience. In

the user-perceived response time interval, our proposed scheme conservatively makes DTM decisions so that the quality

of the user experience is not affected by the reduced maximum CPU frequency. On the other hand, in the user-oblivious

response time interval, SmartDTM aggressively lowers the CPU frequency so that the CPU temperature can be quickly

decreased to a safe level without negatively affecting user experience. Our experimental results on an ODROID-XU+E

board show that SmartDTM can improve the performances of user-perceived intervals by 12.2% and 21.4% over the

Android’s default DTM policy when the initial temperature was set to 65°C and 70°C, respectively, under the critical

temperature of 85°C.

Category: Smart and Intelligent Computing

Keywords: Smartphone; Operating system; User-centric optimization; Thermal management; Dynamic voltage

and frequency scaling

I. INTRODUCTION

Modern smartphones employ high-performance proce-

ssors in order to satisfy the demanding computing

requirements of various apps (such as mobile games and

virtual reality apps) to deliver great user experiences. For

example, recent smartphones (such as Galaxy S7) have

octa-core processors which run at more than 2.0 GHz [1].

Although these high-performance processors are essential

to support the required user-experience level, their high

power densities produce excessive amounts of heat, which

must be maintained under certain threshold temperatures

Received 13 November 2018; Accepted 02 December 2018

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2018.12.4.157 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 158 Wook Song and Jihong Kim

[2]. Since a highly elevated on-chip temperature negatively

affects reliability, effective thermal management is a

crucial design requirement.

Conventional computing systems such as PCs employ

thermal management hardware devices to cool their

processors. For example, a fan-cooled heat sink [3] is the

most commonly used technology for on-chip temperature

reduction in PCs. However, it is difficult to use this

approach in a smartphone due to its form-factor limitation

as well as the increased power consumption caused by

this approach [4]. Therefore, for smartphones, software-

based thermal management is a more practical way to

address thermal problems.

As a software-based approach, the dynamic thermal

management (DTM) [5] scheme is commonly used in

smartphones. The DTM scheme aims to maintain the

CPU temperature below a critical temperature (above

which the processor chip could be damaged). For this

purpose, the current temperature is sensed periodically,

and, if necessary, the CPU frequency is reduced by

interacting with the dynamic voltage and frequency

scaling (DVFS) scheme. When the CPU temperature

reaches a predefined trigger temperature (which is lower

than the critical temperature), the maximum operating

frequency of the processor, which is set as the limit for

the current DVFS policy, is reduced. Then, when the

CPU temperature drops below the trigger temperature, the

maximum operating frequency of the processor is gradually

increased in order to restore system performance.

Although the DTM scheme can effectively mitigate the

thermal problems, it makes voltage/frequency scaling

decisions based only on the current temperature without

considering the user's current computing requirement.

Therefore, under existing DTM techniques, the quality of

the user experience can be significantly degraded if a

DTM decision to lower the CPU voltage/frequency is

made when meeting a high computing requirement is

necessary for a great user experience. If a DTM technique

can be extended to be more user experience-aware, it may

avoid such scaling decisions in the middle of compute-

intensive user-smartphone interactions. Considering that

most user-interactive sessions can be divided into two

parts, one where the system performance level directly

affects the quality of the user experience (called the

display-sensitive part) and the other where the system

performance level does not affect the quality of the user

experience (called the display-insensitive part), it is

possible to make DTM techniques smarter if we can

distinguish between the display-sensitive part and display-

insensitive part of a user-interactive session.

In this paper, we propose such a novel DTM technique

for smartphones, called SmartDTM, which improves the

quality of the user experience without violating the thermal

requirement. The proposed SmartDTM technique is

based on two key components, which form the main

contributions of this paper: a user-perceived response-

time predictor (urp) and a worst-case temperature

predictor (wtp). At the start of each interactive session S,

urp estimates , the length of the display-sensitive part

of the session S, using a history of previous values of

the display-sensitive part. Based on the estimated

and the current temperature, wtp predicts the temperature

 at the end of the display-sensitive part of S. In order

to provide better user experience, even though the current

temperature is higher than the trigger temperature,

SmartDTM does not lower the maximum operating

frequency if does not exceed the critical temperature.

By contrast, in SmartDTM employs an aggressive DVFS

policy during the display-insensitive part. Since user

experience is not affected in the display-insensitive part

of the session S, the CPU temperature is quickly decreased

to a safe level by aggressively scaling down the maximum

operating frequency with no negative impact on user

experience.

In order to evaluate our proposed technique, we imple-

mented SmartDTM on the Android platform, version 4.4.2

(Kitkat), running on an Exynos 5410-based ODROID-

XU+E board [6], which employs current and voltage

sensors in order to measure the power consumption of the

on-board components including the big CPU cluster, the

little CPU cluster [7], the GPU, and the DRAM module.

The experimental results show that the Android's default

DTM policy interferes with user-perceived intervals,

degrading their performance by an average of 17.3% and

44.4%, when the initial temperatures were 65oC and 70oC,

respectively. On the other hand, SmartDTM can avoid

many DTM decisions within user-perceived response time

intervals by delaying them to user-oblivious response

time intervals, thus mitigating the negative effect of

DTM on the performance of user-perceived response

time intervals. Our experimental results also show that

when the initial temperatures were set to 65°C and 70°C,

SmartDTM can improve the user-perceived performance

by an average of 12.2% and 21.4%, respectively, over the

Android’s default DTM policy under the critical tem-

perature of 85°C.

The rest of this paper is organized as follows. In

Section II, we explain the key idea behind our proposed

framework. In Section III, we present an overview of

SmartDTM and illustrate how the user-perceived response

time and the CPU temperature can be estimated under the

SmartDTM framework. In Section IV, we report experi-

mental results. In Section V, we review related work, and

in Section VI, we conclude with a summary.

II. BASIC IDEA

Since smartphones are highly interaction-oriented

devices, most usage scenarios on a smartphone consist of

a sequence of interactive sessions, S1, …, SN, where each

interactive session Si is defined as an interval between

IS
 perc

IS

 perc

IS

 perc

TS

 end

TS
 end

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 159 http://jcse.kiise.org

two consecutive user inputs. We can further divide the

execution of an interactive session Si into two subintervals,

a user-perceived response time interval and a user-

oblivious response time interval [8]. is the

period from the beginning of the interactive session Si

initiated by a certain user input to the moment when the

entirety of the required user-visible interface for the next

interaction is fully displayed (In other words, the length

of is the user-perceived response time of Si).

can be considered as the user’s think time about the next

user interaction (The end of is determined by the

time when the next user input is initiated for the next

interaction).

While most user interactions on smartphones can be

characterized as an alternating sequence of ’s and

’s, few power/thermal management policies used for

smartphones exploit these unique interaction patterns

between user and a smartphone in their decision making

procedures. For example, the Android’s default DTM

policy makes thermal control decisions in a reactive

fashion depending only on the sensed temperature. As

summarized in Fig. 1, the default DTM policy controls

the CPU temperature by adjusting the maximum CPU

operating frequency , based on the current CPU

temperature. That is, can range from to

, where is set to the maximum CPU

frequency with which the CPU can operate. When the

current CPU temperature Tcurr, which is computed every

100 ms, reaches the trigger temperature Ttrig , the default

DTM policy lowers by one level. By lowering

, the peak power consumption of the CPU can be

reduced because an underlying Linux DVFS policy

cannot choose a frequency higher than , thus

potentially leading to a decreased CPU temperature. This

gradual reduction in continues until Tcurr falls below

Ttrig . Once Tcurr is lowered below Ttrig , is gradually

increased until . In order to ensure an acceptable

level in user experience, the DTM policy sets the lower

bound, , when lowering Tcurr.

In order to explain the basic motivation of our

proposed SmartDTM technique, we use an example

interactive session SL which launches the twitter app

under the Android’s default DTM policy with an initial

temperature of 65°C. In this example, we assume that the

critical temperature Tcrit and Ttrig were set to 85°C and

75°C, respectively. Fig. 2(a) shows how the CPU

frequency and on-chip temperature change during 14.5

seconds after twitter is launched as measured in our

evaluation board, ODROID-XU+E. The X-axis, the Y-

axis on the left side, and the Y-axis on the right side

represent the elapsed time, CPU frequency, and CPU

temperature, respectively. At t = 0, the interactive session

SL is initiated by launching twitter. The user-visible

interface is fully drawn at t = 4.3, and this is the user-

perceived response time of SL. However, since the CPU

temperature reached Ttrig after 1 second, was reduced

from 1,600 MHz to 1,400 MHz. The temperature then

drops below 75°C, and after 1.8 seconds, the default

DTM policy restores to 1,600 MHz. Then the CPU

temperature starts rising again, reaching 75oC after 2.4

seconds, when is again reduced; but this time, the

CPU temperature remains near Ttrig, and so the default

DTM policy keeps reducing in several periods until

it reaches 800 MHz. Since the big cluster only handles

IS
i

 perc

IS
i

 oblv
IS

i

 perc

IS
i

 perc
IS

i

 oblv

IS
i

 oblv

IS
i

 perc

IS
i

 oblv

Fop
 max

Fop

 max
Flower

 max

Fupper
 max

Fupper
 max

Fop
 max

Fop

 max

Fop

 max

Fop
 max

Fop

 max

Fupper

 max

Flower

 max

Fop
 max

Fop
 max

Fop
 max

Fop

 max

Fig. 1. An overview of the default DTM policy with the
interactive cpufreq governor.

Fig. 2. Changes in CPU frequency and temperature while
twitter is launched under (a) the default DTM policy and (b) the
oracle DTM policy, respectively.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 160 Wook Song and Jihong Kim

the performance requirement higher than the CPU

frequency of 800 MHz, the processing is switched from

the big cluster to the littler cluster at this point. Although

the default DTM policy can successfully control the CPU

temperature below Ttrig, on average, its decisions are not

effective in two aspects. First, as shown in two areas

(marked as A) in Fig. 2(a), the user-perceived launching

time was significantly increased because the default

DTM policy lowered too aggressively. Second, the

CPU temperature tends to drop very quickly in the Ioblv

interval. If the DTM policy had known this thermal

characteristic a priori, it could have avoided lowering

 within the I perc interval.

In order to understand the negative impact of the

thermal control decisions under the default DTM policy

on the user-perceived delay, we compared the default

DTM policy with an oracle policy which had the

complete future information. The oracle DTM policy

does not lower during the execution of Iperc because

it knows in advance that doing so would not violate the

thermal requirement (i.e., Tcurr < Tcrit) as shown in Fig.

2(b). Having this advanced knowledge on Tcurr, the oracle

DTM policy can achieve the user-perceived response

time of 3.3 seconds, which is shorter than the default

DTM policy by 4.3 seconds. In this example, similar to

the result of the default DTM policy, Tcurr reaches Ttrig

after 1 second. However, instead of lowering , it

 remains at 1,600 MHz since Tcurr would not exceed

Tcrit while executing the Iperc interval. As a result, the

average and peak CPU temperatures of the Iperc interval,

which are about 74oC and 82oC, respectively, are higher

than those of the default DTM policy. However,

considering that Tcrit is 85oC, we can see that the thermal

requirement is still satisfied in Iperc, even if such

conservative DTM decision is applied. Moreover, under

the default DTM policy, the CPU frequency often reaches

1,600 MHz, even during , so that the CPU

temperature reaches 76oC at t = 6.7, as shown in the area

(marked as B) of Fig. 2(a).

On the other hand, as shown in Fig. 2(b), by employing

, 250 MHz, during , the oracle DTM policy

could quickly reduce the CPU temperature as soon as

 ends at t = 3.3.

Fig. 3 compares the user-perceived delay of the oracle

DTM policy and the default DTM policy using 10

launching interactive sessions of various Android apps

(For better accuracy, each app was launched 30 times and

the averages of these 30 user-perceived delay values were

shown in Fig. 3). In this experiment, all of the launching

interactive sessions are initiated at 65oC, which is the

temperature of Exynos 5410 processor [9] in our

ODROID-XU+E board in a normal state. The X-axis and

Y-axis denote various Android apps and their user-

perceived delays, which are normalized to those of the

results of the oracle DTM policy. In this scenario, the

default DTM policy degrades the user-perceived

performance by an average of 17.3% and up to 30.0% as

compared to the oracle policy. If the initial temperature is

70oC, which is closer to Ttrig , we can see (in Fig. 3(b))

that the user-perceived performance of the default policy

is decreased by an average of 49.5% as compared to the

oracle policy. Our experimental results strongly suggest

that if we knew the future performance requirement of an

interactive session, a much better DTM technique can be

developed. In Section 3, we propose such an efficient

DTM technique which depends on whether the current

execution is in the user-perceived interval or in the user-

oblivious interval of an interactive session.

III. DESIGN AND IMPLEMENTATION OF
SMARTDTM

A. Architectural Overview

The proposed SmartDTM consists of three main com-

ponents: ura [8], platform-side and kernel-side modules.

Fig. 4 shows an architectural overview of SmartDTM

within the Android platform and kernel. In the proposed

SmartDTM, ura is responsible for identifying the end of

 during run time from the execution of Si. In detail,

for a given Si, ura works as follows:

Fop
 max

Fop

 max

Fop

 max

Fop
 max

Fupper

 max

IS
L

 oblv

Flower
 max

IS
L

 oblv

IS
L

 perc

IS
i

 perc

Fig. 3. Normalized user-perceived response time comparisons
between the oracle and default DTM policies. (a) When each
interactive session is initiated at 65oC. (b) When each interactive
session is initiated at 70oC.

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 161 http://jcse.kiise.org

Step 1. Detect the user input which initiates Si.

Step 2. Keep track of any threads spawned by the user

input.

Step 3. Detect requests to update the display which are

related to handling the user input.

Step 4. ends when all the display-update requests

have been processed. If the next user input has already

been initiated before all of the display-update requests

are processed, the end of can also be determined

at this time.

Ura consists of two main modules, the method instru-

mentation module, which performs steps 1, 2, and 3, and

a module which identifies the end of the user-perceived

response time, called endIdentif ier. The method instru-

mentation module consists of three submodules; the input

event detector, the worker thread tracker, and the UI

update detector. The input event detector captures events

related to a particular user input. The worker thread

tracker traces newly spawned threads, called worker
threads, while processing the user input. In addition to

the spawning of the worker threads, the worker thread

tracker is also responsible for tracing all of the messages

exchanged between the main thread and the worker
threads during the user input processing. If there are any

messages sent by the main thread to the worker threads
that are already spawned before the user input, these

messages are also traced by the worker thread tracker.

The UI update detector tracks display-update requests

made by serving the user input.

Fig. 5 illustrates how ura identifies the user-perceived

response time using an example. In order to handle a

particular interaction with UI components such as the

Widget and View packages in the Android framework, it

is required to implement callback methods in the event

listener interface and register them to the UI components.

And then, when a user interacts with a certain UI

component, the registered callback method is invoked to

process that user input. Corresponding to different types

of user interactions, the Android SDK provides various

callback methods. For example, user interactions such as

a touch, a click, and a long-click are handled by onTouch(),

onClick(), and onLongClick() methods, respectively. In

the example, the callback method, onClick(), is invoked

because the user clicks the user interface resource such as

the BUTTON Widget. The input event detector first traces

all the method invocations related to the callbacks for the

user input, so as to identify the start ts of the current

interactive session Si. In this example, the input event

detector catches the onClick() invocation. The input

event detector also tells the worker thread tracker and the

UI update detector about all the method invocations

issued by the execution of onClick().

When an app is launched, a special thread, called a

main thread, is created by the Android system. This is

the only thread that can update the user-visible contents,

while compute-intensive work is performed by worker
threads, for better responsiveness. If a worker thread

needs to update the user interface, it sends a request to the

main thread. The Android SDK allows Message and

Runnable objects to be exchanged between the main
thread and a worker thread. By exploiting the information

(which is provided by the input event detector) on the

method invocations during the execution of the callbacks

for the user input, the worker thread tracker traces newly

spawned worker threads and all of the methods that they

invoke. For example, as shown in step 2 of Fig. 5, the main
thread wants to perform compute-intensive work via the

worker thread, the main thread invokes sendMessage(),

and the worker thread responds with dispatchMessage().

The worker thread tracker catches both the sendMessage()

IS
i

 perc

IS
i

 perc

Fig. 5. An example of identifying the user-perceived response
time.

Fig. 4. An architectural overview of SmartDTM.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 162 Wook Song and Jihong Kim

and dispatchMessage() invocations. Then, in order to

detect UI update requests created by the worker thread,

all of the information regarding the method invocations

during the execution of dispatchMessage() is fed to the

UI update detector.

In order to recognize the changes in the user-visible

contents, ura traces UI update requests issued by the user

input and captures the moment at which the last request is

handled. For example, at step 3 in Fig. 5, the invalidate()

methods are invoked twice during the execution of both

onClick() and dispatchMessage(). At these points, the UI

update requests are posted to the main thread. The UI

update detector catches the invalidate() invocations and

watches the event queue for the UI update requests.

Subsequently, when the main thread processes the last

update request from its event queue, and invokes draw()

to handle it (at te in step 4 of Fig. 5), endIdentif ier
determines that te is the end of Iperc. In this example, the

user-perceived response time is estimated to be (te-ts).

The interactive session classifier (isc) and the user-

perceived response-time predictor (urp) are the platform-

side modules in SmartDTM. When a user interacts with

the UI components, isc creates a unique identifier at the

start point of the interactive session. Once the unique

identifier is created, all of the interactive sessions that

have an identical identifier are grouped so that urp
predicts the user-perceived response time for each group

of the interactive sessions. When endIdentifier has

determined that has ended, it informs urp, which

adds the user-perceived response time to the total

associated with the corresponding session identifier. In

order to predict the user-perceived response time, urp
uses a statistical analysis of the accumulated user-

perceived response time information. On the kernel side

of SmartDTM, there are two modules, the worst-case

temperature predictor (wtp) and the SmartDTM CPU

frequency governor. wtp in the thermal management

module, which is responsible for applying the DTM

decisions, estimates the time at which the CPU temperature

will reach Tcrit by performing the worst-case temperature

estimation whenever Tcurr reaches Ttrig. If Tcurr is not

expected to exceed Tcrit during the execution of , the

module does not change in order to improve the

user-perceived performance. Otherwise, as is the case

with the default DTM policy, is reduced by the

thermal management module. When is changed or

endIdentif ier detects the end of , the thermal

management module notifies it to the SmartDTM CPU

frequency governor.

B. Predicting User-Perceived Response Time

In order to make a unique identifier for classifying the

interactive sessions, isc takes advantage of the Android’s

View hierarchy system. Fig. 6 is a snapshot of the Twitter

GUI (top) and the corresponding View hierarchy (bottom).

It can be seen that the GUI is as a tree structure, the

terminal nodes of which correspond to visible UI com-

ponents. For example, an image button on the toolbar, a

tweet post in the timeline, and a profile image correspond

to a ToolBarItemView node, a GroupedRowView node,

and an ImageView node, respectively (marked as A, B,

and C, respectively, at the top and bottom of Fig. 6). An

interactive session can therefore be identified by the

unique concatenation of the names of the terminal node

and its parents back to the root of the tree corresponding

to the GUI component used to start the session. In further

detail, whenever the input event detector of ura captures

the events related to the user input, isc traverses the View

hierarchy from the terminal node, which handles the user

input, to the root, DecorView, and makes a long string,

which is the concatenation of the names of all of the visited

nodes. Interactive sessions related to UI components with

the same identifier are put into the same group. In this

example, the interactive sessions initiated by selection of

tweet (marked as B, B' and B" at the top of Fig. 6) will be

grouped together.

The 30 most recent user-perceived response times are

stored by urp, and the mean and standard deviation are

calculated. Assuming that the user-perceived response

times for a specific interactive session group are normally

distributed, the particular percentile (e.g., 95.05% in the

current implementation) of the distribution can be obtained

using the probit function [10], then used as the expected

user-perceived response time of the interactive session.

C. Worst-Case Temperature Estimation Model

Since CPU temperature is strongly related to power

IS
i

 perc

IS
i

 perc

Fop

 max

Fop

 max

Fop

 max

IS
i

 perc

Fig. 6. A GUI example of the twitter app and its View hierarchy.

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 163 http://jcse.kiise.org

consumption, we built a worst-case temperature estimation

model by measuring the power consumption during

heavy usage scenarios. Fig. 7 shows how the CPU power

consumption and temperature of our Exynos 5410-based

ODROID-XU+E board change under heavy usage

scenarios. The workload involves 10 sequential launches

of the apps profiled in Fig. 3. The X-axis, the Y-axis on

the left side, and the Y-axis on the right side represent the

elapsed time, CPU power consumption, and CPU tem-

perature, respectively. We can see that the CPU power

consumption varied dramatically with workload, up to

4.02 W. Based on this observation, we made the conser-

vative assumption that the CPU power consumption of

our ODROID-XU+E board would range from 4.00 W to

4.50 W under the heavy usage.

Although CPU temperature is significantly dependent

on power consumption, the workload characteristic is also

an important factor affecting temperature fluctuations. To

observe the changes in the CPU temperature caused by

varying a workload characteristic, we measured the

average CPU power consumption and the time that the

CPU temperature took to change from Ttrig (i.e., 75°C) to

Tcrit (i.e., 85°C) for each workload in the micro_bench

binary, from the Android Open Source Project. The

characteristics of these workloads are summarized in

Table 1 and the results are shown in Fig. 8. The X-axis,

the Y-axis on the left side, and the Y-axis on the right side

denote various workloads, their average CPU power

consumption, and the elapsed times, respectively. Since the

CPU power consumption for two workloads, memcpy_4

and memset_4, exceeded 5.50 W, which is extremely

high for the target system, we excluded these workloads.

The cpu_4 and memread_3 workloads draw 4.18 W and

4.34 W, respectively, which are in the 4.00 - 4.50 range, but

their thermal characteristics differ substantially. The CPU

temperature rose from 75°C to 85°C within 5.9 seconds

during the execution of cpu_4, but with in 2.53 seconds

during the execution of memread_3. We therefore chose

memread_3 to build a method for estimating the worst-

case temperature T(t) using linear-log regression:

T(t) = 5.947 · ln(t) + 64.386 (1)

where t is elapsed time in units of 100 ms, and where T(0)

is the initial temperature of Exynos 5410 processor of our

ODROID-XU+E board in a normal state.

D. Thermal Management Module

Fig. 9(a) illustrates how SmartDTM can avoid reducing

 by predicting the end of and tcrit , which is the

time when the current temperature will reach Tcrit. At tinit,

which is the beginning of Si initiated by a certain user

input, SmartDTM estimates tend, which is when

ends. Each time the CPU temperature is measured, tcurr, is

compared with tend in order to estimate the time remaining

Fop
 max

IS
i

 perc

IS
i

 perc

Fig. 7. Changes in the CPU power consumption and temperature
under heavy usage scenarios.

Fig. 8. Differences of the average CPU power consumption and
the elapsed times corresponding to the CPU temperature
changes from 75oC to 85oC between the various workload
characteristics.

Table 1. Summary of the workloads in the micro_bench binary

Benchmark name Description

CPU_n Multi-threaded CPU-intensive workload using n threads

MEMCPY_n Multi-threaded cache-intensive workload, which repeatedly calls the memcpy function using n threads

MEMCPY COLD_n Multi-threaded memory-intensive workload, which repeatedly calls the memcpy function using n threads

MEMSET_n Multi-threaded cache-intensive workload, which repeatedly calls the memset function using n threads

MEMSET COLD_n Multi-threaded memory-intensive workload, which repeatedly calls the memset function using n threads

MEMREAD_n Multi-threaded cache-intensive workload, which repeatedly reads values from an array using n threads

MEMREAD COLD_n Multi-threaded memory-intensive workload, which repeatedly reads values from an array using n threads

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 164 Wook Song and Jihong Kim

in . If Tcurr reaches Ttrig at ttrig during the execution of

, SmartDTM does not immediately reduce .

Instead, it predicts tcrit using its worst-case temperature

estimation model. If tcrit is later than tend, is not

reduced to ensure the quality of user experience during

the execution of . Furthermore, when starts, the

SmartDTM CPU frequency governor employs the lowest

CPU frequency, which rapidly reduces the CPU tem-

perature while executing .

Algorithm 1 describes how the SmartDTM cpufreq

governor decides the CPU frequency. As is the case with

other Linux cpufreq governors, the CPU frequency is

updated at each sampling period (e.g., 20 ms). The

SmartDTM governor relies on endIdentifier of ura in

order to keep track of whether the current execution is in

 or , as described on the first line in Algorithm 1.

Whenever a new interactive session Si is started, the

current execution interval type is set to . By contrast,

when endIdentif ier detects the end of , it is changed

to . By exploiting this information, the SmartDTM

governor employs the minimum operating CPU frequency,

, while executing I oblv. Otherwise, when the current

execution is in , the CPU frequency is decided by the

interactive cpufreq governor [11], which is the

default governor in most kernels for the Android Open

Source Project. In particular, for higher responsiveness,

when the CPU load exceeds the predefined upper threshold

(e.g., 99, Lgo_high in Algorithm 1), the interactive
cpufreq governor quickly switches to the maximum

operating CPU frequency, . On the other hand, if

the CPU is less loaded, is multiplied by the

percentage of the current CPU load in order to determine

the CPU frequency for the next sampling period.

Sometimes, in order to avoid a thermal violation,

SmartDTM has to reduce the CPU frequency during the

execution of , as shown in Fig. 9(b). In this example,

at ttrig, SmartDTM predicts that tcrit will come before tend,

which means that if we do not reduce the CPU frequency,

then Tcurr will soar above Tcrit at tcrit. Therefore, in this

case, the default DTM policy is applied in order to avoid

the thermal violation.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

We implemented the SmartDTM technique on the

IS
i

 perc

IS
i

 perc
Fop

 max

Fop

 max

IS
i

 perc
IS

i

 oblv

IS
i

 oblv

I
 perc

I
 oblv

I
 perc

I
 perc

I
 oblv

ALGORITHM 1: Pseudo code for the SmartDTM CPU

frequency governor.

Flower

 max

I
 perc

Fupper

 max

Fupper
 max

IS
i

 perc

Fig. 9. Two cases of how SmartDTM makes the DTM decisions
based on the estimated values of tend and tcrit. (a) Fmax

op is not
reduced during the execution of . (b) Fmax

op is reduced during
the execution of .

ISi

perc

ISi

perc

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 165 http://jcse.kiise.org

Exynos 5410-based ODROID-XU+E board running

Android 4.4.2 (Kitkat). Isc and urp were implemented in

the Android platform. The thermal management module,

which makes the DTM decisions based on the prediction

of the user-perceived response time, was added to the

Linux kernel, version 3.4.5. The predicted user-perceived

response time is exported to the thermal management

module using a Linux kernel’s sysfs file [12]. We experi-

mented with 10 apps under different usage scenarios.

Since our isc exploits Android's View hierarchy system, it

cannot support certain apps based on web pages; therefore,

only launch scenarios are used for those apps. The

scenarios for the other apps consist of two consecutive

interactive sessions. Table 2 summarizes the apps and

their usage scenarios.

B. Performance Evaluation

Fig. 10 shows the effect of SmartDTM on the user-

perceived response times for 10 launching interactive

sessions. In this experiment, at the start of each session,

the CPU temperature is 65°C, which is considered normal.

Since only launching interactive sessions raise the CPU

temperature above 75°C from the initial 65°C, these

sessions are selected for evaluation. On these interactive

sessions, SmartDTM improves the performance of user-

perceived response time intervals by an average of 12.2%

compared to the default DTM technique. For S13 (twitter),

the proposed SmartDTM achieves the maximum improve-

ment in the user-perceived response time of 21.3%. For 7

out of 10 scenarios, the drop in user-perceived performance

using SmartDTM was less than 3.0%. Even in the worst-

case, S11 (hangout), the user-perceived response time

was 6.2% more than it is with the oracle policy, while the

default DTM policy increases the user-perceived response

time by 21.8%.

As the initial temperature increases, more reductions in

Table 2. Scenario descriptions of 10 apps used in the experiments

App name (category)
Interactive

session ID
Interactive session description

User-perceived response

time with oracle (s)

Band (social networking) S1 Launching 1.98

S2 Viewing an article 0.53

Facebook (social networking) S3 Launching 2.01

S4 Clicking the search button 0.46

Facebook Messenger (messenger) S5 Launching 0.59

S6 Changing tabs 0.24

Gmail (mail) S7 Launching 3.48

S8 Reading a mail 3.42

Google+ (social networking) S9 Launching 1.38

S10 Viewing today’s recommended featured collection 0.78

Hangout (messenger) S11 Launching 2.22

S12 Opening a chat session 0.35

Twitter (social networking) S13 Launching 3.35

S14 Viewing a tweet post in the timeline 0.23

Naver (web portal) S15 Launching 8.89

Daum (web portal) S16 Launching 3.27

The Wall Street Journal (news) S17 Launching 1.28

Fig. 10. A comparison of normalized user-perceived response
times for 10 launching interactive sessions when the initial
temperature was 65oC.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 166 Wook Song and Jihong Kim

CPU frequency are required in order to avoid thermal

violations during the execution of , which reduces

user-perceived performance. Fig. 11 shows the normalized

user-perceived response times for the 17 interactive

sessions in Table 2, when the initial temperature is 70°C.

The user-perceived performance drops whether the

default or SmartDTM is used. However, the reduction

with SmartDTM is 21.4% less on average than the

default DTM technique. Moreover, for 9 of 17 interactive

sessions, the default DTM policy increases user-perceived

response times by at least 50.0%, while SmartDTM only

increases these delays by more than 23.6% for S11, S13,

and S15; and for the other scenarios the delay is 18.1% or

less.

C. Temperature Evaluation

The average and maximum CPU temperatures under

the default and SmartDTM policies during the execution

of are compared in Fig. 12. The X-axis and Y-axis

denote the interactive sessions and their average or

maximum CPU temperatures while executing the user-

perceived response time intervals, respectively. When the

initial temperature is 65°C, SmartDTM raises the average

CPU temperature by 1.70°C more than the default policy.

The maximum temperatures observed during under

the SmartDTM could be acceptable, if the critical

temperature is 85°C. As shown in Fig. 12(b), for S13 (a

launching interactive session of twitter, the highest CPU

temperature observed during was 82°C.

If the initial temperature is close to the trigger tem-

perature, higher CPU temperatures are observed. Never-

theless, SmartDTM can avoid thermal violations using

the worst-case temperature estimation. In order to evaluate

the effectiveness of the proposed SmartDTM on the

thermal management, Fig. 13 shows the average and

maximum CPU temperatures during for the default

and SmartDTM policies when the initial temperature is

70°C. The X-axis and Y-axis are the same as those shown

in Fig. 12. SmartDTM produces average CPU temperatures

which are 2.09°C higher than those for the default policy.

The maximum CPU temperatures shown in Fig. 13(b) are

much higher, but SmartDTM still avoids thermal violations.

In order to evaluate the effect of the SmartDTM cpufreq

governor on the reduction in CPU temperature during the

user-oblivious response time interval, we measured the

length of time between the end of the user-perceived

response time and the time at which the temperature

drops to 65°C, with the results shown in Fig. 14. The X-

axis and Y-axis denote the interactive sessions and the

elapsed times of these from the time when the execution

of the user-perceived response time interval ends to the

time when the temperature drops to 65°C, respectively.

When the initial temperature is 65°C, the SmartDTM

technique reduces this interval by 58.3%. When tasks are

executed during the user-oblivious response time interval,

the default DTM policy fails to significantly reduce the

CPU temperature during that interval. As shown in

Fig. 14(b), SmartDTM is also effective in reducing the

CPU temperature during the user-oblivious response time

interval when the initial temperature is 70°C. In this

experiment, SmartDTM requires, on average, 45.2% less

IS

 perc

IS

 perc

IS

 perc

IS
 perc

IS

 perc

Fig. 11. A comparison of normalized user-perceived response
times for 17 interactive sessions when the initial temperature
was 70oC.

Fig. 12. Variations in the average and maximum CPU
temperatures under the SmartDTM and default policies when
the initial temperature is 65°C. (a) A comparison of the average
CPU temperature during the execution of the user-perceived
response time interval. (b) A comparison of the maximum CPU
temperature during the execution of the user-perceived
response time interval.

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 167 http://jcse.kiise.org

time to bring the CPU temperature back to 65°C during

that interval. For S13, 7.42 seconds are required to decrease

the CPU temperature to 65°C, while the proposed

SmartDTM only requires 3.60 seconds. Moreover, in 10

out of 17 interactive sessions, SmartDTM reduced the

CPU temperature to 65°C within 2 seconds.

V. RELATED WORK

Since the highly elevated on-chip temperature negatively

affects the reliability and energy consumption of the

system, many research groups have investigated thermal

management in various levels [13, 14]. In order to control

the on-chip temperature from the mechanical side, several

thermal management techniques have been proposed. Air

cooling techniques based on fan-cooled heat sinks [15]

and liquid cooling techniques [16-18] are representative

techniques. These techniques are useful in solving thermal

problems without any performance degradation, but it is

difficult to adopt these techniques to smartphones because

of the limited space of the form factor of the smartphone

and the extra power consumption caused by these tech-

niques. Therefore, many researchers have also focused on

software-based thermal management techniques.

Hanson et al. [19] reported that DVFS has an immediate

influence on the on-chip temperature. Based on their

analysis, Hanson et al. suggest that DVFS could be a

viable mechanism for software-based thermal management.

Liu et al. [20] and Hanumaiah and Vrudhula [21] have

also focused on reducing the on-chip temperature using

DVFS. Liu et al. [20] have proposed design-time thermal

optimization techniques for real-time embedded systems.

They showed that their techniques can effectively prevent

run-time thermal emergencies while optimizing the cooling

cost and performance by selecting an optimal voltage and

frequency for each task at design time. Hanumaiah and

Vrudhula [21] take a similar approach to that of Liu et al.

[20]. In order to satisfy timing and temperature constraints

in hard real-time systems, they have proposed an analytical

thermal model suitable for optimal DVFS and task

assignment/allocation. However, since these techniques

are only focused on controlling on-chip temperature in

the presence of real-time constraints, it is difficult to

apply them to general purpose systems.

For general purpose systems, instead of the design

Fig. 14. Distributions of the elapsed times from the end of the
user-perceived response time interval ends to the time when the
temperature drops to 65°C. (a) The initial temperature was 65°C.
(b) The initial temperature was 70°C.

Fig. 13. Variations in the average and maximum CPU
temperatures under the SmartDTM and default policies when
the initial temperature is 70°C. (a) A comparison of the average
CPU temperature during the execution of the user-perceived
response time interval. (b) A comparison of the maximum CPU
temperature during the execution of the user-perceived
response time interval.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 157-169

http://dx.doi.org/10.5626/JCSE.2018.12.4.157 168 Wook Song and Jihong Kim

time thermal management techniques, many groups have

proposed on-line thermal management techniques [5, 22,

23]. For example, Brooks and Martonosi [5] have explored

policies and mechanisms for implementing DTM in high-

performance computing systems. Skadron [22] took a

hybrid approach that combines fetch gating and DVFS in

order to minimize the performance degradation. Lee et al.

[23] have proposed a predictive temperature-aware DVFS

scheme using hardware performance counters. By taking

advantage of simple regression analysis, which uses the

performance counters, they can detect localized thermal

problems that usually go undetected because of the

limited number of on-chip thermal sensors. While these

techniques are effective in reducing the on-chip tem-

perature during run time, they are limited in that these

DVFS-based DTM schemes inevitably degrade the system

performance when the CPU frequency is reduced so as to

avoid the thermal violation.

In order to overcome the limitation of the existing DTM

techniques, Kim et al. [24] have proposed a temperature-

aware DVFS scheme, which can improve both the power

efficiency and performance of the system. Their scheme

provides two optimization options: the power optimizing

option that saves energy and the performance optimizing

option that enhances the performance. In particular, when

the performance optimizing option is activated, the CPU

frequency is increased by 10 MHz at every sampling

period even if the current temperature remains above the

trigger temperature. On the other hand, when the current

temperature finally reaches the predefined thermal thres-

hold, the CPU frequency is scaled down for the purpose

of system reliability. Our work is fundamentally different

from their technique in that we take advantage of the

user-perceived response time as a main guideline for

making the DTM decisions.

VI. CONCLUSIONS

We have presented a novel DTM scheme for smart-

phones, called SmartDTM. Based on an estimation of a

user-perceived response time for a given interactive

session and a prediction of the worst-case temperature at

the end of the user-perceived response time interval, the

proposed SmartDTM technique can improve the quality

of the user experience without violating thermal require-

ments. In order to mitigate the negative effect of DTM on

the user-perceived performance, even though the current

temperature is higher than the trigger temperature,

SmartDTM avoids DTM decisions within the user-per-

ceived response time interval if the worst-case temperature

during the execution of the user-perceived response time

interval does not exceed the critical temperature. On the

other hand, SmartDTM employs an aggressive DVFS

policy while executing the user-oblivious response time

interval where the system performance level does not

affect the user-perceived performance so that the CPU

temperature is quickly decreased to a safe level. The

experimental results show that when the initial tempera-

tures were set to 65°C and 70°C, SmartDTM can improve

the user-perceived performance by an average of 12.2%

and 21.4%, respectively, over the Android’s default DTM

policy under the critical temperature of 85°C. The

SmartDTM scheme could be further extended in several

directions: For example, we can extend our proposed

scheme to control the temperatures of system components

such as GPU and the memory subsystem, which also

make significant contributions to system temperature. By

exploiting the user-perceived response time analysis, we

can make smarter DTM decisions in the system-wide

level.

ACKNOWLEDGMENTS

This study was based on Core Component Technology

Development for HMA-based System Optimization (July

1, 2012 - June 30, 2014) funded by Samsung Electronics

Co., Ltd. This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the

Korea government (Ministry of Science and ICT) (NRF-

2018R1A2B6006878). The ICT at Seoul National Uni-

versity provided research facilities for this study.

REFERENCES

1. Samsung, “Galaxy S7 edge and Galaxy S7,” 2016, http://

www.samsung.com/us/explore/galaxy-s7-features-and-specs/

#specs.

2. J. Henkel, S. Pagani, H. Khdr, F. Kriebel, S. Rehman, and

M. Shafique, “Towards performance and reliability-efficient

computing in the dark silicon era,” in Proceedings of the

2016 Conference on Design, Automation & Test in Europe,

Dresden, Germany, 2016, pp. 1-6.

3. K. S. Kim, M. H. Won, J. W. Kim, and B. J. Back, “Heat

pipe cooling technology for desktop PC CPU,” Applied

Thermal Engineering, vol. 23, no. 9, pp. 1137-1144, 2003.

4. C. Nelson and J. Galloway, “Package thermal challenges due

to changing mobile system form factors,” in Proceedings of

2018 34th Thermal Measurement, Modeling & Management

Symposium (SEMI-THERM), San Jose, CA, 2018, pp. 98-106.

5. D. Brooks and M. Martonosi, “Dynamic thermal management

for high-performance microprocessors,” in Proceedings of

the 7th International Symposium on High-Performance

Computer Architecture, Monterrey, Mexico, 2001, pp. 171-

182.

6. Hardkernel, “ODROID-XU+E,” https://www.hardkernel.com/

?s=ODROID-XU%2BE.

7. P. Greenhalgh, “big.LITTLE Technology: The Future of

Mobile,” ARM, White paper, 2013, https://www.arm.com/

files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

8. W. Song, N. Sung, B. G. Chun, and J. Kim, “Reducing energy

User-Centric Thermal Management for Smartphones

Wook Song and Jihong Kim 169 http://jcse.kiise.org

consumption of smartphones using user-perceived response

time analysis,” in Proceedings of the 15th Workshop on

Mobile Computing Systems and Applications, Santa Barbara,

CA, 2014.

9. Samsung, “Exynos 5 Octa (5410),” 2013, https://www.

samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-5-octa-5410/.

10. S. L. Zeger, K. Y. Liang, and P. S. Albert, “Models for

longitudinal data: a generalized estimating equation approach,”

Biometrics, vol. 44, no. 4, pp. 1049-1060, 1988.

11. M. Chan, “Interactive CPU frequency governor,” https://

android.googlesource.com/kernel/common/+/android-3.4/drivers/

cpufreq/cpufreqinteractive. c, 2010.

12. P. Mochel, “The sysfs filesystem,” 2005, https://mirrors.

edge.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-

2005/mochel.pdf.

13. J. Kong, S. W. Chung, and K. Skadron, “Recent thermal

management techniques for microprocessors,” ACM Computing

Surveys, vol. 44, no. 3, article no. 13, 2012.

14. Y. G. Kim, J. Kong, and S. W. Chung, “A survey on recent

OS-level energy management techniques for mobile processing

units,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 10, pp. 2388-2401, 2018.

15. T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, and I.

Sauciuc, “Use of heat pipe/heat sink for thermal management

of high performance CPUS,” in Proceedings of 16th Annual

IEEE Semiconductor Thermal Measurement and Management

Symposium, San Jose, CA, 2000, pp. 76-79.

16. J. M. Koo, S. Im, L. Jiang, and K. E. Goodson, “Integrated

microchannel cooling for three-dimensional electronic circuit

architectures,” Journal of Heat Transfer, vol. 127, no. 1, pp.

49-58, 2005.

17. T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B.

Wunderle, H. Oppermann, and H. Reichl, “Forced convective

interlayer cooling in vertically integrated packages,” in

Proceedings of 11th Intersociety Conference on Thermal and

Thermomechanical Phenomena in Electronic Systems,

Orlando, FL, 2008, pp. 1114-1125.

18. H. B. Jang, I. Yoon, C. H. Kim, S. Shin, and S. W. Chung,

“The impact of liquid cooling on 3D multi-core processors,”

in Proceedings of IEEE International Conference on

Computer Design, Lake Tahoe, CA, 2009, pp. 472-478.

19. H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F.

Rawson, and J. Rubio, “Thermal response to DVFS: analysis

with an Intel Pentium M,” in Proceedings of ACM/IEEE

International Symposium on Low Power Electronics and

Design (ISLPED), Portland, OR, 2007, pp. 219-224.

20. Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang,

“Thermal vs energy optimization for DVFS-enabled

processors in embedded systems,” in Proceedings of the 8th

International Symposium on Quality Electronic Design, San

Jose, CA, 2007, pp. 204-209.

21. V. Hanumaiah and S. Vrudhula, “Temperature-aware DVFS

for hard real-time applications on multicore processors,”

IEEE Transactions on Computers, vol. 61, no. 10, pp. 1484-

1494, 2012.

22. K. Skadron, “Hybrid architectural dynamic thermal manage-

ment,” in Proceedings of the Conference on Design, Auto-

mation and Test in Europe, Paris, France, 2004.

23. J. S. Lee, K. Skadron, and S. W. Chung, “Predictive

temperature-aware DVFS,” IEEE Transactions on

Computers, vol. 59, no. 1, pp. 127-133, 2010.

24. J. M. Kim, Y. G. Kim, and S. W. Chung, “Stabilizing CPU

frequency and voltage for temperature-aware DVFS in

mobile devices,” IEEE Transactions on Computers, vol. 64,

no. 1, pp. 286-292, 2015.

Wook Song

Wook Song is a staff engineer at Samsung Electronics, where he has been working on software platform
development for on-device AI projects. He received his PhD and MS degrees in computer science and
engineering from Seoul National University in 2016 and 2009, respectively, and earned his BE degree in
computer engineering from Sungkyunkwan University in 2007. Towards his Ph.D., he worked on developing
user-centric optimization techniques for modern mobile operating systems. He is a third-place winner of the
2011 Android Competition in Embedded Systems Week for his work on personalized optimization, and also
a recipient of the 2017 Samsung Best Paper Bronze Award for his research on CPU thermal management
using user-perceived response time analysis.

Jihong Kim

Jihong Kim is a Professor in the department of Computer Science & Engineering, Seoul National University.
Before joining Seoul National University, he was a Member of Technical Staff in the DSPS R&D Center of Texas
Instruments in Dallas, Texas, USA. Jihong Kim received his BS in computer science and statistics from Seoul
National University in 1986, and MS and PhD degrees in computer science and engineering from the
University of Washington in 1988 and 1995, respectively. His research interests include low-power systems,
NAND flash-based storage systems, computer architecture and mobile computing.

