Simulating Multimedia
Systems with MVPSIM

IN DESIGNING AND TESTING
modern, highly complex, high-
speed systems, a clear consensus
among designers is that simulation
plays a critical role in successful
system development. Such simu-
lation becomes more important
due to the inapplicability of con-
ventional prototyping practices,
such as wire-wrapping and bread-
boarding, to the design and test of
high-performance systems. The
competitive and fast-moving VLSI,
electronics, and computer fields
also increase the need for fast, ef-
ficient system simulation.

Ahighly integrated cosimulation
approach (see the box) is ideal for
such systems, and is particularly
beneficial when applied to the de-
sign of embedded or special-pur-
pose systems, such as those for
multimedia. Generally, these sys-
tems have two characteristics in
common:strict application-specific
requirements and strong interaction
between hardware and software
components. The goal in designing
these systems is to meet application re-
quirements with the optimal allocation
of software and hardware resources.
Using hardware-software cosimulation,
designers can be confident that their sys-
tem meets its requirements.

18

JIHONG KIM
YONGMIN KIM
niversity of Washington

K

Our project

We have spent several years devel-
oping a series of multimedia systems us-
ing multimedia video processor MVP
(also known as the Texas Instruments
TMS320C80) as the main computing en-

0740-7475/95/$04.00 © 1995 IEEE

gine.! Each system must meet strict
requirements and targets specific
applications, such as real-time
MPEG video processing, real-time
image analysis, and interactive 3D
volume visualization. To facilitate
system level simulations and build
an infrastructure for future projects,
we developed a-highly integrated
simulation environment. MVPSIM
supports a unified interface for de-
veloping both the hardware and
software of MVP-based systems. By
using MVPSIM extensively, we suc-
cessfully completed the first multi-
media project in the series, the
MediaStation 5000.

MVP overview

MVP!? is a single-chip multime-
dia processor with multiple inter-
nal- processors -and a peak
performance of over 1 billion RISC
operations persecond. Its internal
architecture is highly parallel at
both the chip and individual
processor levels. A large on-chip
memory (25 modules of 2 Kbytes
each) reduces the data transfer over-
head with the external memory and de-
vices. To meet the data transfer
requirements of multimedia applica-
tions, the chip supports up to. a 2.4
Gbytes/s communication bandwidth in

IEEE DESIGN & TEST OF COMPUTERS

two ways. It supports this bandwidth
among the processors via a crossbar to
the multiple on-chip shared-memory
modules. The second way is among
processors and external memory sys-
tems via an intelligent direct memory

WINTER 1995

access (DMA) controller.

Figure 1 (next page) shows a high-lev-
el block diagram of the major function-
al blocks. The master processor (MP) is
a general-purpose RISC processor with
an integral IEEE Std 754-compatible

floating-point unit. In typical operating
mode, the master processor serves as
the main supervisor and distributor of
tasks within the MVP. Also, the master
processor is preferred for performing
high-precision floating-point operations.

RISC Video
DSP 1 DSP 2 DSP 3 DSP 4 CPU controllers[
MP).
L G LG I LG I LG I (|
A ﬂ A A A A A A A A A A
32(32] 164 32{32| (64 32|32 (64 32(32(|64 64 32
Y yYvy A \ 64 | Transfer | g4
Crossbar controller
AAAAA AAAAA AAAAAL AAAAL A 4 A
IEEE
YVVVYY VYVYVYY VYVVVY VVYYYY Y VY Y Std 1148
(JTAG) >
SRAM SRAM SRAM SRAM SRAM emulation
port

L Local data port
G Global data port

| Instruction port
D Data port

Figure 1. MVP high-level block diagram.

Digital signal processors 1 through 4
have a highly parallel architecture opti-
mized for image and video processing.
Each DSP can perform many operations
in a single clock cycle via a very long in-
struction word mechanism.?

A dedicated memory controller with
sophisticated data transfer logic, the
transfer controller (TC) services the
data transfer requests and cache miss-
es of the five internal processors. The
video controllers (VCs) provide sup-
port for programmable video timing to
control both capture and display. The
processors and on-chip shared-memo-
ry modules are fully interconnected
through the crossbar switch network.

MVPSIM

Our primary goal in developing MVP-
SIM was to provide hardware architects
and algorithm developers with a uni-
form working environment. At the same
time, we sought to make it serve the dif-
ferent simulation needs of hardware
and software designers efficiently and
accurately. For example, software de-
velopers generally are not concerned
with the system memory controller’s de-
tailed timing behavior, which, on the
other hand, is of vital interest to hard-
ware designers.

20

Since the MVP was developed con-
currently with our system, no commer-
cial simulation model was available for
it. We therefore developed the MVP sim-
ulation model by extending an instruc-
tion set sirmulator.

MVPSIM supports a software devel-
opment environment and a hardware-
software cosimulation environment.
The first environment consists of the in-
struction set simulator plus its debugger
interface. In the second environment,
actual MVP programs serve as the stim-
ulus language driving the hardware sim-
ulation models.

Two-level model. To support effi-
cient software development and accu-
rate system level simulation, we divided
the MVP model into two levels. For soft-
ware development, we based the MVP
model on an instruction set simulator.
In this simulator, most of the master
processor and DSP blocks are quite ac-
curately simulated for up to a halfcycle
resolution (the MVP operates internally
intwo phases). However, we have over-
ly simplified the transfer controller and
video controller blocks for a fast re-
sponse in debugging software.

In the cosimulation environment, the
MVP model consists of an instruction

set simulator and Verilog models. This
hybrid modeling approach provides ac-
curate timing support when necessary,
yet allows faster simulation by sacrific-
ing unnecessary details when they are
not critical. We extended the MVP in-
struction-set simulatortosupport the ex-
ternal interfaces .of the transfer
controller and video controller within
half-cycle resolution.

The transfer controller and video
controller Verilog models handle tim-,
ing resolutions finer than a half cycle to
generate the MVP's [/O signals accord-
ing to specification. Users can access
the MVP models using the same inter-
face in both environments.

Architecture. Figure 2 shows the
overall MVPSIM architecture. In addi-
tion to the two environments, MVPSIM
includes MVP software development
tools. The currently supported tools in-
clude C compilers-and assemblers for
the master processor and DSPs, and
MVP linker tools. In-the figure, boxes
with the bold outlines indicate the soft-
ware development tools.

MVP programs are compiled, assem-
bled, and linked to executable object
files (step 1 in Figure 2). Once these files
are prepared, the software development
environment can simulate the execution
of these programs up to the instruction
set level exactly as would occur on a
working MVP chip. Detailed timing could
differ somewhat (step 2 in Figure 2).

Interactive control is available via the
MVP debugger. The debugger can dis-
play the master processor’s and DSPs’
memory and register contents, single-
step through instructions, load images
into memory, and stop at a specified
breakpoint address. After chips became
available, we used the MVP emulator
for software debugging as well as sys-
tem testing and integration. Program-
mers typically spend the most time in
this environment, iterating the cycles of
coding, simulation, and debugging
(steps 1 and 2 in Figure 2). After de-

IEEE DESIGN & TEST OF COMPUTERS

bugging programs, we can load the
same executable COFF (common ob-
ject file format) files into the cosimula-
tion environment (step 3 in Figure 2).

The cosimulation environment con-
sists of the Verilog XL simulator with
MVP extensions, the MVP debugger in-
terface, transfer controller and video
controller Verilog models, and other
Verilog models for non-MVP system
components. The extended Verilog XL
simulator combines the original Ca-
dence Verilog XL simulator and the ex-
tended MVP instruction set simulator
through the C/C++ Verilog glue inter-
face. The MVP dataflow plot helps
users understand the program’s
dataflow characteristics, and the image
display feature shows the content of the
specified memory block in a separate
window.

The user interacts with the environ-
ment through two interfaces. In addi-
tion to the debugger interface, which
is same as the one supported in the soft-
ware development environment, the
Verilog graphical user interface can
also control cosimulation using its con-
trol commands. While the debugger in-
terface provides functional information
(for example, results of a fast Fourier
transform operation stored starting in
memory location 34000000) on the cur-
rent simulation, the Verilog graphical
user interface is useful for timing
verifications.

Figure 3 (next page) shows a snap-
shot of the MVPSIM environment. The
debugger interface initiates simulation,
and the user controls the simulation us-
ing the Verilog control commands or
the MVP debugger control commands.
The dataflow plot shows the simulated
program’s dataflow, and the image dis-
play renders the image generated from
the requested memory area in a sepa-
rate window. The Verilog graphical user
interface describes the system’s de-
tailed timing behavior. The master
processor memory window opens from
the debugger control window and dis-

WINTER 1995

MVP linker

Executable
COFF
object files

MP/DSP
assembly
source files
Step 1
MP C/DSP C
source files
MP/DSP assembly COFF
source files object files
MVP debugger interface
Step 2
MVP emulator MVP emulator controller

Extended Verilog XL simulator

MVP

Verilog

¢—>‘ C/C++ Verilog glue interface

stub

model

external-
memory
model

MVP instruction
set simulator

TCand VC
extensions

Verilog XL TC

simulator” and VC

—>’700mmunicati0nport J

Verilog
models

v v

MvVP
dataflow
and image
display

debugger
interface

C++
external-
memory

model

Non-MVP
Verilog
simulation
models

Verilog
graphical
user
interface

Figure 2. Overview of the MVPSIM simulation environment.

plays the master processor program in
assembly format.

Cosimulation environment

We describe each component of the
cosimulation environment, the overall
architecture of which appears in
Figure 2.

Glue interface. Cadence’s program-
ming language interface (PLI) utility*
supports communications between the

extended MVP instruction set simulator
written in C++ and the original Verilog
XL simulator. This utility associates a
user-written subroutine with a Verilog
task name. Invoking a user-defined task
in a Verilog program causes the Verilog
XL simulator to call the C/C++ function
associated with that task name.

These functions are called under sev-
eral circumstances. One possible con-
figuration is to have the C++ function
called whenever we need to change an

21

MVP
debugger
interface

MvP
debugger
control
window

MVP

image display

(@)
Figure 3. Snapshot (a) of the MVPSIM environment and schematic diagram (b).

a: sData References ¢ Caches PRAK Ref:

DER Stall «Contention = Running
Hal B s

Verilog control .
command Verl{gg
window gra_phlcal
user interface
MP
memory MVP
window dataflow
plot display

(b)

Verilog programming language interface

P

$simulate_MVP_n_hcycles()

Verilog model

module TOP_LEVEL
always @(posedge clock) begin

simulate sub-module 1;
simulate sub-module 2;

P void MVP_simulate_n_hcycles()

G/G++ program

void MVP_simulate_n_hcycles()

/*simulate a functional MVP
simulator for n half cycles */

$simulate_MVP_n_hcycles();

simulate rest of systems;
end;

Figure 4. Control flow between Verilog module and C/C++ function.

argument of the Verilog task during sim-
ulation. Or the user can explicitly re-
quest invocation of the C++ function
under specific conditions. Using para-
meters for the user-defined task allows
movement of signal values between the
Verilog module and C/C++ function.

Figure 4 illustrates the changes in con-
trol flow caused by invoking a user-de-
fined task in a Verilog model.
User-defined task $simulate_MVP_n_

22

heycles() is associated with C function
MVP_simulate_n_hcycles() by specify-
ing the relationship in the table provid-
ed by the PL utility. Calling user-defined
task $simulate_MVP_n_hcycles() au-
tomatically calls its associated C func-
tion for execution. After the MVP is
simulated for the requested number of
half cycles, control reverts back to the
Verilog module.

Table 1 lists currently supported user-

defined tasks. Group I tasks initialize the
cosimulation environment.-For exam-
ple, $load_input_file() loads the exe-
cutable MVP COFF file into the C++
external-memory model of the instruc-
tion set simulator. $set_simulation_
flag() sets various simulation options
like maximum simulation time, history
logging, and so forth.

We use tasksin Group Il during actu-

al simulation. $simulate_MVP_n_hcy-
cles() calls the associated C routine to
simulate the MVP for n half cycles. The
$write_ext_mem{8/16/32/64}() tasks
update the C++ external memory with
the data provided. Group III tasks con-
trol the transfer controller’s monitoring
process, while the tasks in Group IV up-
date the video controller registers.

Extended instruction set simula-
tor. The original MVP instruction set
simulator did not include a transfer con-
troller external-interface model and a
video controller model. We extended
the transfer controller simulation mod-
el to support external interfaces, added
the video controller simulation model,
and divided these extensions into two
portions. The C+ portion is responsible
for the control and arbitration logic,

IEEE DESIGN & TEST OF COMPUTERS

Table 1. User-defined fasks.

Group Name

Description

$set_start_address{address)
$init_MVP_simulator{)

n $start_tc_monitor{}
$end_tc_monitor()

v $run_veO_felk()
$run_vel_felk()
$run_vc0_sclk()
$run_vel _sclk(} .

N $load_input_file(coff_file_name)

$set_simulation_flag(option,value)

] $simulate_MVP_n_hcycles(n, hreq, ...)
$write_ext_mem{8/16/32/64} {address,data)

Load a binary executable file into the MVP simulator
Update program’s starting location

Initialize simulator
Set option by value

Start fransfer controller monitoring
End fransfer controller monitoring

Update Verilog frame timer O registers
Update Verilog frame fimer 1 registers
Increment the pixel address in frame memory 0
Increment the pixel address in frame memory 1

Simulate MVP simulator for n half cycles
Update C++ external memory with 1/2/4/8-byte bus size

and a Verilog model handles the tim-
ing-critical portion of the transfer con-
troller and video controller models. We
did this to minimize the number of tim-
ing-critical signals that pass between the
two portions of the simulation models.
The MVP C++ simulator operates on a
half-cycle resolution; we specify signals
requiring finer timing in the Verilog
MVP stub model.

Since the transfer controller’s exter-
nal interface extension is one of the key
additions that make the system level
simulation possible, we give a detailed
description of it as an example. (Other
extensions are similar in principle,
though the simulated operations are
different.)

The MVP’s host interface is a simple
handshake mechanism that allows the

-transfer controller to share the bus with
external devices. A host request is the
highest priority request to the transfer
controller. Since the data transfer re-
quest is serviced in the transfer con-
troller’s internal pipeline, the higher
priority request cannot preempt the
lower priority request until the transfer
controller's internal pipeline is empty.
The Verilog portion of the transfer con-

WINTER 1995

troller model samples the host request
from external devices. It passes the sam-
pled value to the transfer controller
model’s C++ portion through the hreq_
signal in the $simulate_MVP_n_hcy-

. cles() task. Once hreq_ is active, the

transfer controller starts to drain its in-
ternal pipeline, allowing operations al-
ready in the pipeline to finish, but not
placing any new requests into the
pipeline. When the pipeline is com-
pletely empty, the transfer controller
model’s C++ portion asserts hack_sig-
nal to the Verilog portion. The Verilog
portion then generates the actual host-
acknowledge signal with the required
timing delay.

MVP stub Verilog model. This
model defines the MVP Verilog module,
which provides the interface for in-
stantiating the MVP model in board-lev-
el modeling. In the module, the transfer
controller and video controller Verilog
modules are instantiated, and these
modules communicate with their coun-
terpart C++ functions through the Table
1 user-defined tasks. The transfer con-
troller Verilog module controls the host
interface and memory interface signals

based on the parameters passed from
the C++ portion of the transfer controller
model. Communication between the
transfer controller Verilog module and
its C++ function are supported through
the $simulate_MVP_n_hcycles() task.
The video controller Verilog module
generates all video timing signals, and
we use Group IV tasks in Table 1 for
communication between this module
and its C++ function. Figure 5 (next
page) uses a simple board example to
describe the hi_erafchical structure of
the MVP stub Verilog model up to the
level of user-defined tasks: Calling the
MVP module interface in the Verilog
board module BOARD instantiates the
MVP. The modules located below the
dashed line in Figure 5 are supported
from the MVP stub Verilog model.

Debugger interface. We based the
debugger interface on the PRISM
(Portable Retargetable Instruction
Simulator for Multiprocessor) architec-
ture, which provides a flexible interface
building environment in the X Window
System.5 Using PRISM’s configuration
capability, we can quickly build an
easy-to-use interface for running multi-

23

module BOARD;
CLK clk (clkin);

_{ MVP mvp (clkin, data, ..., hsync, vsyne, ...); |

DRAM dram (addr, ras, ...);
endmodule

VC vc0 (hsync, vsyn, ...);

’k VG ve1 (hsync, vsync, ...); '

module MVP (clk, data, ..., hsync, vsync, ...,);

1
—{ TC te (clk, data, ...);

endmodule

A\ 4

module TC (clk, data, ...);
-always @(clk)
$simulate_MVP_n_hcycles(...);
end
endmodule

module VG (hsyng, vsyng, ...);

endmodule

Figure 5. Hierarchical structure of MVP stub Verilog model.

ple simulators concurrently. The de-
bugger interface is the same under both
simulation environments. Once PRISM
starts, it displays a simple window load-
ing the configuyation file for the MVP
simulator, and creates a Unix process
used.in the extended Verilog XL simu-
lator for the cosimulation. It also creates
the MVP instruction set simulator in a
separate progess. Command buttons
control the simulation and read the
MVP's various registers and the system’s
external memory.

The debugger interface connects to
the Verilog XL simulator (or MVP in-
struction set-simulator) through the
named-pipes interprocess communi-
cation of the Unix system. The named
pipe is created when the interface gen-
erates a child process, which, in the
cosimulation environment, is the ex-
tended Verilog XL simulator. The pipe is
bidirectional so that messages can trav-
el back and forth. Commands from the
interface go to the MVP simulator, and

24

results retumn to the debugger interface
through the pipe.

External-memory models. As
shown in Figure 2, the instruction set
simulator in the cosimulation environ-
ment has its own C++ external-memory
model. Since hardware designers also
provided a Verilog model for external-
memory systems, there exist two copies
of the same external memory. This re-
dundant memory modeling allows the
easy detection of system design and
modeling errors because the transfer
controller external-interface model
checks forinconsistencies between the
two memory models during cosimula-
tion. For example, if the memory con-
troller of a system does not respond
correctly to an MVP read request, the in-
consistency can be easily checked by
comparing data from the C++ memory
model with that from the Verilog model.

We can also detect inconsistent data
and inconsistent memory parameters.

Detecting either type of inconsistency
causes an error to be reported back to
the user and halts cosimulation. Incon-
sistent data is detected when the con-
tents for the same memory location in
the two memory models differ. When
the MVP reads data from external mem-
ory, the transfer controller external-in-
terface model checks whether data
from the two memory models are the
same. :
Inconsistent memory parameters
arise when the two models have differ-
ent memory parameters for the same
location. The transfer controller mod-
el checks for parameters like memory
type (for example, 2 cycles per column
memory), page size (a 1-Kbyte page),
and bus size (a32-bitbus). Memory pa-
rameters are checked during row-time
access. For the C+memory model, file
system.memmap specifies memoty pa-
rameters. For the Verilog model, the pa-
rameters are embedded in the Verilog
program,. v

Setting up the cosimulation initial-
izes both memory models with the
same contents. For example, when an
MVP programisloaded into the cosim-
ulation environment, the same con-
tents are loaded into the C++ and
Verilog memory models: The C++ mod-
el assumes a contiguous memory con-
figuration, so the executable” MVP
program can be loaded directly.

Various possible memory configu-
rations are available for the Verilog
model. For example, to organize a 64-
bit-word memory system, we can use
multiple 4- or-&bit memory devices. If
several small-size devices organize a
long memory word, we may need to
split the executable MVP program into
multiple files before loading to the
Verilog memory model.

We have developed a tool to split the
executable MVP program into several
Verilog memory-loadable ASCII files. In
addition, when the memory update is
initiated by system components other
than the MVP, such as peripheral de-

IEEE DESIGN & TEST OF COMPUTERS

vices, we need to update the C+ mem-
ory model, too. To support this kind of
memory operation, we provide user-
defined tasks $write_ext_mem8(),
$write_ext_mem16(), $write_ext_
mem32(), and $write_ext_mem64(),
as listed in Table 1.

Example. Once we establish the
complete cosimulation environment
by integrating non-MVP Verilog mod-
els with MVPSIM, we can simulate var-
ious MVP programs on top of it.

To start, the user initializes a small
portion of Verilog code. We describe
the initialization steps as an example
of using the cosimulation environment.
Figure 6 shows the initialization file typ-
ically used for system level simulation.
After the MVP program is compiled, as-
sembled, and linked, the executable
COFF file (application.coff in this ex-
ample) is produced.

We use $set_simulation_flag() twice
in Figure 6 to set simulation options.
The first use limits the total simulation
time to less than 2,000 seconds to avoid
a runaway process. The second use
causes display of the dataflow plot and
image display windows. The $load_in-
put_file(“application.coff”) task loads
the MVP program into the C++ memory
model. Then the same program initial-
izes the Verilog memory model, but
how it does so varies depending on the
external-memory configuration. The
$set_start_address() task sets the pro-
gram’s starting address for the MVP sim-
ulator while $init_MVP_simulator()
initializes it.

Using MVPSIM

MVPSIM proved instumental in the
development of the MediaStation 5000
(for an overview of the system, see the
box, next page). We constructed the
complete system level simulation envi-
ronment using MVPSIM and Verilog
models for non-MVP system compo-
nents. MVPSIM’s cosimulation capabil-
ity facilitated simulation of many target

WINTER 1995

application algorithms on top of the
MediaStation 5000 hardware simulation
models. Application algorithms tested
include those for MPEG compression
and decompression, median filtering,
and convolution.

Case study

Ourwork on MediaStation 5000 took
4 years and 30 man-years. It helped us
refine the design of MVPSIM.

Hybrid design approach. This ap-
proach to building the cosimulation en-
vironment enabled us to build it quickly
(in about four man-months) using the
existing MVP instruction set simulator.
This produced a relatively fast cosimu-
lation environment due to the fast C++
instruction set simulator. Reusing most
of the MVP instruction set simulator
code minimized the environment-build-
ing overhead. The current environment
with the full set of MediaStation 5000
simulation models can simulate about
30 cycles per second on a Sun
Sparcstation 10. It takes about 15 hours
to fully simulate 1/30 of a second, which
is a single frame time in MPEG and
H.261. This speed was adequate for
most of our system level scenarios.

Accuracy. The cosimulation envi-
ronment provided hardware designers
with a very accurate picture of the sys-
tem under development. They gathered
realistic system performance estimates
and optimized the system architecture.
For the MediaStation 5000, realtime

ik

Figure 6. Cosimulation setup file.

MPEG video compression and decom-
pression is a major application. An ear-
ly architecture dedicated a fair amount
of hardware resources to fast data
movement during MPEG encoding. But
after extensive system level testing, we
concluded that the performance re-
quirements could be met with much
less hardware. Based on the cosimula-
tion’s performance estimates, we made
the MediaStation 5000 more efficient in
every revision.

" We measured actual performance af-
ter the system was fabricated and made
functional. Table 2 lists the results for
several representative algorithms and
shows that simulation estimates close-
ly match actual system performance.
For example, with a 20-ns cycle time, a
3x3 arbitrary-kernel convolution oper-

| ation on a 512x512-pixel image took

Table 2. Execution time comparison between the MediaStation 5000 and system level

simulatior for a 512x5 12 image.

: Actual Simulation
Algorithm (cycles) (cycles)
3x3 convolution 938,398 938,874
3x3 median filtering 554,131 573,724
Window and level 347,746 355,700
Histogram equalization 636,539 659,946

about 18.8 ms in sirnulation as well as
on the actual system.

Small differences between the actual
and simulation times are due to the hy-
brid modeling of the MVP. One factor
contributing to this difference is the mod-

26

Multimedia

video
processor
(MVP)

Bi812
video
decoder

t

Memory/
peripheral

controfier
(MPC)

¢ Video

Frame
buffer
(2 Mbytes)

FIFO e

B85 multiplexer
RAMDAG Monitor

output

VGA
input

—»

AD1848 .
audio Audio

Dual-port
SRAM
(32 Kbytes)

codec [b input/
output

Host | g9 k Host

ent fothe fWDAC (rondom acees
‘ 1gfhl-¥orcnc:§og converl'er} for

eling of the transfer controller’s internal-
pipeline drainage mechanism. To make
the extension of the MVP instruction set
simulator simple, detecting the empty
transfer controller pipeline takes sever-
al cycles more than necessary.

interface processor

Dual external-memory model.
The redundancy of these models and
the automatic detection of inconsistent
memory conditions caught many sys-
tem modeling and design errors. We de-
tected not only memory system errors

IEEE DESIGN & TEST OF COMPUTERS

but also most data path modeling er-
rors. For example, the automatic check-
ing mechanism detected a wiring error
between the video FIFO buffer and the
video transceivers several days before
we sent the printed circuit board design
out for fabrication. If the errorhad gone
undetected, the returned circuit boards
might have required modifications dur-
ing system debugging.

Prototype testing. Due to extensive
system level simulation, prototype test-
ing was very smooth. In spite of complex
arbitration logic, multiple request
sources, and sophisticated dataflow and
processing mechanisms, we did not ex-
perience a single logic error during sys-
tem testing. In fact, there was one logical
error in the MediaStation 5000, but it re-
sulted from an MVP specification error.
Since the MVP and MediaStation 5000
developed concurrently, our MVP doc-
umentation did not include up-to-date
modifications, and one timing-specifi-
cation error existed in an early version of
the MVP’s manual.

OUR POSITIVE EXPERIENCE using
MVPSIM in developing the Media-
Station 5000 system strongly suggests
that it is possible to build a highly inte-
grated simulation environment with
reasonably low overhead. This experi-
ence also indicates that the benefits of
using such an environment throughout
system design and test cycles far out-
weigh the expense. We have devel-
oped two more image computing
systems with MVPSIM, and several
companies have used it to design MVP-
based systems. We are also extending
MVPSIM to efficiently support multiple
MVPs and to add new functions such
as support for the MVP program exe-
cution profile.

WINTER 1995

Acknowledgments

Our sincere thanks go to Paul Fuqua of
Texas Instruments, Robert Gove of
Compression Labs, Inc., and Walt Bonneau
of Sony for their input and timely assistance
in developing MVPSIM.

References

1. K. Guttag, R.J. Gove, and J.R. Van Aken,
“A Single-Chip Multiprocessor for Mul-
timedia: The MVP,” [EEE Computer
Graphics & Applications, Vol. 12, No. 6,
Nov. 1992, pp. 53-64.

2. RJ. Gove, “The MVP: A Highly-Inte-
grated Video Compression Chip,” Proc.
Fourth IEEFE, Data Compression Conf.,
I[EEE Computer Society Press, Los
Alamitos, Calif., 1994, pp. 215-224.

3. J.A. Fisher, “Very Long Instruction
Word Architectures and ELI-512,” Proc.

_ 10th Symp. Computer Architecture, IEEE
CS Press, 1983, pp. 140-150.

4. Programming Language Interface Ref
erence Manual, Vols. 1 and 2, Cadence
Design Systems Inc., San Jose, Calif.,
1992.

5. T.Y. Sinn, A Portable Retargetable In-
struction Simulator for Multiprocessors,
master’s thesis, Image Computing Sys-
tems Laboratory, Dept. of Electrical
Eng., Univ. of Washington, Seattle,
1994.

Jihong Kim is a PhD candidate in the De-
partment of Computer Science and Engi-
neering at the University of Washington. His
research interests include image comput-
ing, multimedia systems, algorithm design
and software tools, performance analysis,
real-time systems, and simulation. Kim re-

ceived a BS in computer science and sta-
tistics from Seoul National University and
an MS in computer science and engineer-
ing from the University of Washington. He
is a member of the [EEE Computer Society
and the ACM.

Yongmin Kim is a professor of electrical
engineering and an adjunct professor of
bioengineering, radiology, and computer
science and engineering at the University
of Washington. His research interests are in
multimedia, image processing and com-
puter graphics, medical imaging, advanced
workstation design, and modeling and sim-
ulation. Kim holds a BS in electronics en-
gineering from Seoul National University,
and an MS and PhD in electrical and com-
puter engineering from the University of
Wisconsin. He received the Early Career
Achievement award from the IEEE Engi-
neering in Medicine and Biology Society in
1988. He is a senior member of the IEEE,
and a member of the Computer; Engineer-
ing in Medicine and Biology; Signal Pro-
cessing; and Education Societies. Kim also
serves as an Accreditation Board of Engi-
neering and Technology (ABET) evaluator
for computer engineering.

Address questions or comments about
this article to Yongmin Kim, University of
Washington, Department of Electrical En-
gineering, Box 352500, Seattle, WA 98195-
2500; kim@ee.washington.edu.

27

