
21

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs

DUWON HONG, Seoul National University, Korea

KEONSOO HA and MINSEOK KO, Samsung Electronics, Korea

MYOUNGJUN CHUN and YOONA KIM, Seoul National University, Korea

SUNGJIN LEE, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Korea

JIHONG KIM, Seoul National University, Korea

A recent ultra-large SSD (e.g., a 32-TB SSD) provides many benefits in building cost-efficient enterprise storage

systems. Owing to its large capacity, however, when such SSDs fail in a RAID storage system, a long rebuild

overhead is inevitable for RAID reconstruction that requires a huge amount of data copies among SSDs.

Motivated by modern SSD failure characteristics, we propose a new recovery scheme, called reparo, for a

RAID storage system with ultra-large SSDs. Unlike existing RAID recovery schemes, reparo repairs a failed

SSD at the NAND die granularity without replacing it with a new SSD, thus avoiding most of the inter-SSD

data copies during a RAID recovery step. When a NAND die of an SSD fails, reparo exploits a multi-core

processor of the SSD controller in identifying failed LBAs from the failed NAND die and recovering data

from the failed LBAs. Furthermore, reparo ensures no negative post-recovery impact on the performance and

lifetime of the repaired SSD. Experimental results using 32-TB enterprise SSDs show that reparo can recover

from a NAND die failure about 57 times faster than the existing rebuild method while little degradation on

the SSD performance and lifetime is observed after recovery.

CCS Concepts: • Hardware → External storage; • Computer systems organization → Secondary

storage organization;

Additional Key Words and Phrases: Die failure, ultra-large SSD, RAID, storage system

ACM Reference format:

Duwon Hong, Keonsoo Ha, Minseok Ko, Myoungjun Chun, Yoona Kim, Sungjin Lee, and Jihong Kim. 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs. ACM Trans. Storage 17, 3, Article 21 (August 2021),

24 pages.

https://doi.org/10.1145/3450977

1 INTRODUCTION

Ultra-large solid state drives (UL SSDs, e.g., 32-TB SSDs in a 2.5-inch form factor [1]) are becom-

ing popular these days in enterprise storage markets because of their advantages in reducing the

This work was supported by Samsung Research Funding Incubation Center of Samsung Electronics, Republic of Korea

under Project Number SRFC-IT2002-06. The ICT at Seoul National University provided research facilities for this study.

Authors’ addresses: D. Hong, M. Chun, Y. Kim, and J. Kim (corresponding author), Seoul National University, 1,

Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; emails: {duwon.hong, mjchun, yoonakim, jihong}@davinci.snu.ac.kr; K. Ha

and M. Ko, Samsung Electronics, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Korea; emails: {keonsoo.ha,

minseok2.ko}@samsung.com; S. Lee, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno jungang-

daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea; email: sungjin.lee@dgist.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1553-3077/2021/08-ART21 $15.00

https://doi.org/10.1145/3450977

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

https://doi.org/10.1145/3450977
mailto:permissions@acm.org
https://doi.org/10.1145/3450977

21:2 D. Hong et al.

total cost of ownership. As the capacity of a single SSD increases, fewer SSDs are needed to build

a storage system. A smaller number of SSDs directly reduce various operating costs of storage

systems, such as rack space, power, cooling, and storage-area networking costs.

Ultra-large SSDs enable us to build cost-efficient storage systems, but high data recovery over-

heads become one of the key obstacles for their wider adoption in practice. For example, consider

an enterprise storage system that consists of four UL SSDs grouped by Redundant Array of In-

dependent Disks-5 (RAID-51) [2]. When one of SSDs in the RAID group fails, the failed SSD

should be replaced by a new and expensive UL SSD. Then, a RAID recovery scheme should be

triggered to reconstruct the RAID-5 organization. The RAID recovery process needs to read data

and parity chunks from the working SSDs of the RAID group and write the recovered data to a

new SSD. In general, the majority of the recovery time is proportional to the capacity of the failed

SSD. Figure 1(a) illustrates the RAID recovery time when the SSD capacity changes under two

different host interface speeds, 6 Gbit/s and 12 Gbit/s, of SAS-1 and SAS-2 protocols, respectively.

Although all the I/O bandwidth of SSDs is assumed to be fully utilized for the rebuild process, the

total recovery of UL SSDs takes a long time (e.g., 8.8 hours for a 32-TB SSD with 12-Gbit/s SAS-2).

In practice, since only a portion of the I/O bandwidth can be used for a RAID rebuild process [3],

the total recovery time may take a few days with a high possibility of the secondary disk failure.

Even worse, the frequency of UL SSD failures is expected to be increased as the number of

NAND dies in an SSD increases. As the capacity of an SSD gets larger, more NAND dies are needed

for an SSD. For example, sixty-four 512-Gib NAND dies are sufficient to build a 4-TB SSD but,

for a 32-TB SSD, five hundred twelve 512-Gib dies [1] are required. A large number of NAND

dies, however, significantly increases the possibility of die failures. Figure 1(b) shows how the

probability of die failures in an SSD changes under varying SSD capacities with three different die

defect rates.2 Probability values of Figure 1(b) are normalized over the baseline case of a 4-TB SSD

with the die defect rate of 25 PPM (parts per million). When the SSD capacity increases from 4 to

32 TB, the number of defective dies increases up to about 8 times and 31 times when the die defect

rate is 25 PPM and 100 PPM, respectively. In existing SSD management schemes [4], a NAND die

failure is considered as an entire SSD failure, because it generates many bad blocks. Thus, even

a single NAND die failure results in the entire RAID reconstruction, requiring SSD replacement

costs as well as long recovery time. The long RAID recovery process also increases the possibility

of permanent data loss, because it is more likely that consecutive die/SSD failures would happen

before finishing the recovery process (e.g., double disk failures in RAID 5 [5, 6]).

In this article, we claim that UL SSD failures should be handled at the SSD level first before taking

place a data recovery process at the RAID level. Our proposal is motivated by two key observations.

First, in contrast to small-sized SSDs whose capacity is few GB, it is feasible to repair failed NAND

dies in UL SSDs. As pointed out earlier, UL SSDs are composed of many NAND dies (e.g., 512

dies for a 32-TB UL SSD). Thus, failures of few NAND dies do not badly affect the reliability of

an entire SSD and can be normally operated. Moreover, by leveraging data redundancy in RAID,

UL SSDs are able to recover data of failed dies, providing promised capacity with end-users. This

self-recovery at a UL SSD level makes it possible to avoid the costly RAID reconstruction process

as well as the hardware replacement. Second, a recent field study [6] that analyzes SSD failures in

the enterprise storage system reports that there is a strong misconception on SSD failures. Most

SSDs fail not because their flash cells were worn over their endurance limit but because they

1Although our technique has no dependence on the RAID type, we assume that the RAID 5 scheme is used for the descrip-

tion purpose. Where no confusion arises, we use RAID and RAID 5 interchangeably.
2We model the number X of failed dies in an SSD with n NAND dies as X ∼ B(n, p) where p is the probability of a single

NAND die failure. That is, the probability P of die failures in the SSD is given by P =
∑

n

k=1

(
n

k

)
pk (1 − p)n−k .

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:3

Fig. 1. Impact of UL SSDs on SSD recovery and failure.

experience unexpected component failures. Being the most dominant component of a UL SSD,

NAND dies significantly contribute to such sudden failures in the UL SSD. Therefore, there is a

strong incentive to devise a die-level SSD recovery scheme for UL SSDs.

We present a novel RAID recovery scheme, called reparo,3 which repairs UL SSDs from a die

failure through efficient on-line die rebuild techniques. To the best of our knowledge, reparo is the

first technique that repairs a failed SSD at the die level. In order to minimize the time to recovery

from a die failure, reparo minimizes both a die failure detection time and a rebuild time. Whenever

a bad block is detected, reparo checks its neighboring blocks to detect a die failure early. Once a

failed die is detected, multiple flash cores work in parallel to recover data in the failed die. Since

a repaired SSD continues to be used, it is important for reparo to provide high performance and

longer lifetime after the recovery. To this end, when rebuilding a failed die, reparo modifies a logical

address-to-die mapping scheme in the way that minimizes space utilization imbalance among flash

cores. This prevents performance degradation and lifetime drops that are caused by per-core space

and workload variations.

To validate the proposed scheme, we have implemented reparo in Samsung PM1643 SSD [1],

which supports up to 32 TB. Our experimental results show that reparo can recover from a die

failure about 57 times faster than the existing rebuild method while little degradation on the SSD

performance and lifetime are observed after recovery.

The rest of this article is organized as follows. We explain SSD failures focusing on their key

causes and characteristics in Section 2. In Section 3, we present the key motivations behind reparo

scheme. The proposed reparo scheme is described in Section 4 while its two optimization tech-

niques are covered in Sections 5 and 6. Sections 7 and 8 describe our evaluation results and related

work, respectively. We conclude in Section 9 with a summary and future work.

2 SSD FAILURES: CAUSES AND CHARACTERISTICS

2.1 SSD Failure Types

SSD failures can be grouped into two categories depending on its predictability [7]. The first cat-

egory is the end-of-life (EoL) failure that is caused by worn-out SSD components. However, the

3Reparo is a charm used to repair a broken object from Harry Potter.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:4 D. Hong et al.

second category is the sudden failure, and it is highly associated with unexpected component fail-

ures that happen randomly.

Most SSD failures in the EoL failure category come from the worn-out NAND flash memory.

Although the NAND flash memory is non-volatile, its reliable data retention is limited by the max-

imum number of program/erase (P/E) cycles that is determined by flash manufacturers. Recent

three-dimensional (3D) TLC flash memory can support up to 10K P/E cycles. When flash cells in

a block are worn out beyond their reliability threshold, the block becomes a bad block, because

the pages in the block cannot be reliably accessed anymore [4, 8–10]. When the number of bad

blocks in an SSD reaches the pre-defined maximum number N ssd
bad

, the SSD is considered to be

failed. Since the number of bad blocks tends to increase rapidly around the end of SSD’s useful life

period, manufacturers set N ssd
bad

conservatively. For example, N ssd
bad

is typically set to 2.5% of the

total (user-visible) blocks in an SSD [11].

The sudden failure happens abruptly at any point of time, so it often occurs much earlier than

the EoL failure. The representative examples include NAND die failures and bugs in the flash

translation layer (FTL). A NAND die failure occurs when an excessive number of bad blocks

are found in the NAND die, but there are various reasons that cause it. One example is when the

peripheral circuitry (e.g., page buffer, word line (WL) decoder and sense amplifier) of a NAND

die malfunctions because of some defects. In that case, all the blocks in the NAND die become

bad, since they can no longer be reliably accessed. As another example, if the flash cell is not

functioning properly due to a structural failure (e.g., WL to WL bridge, WL to channel bridge, and

WL to common source line bridge), it is identified as a bad block during the manufacturing process

or the infant period [12, 13]. However, if the number of accumulated bad blocks per NAND die is

below a certain threshold, it is considered normal. The NAND specification defines the maximum

number of bad blocks, N die
bad

, that can occur on a NAND die within its lifetime and if a NAND

die exceeds the threshold, it is considered defective [11]. This is because the NAND manufacturer

does not guarantee normal operations on these NAND dies. In fact, in the SSD field study, a large

number of additional bad blocks tend to be generated in a short period of time after a certain

number of bad blocks occur in most SSDs [4]. This is due to defective NAND dies with poor cell

characteristics or defective peripheral circuits. Besides the excessive bad blocks, a defective NAND

die can cause firmware operation failure or command timeout.

Since an SSD is tolerant for some number of bad blocks, it is important to efficiently manage

bad blocks when bad blocks are detected during runtime. The bad block management module

of the FTL remaps a bad block to a reserved block that comes from an overprovisioning (OP)

space of the SSD. The OP space, which is a reserved space in the SSD, is used for minimizing the

performance/lifetime impact of garbage collection and bad block management [14]. As the number

of bad blocks increases, more blocks from the OP space are consumed to restore data of the bad

blocks, which, in turn, negatively affects the performance and lifetime of the SSD.

2.2 SSD Failure Characteristics

SSD failure characteristics are commonly modeled using a typical bathtub curve [5] with three

distinct periods: the infant period with high sudden failure rates, the useful life period with lower

failure rates, and the wear-out period with high EoL failure rates. Since early failures are known

to be quickly decreasing in most SSDs, most SSD reliability enhancement techniques have focused

on extending the useful life period by better managing the flash wear-out speed. In particular,

managing a NAND die failure was not the main focus of such techniques.

However, a recent field study on SSD failure characteristics in enterprise storage systems indi-

cates that a typical bathtub model does not hold for SSD failures [6]. Redrawn from Reference [6],

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:5

Fig. 2. Distributions of SSD failures over the SSD age [6].

Figure 2 summarizes probability distributions of SSD failures throughout the SSD lifetime for 3D-

TLC SSDs and 2D-eMLC SSDs. Note that, as a reference case, a bathtub curve is also shown in

a gray dotted curve. As shown in Figure 2, the SSD failure distribution is quite different from a

typical bathtub model. The infant period was much longer than that of the bathtub model. Particu-

larly, in 3D-TLC SSDs, the infant period with high failure rates lasted almost 2 years. Furthermore,

there were no wear-out failures in most SSDs, because the number of P/E cycles performed did

not exceed its limit even when SSDs have been used for several years. In fact, most SSD failures

occurred within the useful life period.

The SSD failure trend reported by [6] strongly suggests that we should focus more on handling

sudden SSD failures over EoL SSD failures. There are many reasons (e.g., firmware bugs) that result

in sudden SSD failures, but the SSD capacity is expected to be the most significant factor that

decides a sudden failure rate of UL SSDs. Since the number of NAND die failures increases linearly

as the SSD capacity, it is more likely that the impact of NAND die failures becomes significant in

UL SSDs. Therefore, a new RAID recovery scheme that focuses on die failures is strongly needed.

Another interesting observation in UL SSDs is that a NAND die failure is decoupled from an

SSD failure. For example, in a 512-GB SSD with 8 NAND dies, 5,460 blocks become bad when one

NAND die fails (assuming each die has 5,460 blocks). Since 5,460 bad blocks outnumber N ssd
bad

, a

single die failure results in an SSD failure. However, in a 32-TB UL SSD, 5,460 bad blocks is only

0.2% of the total (user-visible) blocks whose number is much less than N ssd
bad

. If a failed die can be

recovered, then UL SSD has a high potential to tolerate a die failure, preventing an SSD failure.

3 IMPACT OF UL SSDS ON RAID RELIABILITY

In this section, we explain the key motivations behind reparo using a hypothetical RAID-5 storage

system, UL-RAID(n), which employs n 32-TB UL SSDs [1]. Since the exact failure rate of a commer-

cial UL SSD is not available, we assume that SSDs in UL-RAID(n) follow the SSD failure rates of

3D-TLC SSDs shown in Figure 2. Figure 3 shows the probability of RAID rebuilds in UL-RAID(n)

with varying n’s.4 As the number of SSDs increases in UL-RAID(n), more frequent RAID rebuilds

are required. Since RAID rebuilds can interfere with normal host I/O requests, the increased num-

ber of RAID rebuilds badly affect user-perceived performance.

4We model the number X of failed SSD in UL-RAID(n) as X ∼ B (n, p) where p is the probability of an SSD failure. The

probability of RAID rebuild, therefore, is given by
∑

n

k=1

(
n

k

)
pk (1 − p)n−k .

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:6 D. Hong et al.

Fig. 3. Probability distributions of rebuilding a RAID group over the RAID group size.

Fig. 4. Normalized data loss amplification in UL-RAID(n).

Frequent RAID rebuilds also cause more critical reliability issues in UL-RAID(n). First, the prob-

ability of deadly double disk failures [15] increases greatly. When the second SSD failure occurs

during a RAID rebuild, the failed SSD cannot be recovered thus the user data loss is inevitable. The

probability P2 of a double SSD failure can be represented as follows:

P2 =
MTTRssd × (n − 1)

MTTFssd
, (1)

where MTTRssd and MTTFssd indicate the mean time to repair and the mean time to failure of an

SSD, respectively. Since MTTRssd increases linearly over the SSD capacity, P2 increases linearly as

well. For example, in UL-RAID(16), P2 increases 64 times over that in a RAID array with sixteen

512-GB SSDs.

Second, the probability of a read failure, Pr f , from a latent sector error during a rebuild can be

increased. The probability of a read failure can be expressed as follows:

Pr f = 1 − (1 −UBER)Sr ead , (2)

where UBER (uncorrectable bit error rate) is a fixed value (e.g., 10−16) by SSD manufacturers and

Sr ead is the total number of reads during a RAID rebuild. In UL-RAID(n), Pr f is significantly in-

creased as well. For example, in UL-RAID(16), Pr f increases 52 times over that a RAID group with

sixteen 512-GB SSDs.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:7

Fig. 5. An overall organization of an SSD architecture.

Figure 4 shows how much the probability of data loss from double failures and read failure

amplifies as n increases in UL-RAID(n). All the numbers are normalized over a RAID array with

four 512-GB SSDs. Although we estimated the data loss probability conservatively by assuming

that NAND die failures contribute only 3% of the sudden SSD failures in a 512-GB SSD, the data

loss probability in UL-RAID(n) substantially increases as n increases. For example, data loss is more

than 1,000 times likely in UL-RAID(24) over the baseline RAID with four 512-GB SSDs. The results

in Figure 4 strongly indicate that UL-RAID(n) may not guarantee the same level of data reliability

over when a RAID storage system was built using small-sized SSDs. Unless the reliability problem

is resolved in an efficient fashion, employing UL-RAID(n) in real-world applications may not be

practical in a near future.

4 RAID RECOVERY USING REPARO

4.1 Target UL SSDs

Since a UL SSD needs to support high performance for its huge storage space, a high performance

multi-core processor is used for its SSD controller. Figure 5 shows an organizational overview of

a typical UL SSD architecture. The SSD architecture consists of an (N + 1)-core multi-processor,

DRAM/SRAM memory, a host interface logic, and a large number of NAND dies (which are

grouped into different channels). For example, in Samsung enterprise SSD with 32-TB capacity,

a quad-core ARM based processor is used to manage five hundred twelve 512-Gib dies, which are

organized into 16 channels. In order to exploit the parallelism supported by the multi-core proces-

sor without a high management complexity, each core is often dedicated to handling a specific set

of tasks. As shown in Figure 5, the master core is responsible for interfacing with the host system

while the flash cores, core0, . . . , coreN−1, are assigned to flash management tasks. When the host

system sends I/O requests to the UL SSD, the master core distributes the I/O requests across flash

cores. To make flash management simpler, each flash core is dedicated to specific NAND dies. For

example, when N flash cores are used, 1
N

of the NAND dies are equally assigned to each flash core.

Given a logical block address (LBA), a simple address stripping method is used to decide a target

flash core, coretarдet (i.e., coretarдet = LBAmod N).

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:8 D. Hong et al.

Fig. 6. An organizational overview of the reparo scheme.

4.2 Overview of Reparo

The proposed reparo scheme meets two requirements of a RAID recovery scheme for UL SSDs.

Unlike the existing techniques, reparo repairs a failed die, not a failed SSD, by rebuilding the failed

die using a RAID logic. Figure 6 shows an organizational overview of the reparo scheme. It consists

of three new modules in a UL SSD: die failure detector (Detector), failed LBAs identifier (Identifier),

and data recovery handler (Handler). When a die failure is detected by Detector , reparo notifies a

die failure to the host system (1). Then the host requests a list of LBAs that belong to the failed

die (2). Identifier finds the failed LBAs and sends them to the host, and the host recovers the data

of the failed LBAs using a RAID logic (3). When the recovered data are written back to the SSD

(4), Handler distributes the data to proper flash cores. When the host queries failed LBAs (2), it

limits the LBA search range (e.g., 64 MB) to control time/resource overheads. Therefore, a recovery

sequence (i.e., 2 , 3 , and 4) is repeated until all the LBAs are covered.

In reparo, when a flash core corei ’s die fails, we call corei as the victim core and the rest of flash

cores are called helper cores. When only the victim core is used for Identifier and Handler , we

call it an isolated die recovery (IDR) scheme. (We denote this version of reparo by reparoIDR.)

If the helper cores, as well as the victim core, participate for Identifier and Handler , then it is

called a cooperative die recovery (CDR) scheme. (Similarly, we denote this version of reparo by

reparoCDR.) We present reparoIDR in this section, and reparoCDR is described in Section 5.

4.2.1 Die Failure Detector. To minimize the impact of a failed die on the SSD performance,

reparo detects a die failure as early as possible. When a bad block B is found from a dieD, Detector

checks blocks physically adjacent to B by reading the first page of the blocks. If the read operation

to the first page fails, then Detector proceeds to the next block. When the number of accumulated

bad blocks in the die D exceeds a pre-defined maximum number N die
bad

, Detector labels the die D

as a failed die. When a failed die is detected, reparo notifies a die failure to the host system using a

well-known host-to-SSD interface (such as SMART [16, 17] or Check condition [18]). In our current

Detector implementation, a die failure can be detected no later than dozens of milliseconds after

the first bad block of a defective die is identified.

4.2.2 Failed LBAs Identifier. Once the host system is notified of a die failure, its recovery module

asks reparo for the failed LBAs using the get_lba_status command that returns a list of failed

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:9

Fig. 7. An illustrative example of reparoIDR.

LBAs from a specified LBA range [lstar t , . . . , lend].5 If an FTL manages a separate physical-to-

logical (P2L) mapping table, then Identifier can find failed LBAs of the pages in a failed die directly

from the P2L mapping table using a physical address of a page in the failed die. Unfortunately,

maintaining a P2L mapping table, in addition to an logical-to-physical (L2P) mapping table, is

not feasible because of its large memory requirement. Typical FTLs manage only an L2P mapping

table, which is essential for an FTL operation. Therefore, to respond to a failed LBA query, it is

necessary to check the L2P mapping table for all LBAs in a query range to validate if they are

stored in the failed die. For example, Figure 7 illustrates a case when a die failure occurs in one

of the four dies managed by core3. In reparoIDR, core3 becomes the victim core that is responsible

for Identifier and Handler . When a query for failed LBAs in the LBA range of 0 to 15 is sent to the

SSD, core3 checks if any page in the requested LBA range is mapped to the failed die. Since LBA

15 is stored to a failed die, LBA 15 is sent to a host as a failed LBA. To identify all LBAs affected by

a failed die, core3 should check all the L2P mapping table entries of the SSD. In a UL SSD, since the

number of L2P mapping entries is quite large, it is a key challenge to reduce the time overhead of

Identifier in reparo.

4.2.3 Data Recovery Handler. After recovering the data of the failed LBAs through a RAID logic,

a host stores the recovered data. When the victim core receives a write request, its Handler needs

to store the recovered data to normal blocks. Since all the blocks in the failed die are bad blocks,

Handler cannot use a conventional bad block management scheme that uses a reserved block in

the same die (i.e., the failed die) for replacing a bad block. As a workaround, a reserved block of

another die can be used to store the recovered data. However, this type of block remapping within

the victim core complicates the LBA-to-die mapping, because multiple LBAs can be mapped to the

same die. Instead of the remapping approach, in reparoIDR, the victim core’s Handler adjusts all the

FTL steps so that they can work without the failed dies. For example, the die-stripping algorithm

of the victim core is modified to use one less dies than before a die failure. In Figure 7, Handler of

core3 skips the failed die so that the recovered data of LBAs 15, 31, and 47 are evenly stripped and

stored in the remaining dies.

Since only the victim core is used for Handler in reparoIDR, the other cores work as if no die

failure has occurred. For example, the master core does not need to change its static core mapping

scheme while helper cores work for their allocated dies as usual. However, the victim core should

5This command is defined in the industry standard SCSI interface and has been extended to support Rebuild Assist [19]

for a fast RAID rebuild.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:10 D. Hong et al.

Table 1. Changes in Space Utilization of IDR Scheme

Number of dies per flash core

4 8 16 32 64 128

victim core (w/ die failure) 33.33% 14.29 % 6.67% 3.23 % 1.59% 0.79%

helper core 0% 0% 0% 0% 0% 0%

work with a reduced physical space after the recovery, which can significantly impact the overall

SSD performance and lifetime.

5 COOPERATIVE DIE RECOVERY

Although reparoIDR of the previous section is simple to implement, reparoIDR can be further im-

proved by relaxing its design constraint that only the victim core is involved in the recovery pro-

cess. In this section, we describe reparoCDR, which improves reparoIDR in two aspects by allowing

all the flash cores to be utilized in parallel during the recovery process.

5.1 Identifier: Parallel Search of Failed LBAs

Scanning an entire L2P mapping table to find out LBAs belonging to failed dies is a time-consuming

operation. Moreover, considering a huge logical address space of UL SSDs, such a scanning oper-

ation takes a significant amount of time. For example, it takes at least half an hour for one flash

core of a 32-TB Samsung PM1643 to scan the whole L2P mapping table. Since the execution time

of Identifier can be a bottleneck in the overall recovery process, in reparoCDR, we modify Identifier

so that all flash cores can participate in searching the failed LBAs.

To parallelize Identifier , we modified the data organization of the L2P mapping table. Since each

flash core manages its own logical space, which is separated from the other flash cores, the existing

L2P table is structured so that no mapping entry can be shared among different flash cores. In

reparoCDR, when get_lba_status command is issued to the victim core, the L2P mapping entries

in the requested search range are first moved to the shared memory area that all the flash cores

can access. The copied mapping entries are divided into N distinct regions so that all N flash

cores can work in parallel.

5.2 Handler: Per-Core Space Utilization Adjustment

The main side effect of the simple reparoIDR scheme is that it negatively affects the space utilization

of a victim core. The space utilizationUi of a flash core corei , which is defined as a capacity ratio of

the logical space to the physical space allocated to corei , is a key SSD metric that is directly related

to the performance and lifetime of SSDs. In general, the smallerUi ’s, the higher (or the longer) the

performance (or lifetime) of an SSD. When each flash core was initially allocated with equal, say

x dies, if one of the dies allocated to the victim core corev fails,Uv increases by [1/(x − 1) × 100]%

over helper cores. For example, when 16 dies are initially allocated to each flash core,Uv increases

by 6.7%. Table 1 summarizes the increase in space utilization for a single die failure according

to the number of dies per flash core. An increase in Uv can reduce the same amount of the SSD

lifetime where sequential write workloads are dominant (as in modern data-intensive apps). A

higher Uv also increases the Write Amplification Factor (WAF) value, because the reduced

OP space needs more frequent GC invocations. For example, in our evaluation, we observed that

when Uv increases by 6.7%, the WAF value can be increased by 166%, which may degrade the

SSD lifetime and the performance almost by 60%. In reparoCDR, we modify Handler so that the

difference in space utilization among flash cores can be minimized.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:11

Fig. 8. An illustrative example for reparoCDR.

5.2.1 Per-Core Logical Space Adjustment. To reduce the difference betweenUv of a victim core

corev andUh of a helper core coreh , we reduce the capacity of logical space of corev while increas-

ing that of coreh .6 Assume that each flash core corei with Di dies is allocated to the logical space

LSi where LSi ∩ LS j = ∅ if i � j, and the capacity of LSi is |LSi |. We further assume that before

a die failure, for all 0 ≤ i ≤ (N − 1), 1) |LSi | = |LS |/N and 2) Di = Dssd/N where Dssd represents

the total number of dies in an SSD7. To keep allUi ’s equal after die failure recovery, the following

equation should hold:

|LSh | + α
Dssd/N

=
|LSv | − (N − 1) × α

Dssd/N − 1
, (3)

where α represents the capacity of the extra logical space that should be added to each helper core.

Solving Equation (3), α can be given as:

α =
|LSh |

Dssd − 1
. (4)

Consider an example scenario of a single die failure shown in Figure 8 where an SSD has four

flash cores and each flash core has four dies (N = 4, Dssd = 16 and Di = 4). Assuming the capacity

|LS | of logical space of the SSD is 60, |LSi | = 15 for all cores. Since the physical capacity of a

NAND die is 6, initially, all Ui values are equal to 0.625 (i.e., 15/24). When a die fails from core3,

α is computed as |LSh |/15, thus increasing the logical capacity of each helper core by 1 while

decreasing the logical capacity of the victim core by 3. After this adjustment, all Ui values are

still the same, but the space utilization has increased by 6.67% from 0.625 to 0.67. If there were no

logical space adjustment, then the victim core’s space utilization could increase by 33.3% to 0.83.

Table 2 summarizes how space utilization changes after logical space adjustment for a single die

failure under a varying number of dies per flash core. As expected, in both a victim core and a

helper core, space utilization is increased by the same amount when a die fails. Furthermore, the

increased amount of space utilization of the victim core is much lower compared to that of the IDR

scheme because of the shared space adjustment among all cores.

6When no OP space becomes available for a helper core in reparoCDR, a failed SSD cannot be repaired anymore. The failed

SSD should be replaced by a new SSD in this case.
7Our technique can be generalized to a more general setting without these assumptions. However, because of a page limit,

reparoCDR is presented under these assumptions.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:12 D. Hong et al.

Table 2. Changes in Space Utilization after the Adjustment

Number of dies per flash core

4 8 16 32 64 128

victim core (w/ die failure) 6.67% 3.23% 1.59% 0.79% 0.39% 0.20%

helper core 6.67% 3.23% 1.59% 0.79% 0.39% 0.20%

Note that in the above description of the logical space adjustment technique, we assumed that

all Ui values and Di values were equal before a single die failure occurs. Since dies can fail more

than once in an SSD, these assumptions generally do not hold and Equations (3) and (4) need to be

modified. In case of multiple die failures, various failure combinations are possible. For example,

multiple failures may be focused on a single flash core or they may be spread among multiple

flash cores. Although treating an individual failure case using a case-specific equation will be the

most accurate solution, we found that its management overhead can be substantial. Instead, we

empirically evaluated the accuracy of space adjustment from Equation (4) in multiple die failures.

Our evaluation results showed that the difference between the ideal adjustment solution and one

from Equation (4) was negligible. For example, in the case of four die failures, the worst case for

Equation (4) is when all four die failures occur in the same flash core. Even in this case, when each

core has 64 or more dies (i.e., as in UL SSDs), α from Equation (4) was only 0.06% apart from the

ideal adjustment value.

5.2.2 Selective LBA Redirections. To implement space utilization adjustment among flash cores

as described above, we need to redirect (N − 1)× �α� LBAs from the victim core to (N − 1) helper

cores while each helper core receives �α� additional LBAs for a die failure. Since the master core

is responsible for distributing a host request to a proper flash core, all the redirection decisions are

made at the master core without modifying how the flash cores work. The master core forms a unit

of LBA redirections by (Dssd −1) consecutive LBAs that were originally mapped to the victim core.

From each redirection unit, the master core selects (N − 1) LBAs and redirects the LBAs to helper

cores one by one. Therefore, (N − 1) LBAs of (Dssd − 1) LBAs of the victim core are redirected,

effectively reducing its logical space by (N −1)/(Dssd −1). For example, in Figure 8, 15 LBAs form

one redirection unit. Of 15 LBAs in one unit, 3 LBAs are redirected to core0, core1, and core2.

To choose (N − 1) redirected LBAs from a redirection unit of corev , the master core considers

the first N LBAs from the redirection unit. Except for the vth LBA, the ith LBA is redirected

to corei . Formally, assume that the master core tries to select (N − 1) LBAs from a redirection

unit R = {l0, . . . , lDssd−1
} of corev . Since each li ∈ R can be expressed by li = j × N + v (where

(Dssd − 1) × p ≤ j < (Dssd − 1) × (p + 1) for p ≥ 0), [j % (Dssd − 1)] indicates the redirected core

if it is not v and less than N . For example, in Figure 8, R = {3, 7, 11, 15, 19, . . . , 59}. First 3 LBAs, 3

(= 0 × 4 + 3), 7 (= 1 × 4 + 3), and 11 (= 2 × 4 + 3) are redirected to core0, core1, and core2,

respectively.

When an LBA is redirected to a helper core, the redirected LBA is stored in the extended LBA

space LSr edir ect of the helper core that is hidden from the host system. Each flash core internally

maintains its LSr edir ect area so that when the master core sends a request of a redirected LBA to its

LSr edir ect area, it can be properly handled. To distinguish LSr edir ect from the host-visible logical

space, we denote an LBA in LSr edir ect with the preceding underscore such as _60. In Figure 8, for

example, three LBAs, 3, 7 and 11, of the victim core are redirected to three LSr edir ect LBAs, _60,

_61, and _62, respectively.

5.2.3 Data Migration with Fake Failures. Since the master core changes its LBA-to-core map-

ping algorithm after a failed die is detected, if data are already written to the redirected LBAs of

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:13

the victim core, they should be moved to the newly redirected cores as well. However, since flash

cores operate independently, direct data transfers between flash cores are difficult to implement.

As an effective trick to this problem, we consider those redirected LBAs as failed LBAs although

they do not belong to the failed die (i.e., the redirected LBAs are treated as fake failures.). In addi-

tion to the real failed LBAs, Identifier additionally searches fake failures and sends their LBAs to

the host as well. When fake failures are recovered by the host, they are sent to the master core that

then correctly redirects them to their new locations. Although this method incurs an additional

RAID recovery cost, it is simple to be implemented as the existing recovery path is used. Further-

more, since the number of LBAs reported as fake failures is limited by the number of redirected

LBAs (i.e., (N − 1) × α), its overhead is not significant. For example, in Figure 8, three LBAs are

reported as fake failures (because α = 1 and N = 4).

6 IDENTIFIER ACCELERATION USING P2L MAPPING INFORMATION

As mentioned in Section 4, SSDs do not generally manage P2L mapping information that can be

used in identifying LBAs from a failed die. In this section, we propose two P2L management meth-

ods and Identifier acceleration techniques that can further reduce the key performance bottleneck

of reparo.

6.1 Page-level P2L Entrustment to Neighboring Die

A NAND page consists of two areas, one for storing data and the other for storing an error-

correction code and various FTL metadata. The latter area, called as the spare area of the NAND

page, stores key information for operating an SSD reliably. One such information is the LBA of

the data stored in the NAND page. The LBA information in the spare area is used when the map-

ping information of an SSD is reconstructed from unexpected failures (such as sudden power-off

failures [20]) or when valid pages of the GC victim block are moved to different blocks. Therefore,

it is possible to find out which LBAs are stored in a specific die by checking its spare area. How-

ever, when a die failure occurs, LBA information stored in the spare area of the failed die becomes

inaccessible as well, thus making it impossible to read stored LBAs of pages in the failed die.

In order for the FTL metadata on the spare area to be available even when a die fails, the data page

and its FTL metadata should be stored in different dies. In general, it is quite inefficient to store a

page data and its metadata on two separate pages, because doing so requires two writes. However,

in reparo, we propose a simple extension to a superblock-based mapping scheme [21, 22] so that

a data page and its metadata can be stored without an extra write overhead on different pages

in different dies. Unlike a page-level mapping scheme, the superblock-based mapping technique,

which is widely used in practice, employs a superpage as a write unit. To support a superpage, a

superblock is formed from k different blocks in k different dies. For example, Figure 9(a) shows

that the superblock SB100 consists of N blocks from N different dies. A superpage of a superblock

consists of k pages from k blocks (that are members of the superblock) where all k pages have

the same page offset within their blocks. For example, in Figure 9(a), the superpage sp0 consists

of N pages that have the page offset of 0 within their blocks. In the superblock-based mapping

technique, since a write to a superpage requires k writes to k pages (in different dies), we can

easily separate data page and its metadata to two neighboring pages within the same superpage.

In the page-level P2L entrustment technique, we store data page and its metadata in two pages

that are immediate neighbors within a given superpage. When a die fails, Identifier only needs to

check the spare area of a neighboring die, instead of checking all the entries in the L2P mapping

table. For example, as shown in Figure 9(a), when Die 1 fails, the failed LBAs of Die 1 can be

identified from the spare area of the adjacent die, Die 0. The LBA information of the page 2 in the

superpage sp0 can be obtained from the spare area of the page 1 in Die 0.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:14 D. Hong et al.

Fig. 9. Illustrative examples of P2L entrustment.

6.2 Block-level P2L Entrustment to Neighboring Die

Although the page-level P2L entrustment technique can be efficiently implemented using the ex-

tended superblock-based mapping scheme, it incurs a significant overhead for Identifier , because

all the pages of a neighboring die should be read. To identify failed LBAs more efficiently, we pro-

pose a block-level P2L entrustment technique that stores all the LBAs from a neighboring block in

a single reserved page of a block, thus reducing the number of page reads per block by Identifier

from the number of pages in a block to one. We use the last page of each block for this purpose.8

Figure 9(b) illustrates how the block-level P2L entrustment scheme works. For a given superblock

(e.g., SB101), as with the page-level P2L entrustment scheme, each block’s LBA information is stored

in its neighboring block. However, in the block-level P2L entrustment technique, we dedicate the

last page of each block for storing P2L mapping information of the neighboring block. When Die 1

fails, the failed LBAs of the block B1 can be identified by reading the page 3 of the block B0. Since

all the failed LBAs in a failed block can be found with a single page read, Identifier can work very

efficiently. We denote an extended reparoCDR with the block-level P2L entrustment technique by

reparoCDR*.

In the block-level P2L entrustment scheme, a single page should be able to contain all the LBA

information of a block. Although recent NAND flash memory has a large number (e.g., 768) of

pages in a block, a single page can easily meet this requirement. For example, consider a block

with 768 pages where the page size is 16 KB. If we support a common 4 KB-based mapping scheme,

then there are 3,072 mapping units in a block. When each mapping unit is referenced by a 32-bit

address, all the LBA lists of a block can be stored on a single page (i.e., 12 KB < 16 KB). Furthermore,

whenever a program operation is performed on a block, FTL needs to accumulate the list of all

LBAs stored in each block in the buffer memory until all the pages in the block are programmed

except for the last page. Since most FTLs limits the number of active blocks (where a requested

page write is programmed) to 1 or 2 [23, 24], the memory requirement for buffering the LBAs

of programmed pages is reasonable compared to the SSD capacity. For example, assuming that 2

active blocks per NAND die are maintained in a 32-TB SSD with 512 NAND dies, a 12-MB buffer

memory is sufficient.

8To satisfy the sequential program constraint of the NAND flash memory, a superpage is sequentially written in a su-

perblock. Therefore, it is logical to store the LBA list of a superblock to its last superpage.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:15

6.3 Additional Considerations for P2L Entrustment

The proposed P2L entrustment schemes may not work when more than one die fail at the same

time. For example, if two neighboring dies fail together, failed LBAs of one die cannot be identified.

In this article, we assume that multiple die failures are possible but they do not occur at the same

time. Since a die failure is a rare event and each die is physically independent of the other die, it is

a reasonable assumption in practice.

When failed LBAs are identified by reparoCDR*, they are not properly sorted, because when they

were stored to the last page of a block, they were not sorted. However, when a host queries failed

LBAs after a die failure is detected (as shown in 2 of Figure 6), the host asks reparo of a list of failed

LBAs within a specific LBA range. A naive solution would be to sort identified failed LBAs before

reparo responds to the host query. However, sorting a large number of failed LBAs can be time-

consuming. In the current implementation, when the failed LBAs are decided by reparoCDR*, their

L2P mapping entries are marked as failed LBAs. With a simple modification to the L2P mapping

table, when the host queries for failed LBAs from a specific LBA range, reparoCDR* can quickly

identify the failed LBAs without a costly sorting step.

7 EXPERIMENTAL RESULTS

7.1 Experimental Settings

To evaluate the effectiveness of the proposed reparo schemes, we implemented the proposed

schemes in Samsung PM1643 SSD [1], which can be configured for a 4-TB SSD (with 64 dies)

and a 32-TB SSD (with 512 dies). The SSD controller of a PM1643 SSD consists of four flash cores

along with one master core (as described in Section 4.1). Since there are four flash cores, each flash

core handles one quarter of the NAND dies in the SSD. We set the initial space utilization of each

core to 0.9. We assume a storage system with 8 SSDs configured in RAID 5. To emulate die failures

during runtime, we added a special command that imitates a real die failure to PM1643 firmware.

The special command, which was implemented as a vendor-specific command of SCSI [18], makes

all NAND operations fail to a selected NAND die.9 To simulate a die failure, this special command

was requested from a test software (e.g., DriveMaster [25]).

We compared four techniques: baseline, reparoIDR, reparoCDR, and reparoCDR*. The baseline

scheme, which represents a state-of-the-art RAID recovery technique, is based on Rebuild As-

sist [19], which was proposed for a fast RAID recovery. In baseline, when a die failure occurs, it is

considered as an SSD failure, and it replaces the failed SSD with a reserved SSD by copying all the

valid pages in the failed SSD to the reserved SSD. During an SSD rebuild, baseline directly copies

readable pages of the failed SSD using Rebuild Assist [19]. ReparoCDR* works in the same way as

reparoCDR except that its Identifier is optimized using the block-level P2L entrustment technique.

To evaluate four techniques, we have used two benchmark suites: FIO benchmark [26] and Iome-

teter benchmark [27]. Using simple synthetic workloads (e.g., sequential read/write and random

read/write) from the FIO benchmark, we compare how key steps of the recovery process work dif-

ferently in the proposed schemes. To understand the effect of the proposed schemes in real-world

settings, we used five enterprise application workloads [28] from the Iometer benchmark. Table 3

summarizes key I/O characteristics of these workloads.

7.2 Experimental Results

7.2.1 Recovery Overhead. To compare the recovery overhead, we measured the rebuild time

of each scheme in case of a die failure. Figure 10(a) compares normalized rebuild times of four

9In the current implementation, we modified the NAND flash reliability parameters (e.g., reference voltages) so that normal

operations cannot be performed.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:16 D. Hong et al.

Table 3. I/O Workload Characteristics of Five Enterprise Applications

Application Transfer Size Read % Write % Random % Sequential %

Media Streaming 64 K 98 2 0 100

File Servers 8 K 90 10 75 25

Database OLTP 8 K 70 30 100 0

Archive 2 M 55 45 95 5

Medical Imaging 1 M 5 95 5 95

Fig. 10. Comparisons of rebuild overhead.

techniques under varying SSD capacity. All the measurements were normalized over the result of

reparoIDR for a 32-TB SSD. ReparoIDR completes the recovery process about ∼9.3–14.7 times faster

than baseline by minimizing data migration. ReparoCDR is about 3.1 times faster over reparoIDR

because of its parallel Identifier module while reparoCDR* is about 1.27 times faster over reparoCDR

with its P2L entrustment support. Overall, reparoCDR* is 57 times faster than baseline in a 32-TB

SSD, even when the full I/O bandwidth of a host system is used for the RAID recovery. If the I/O

bandwidth of RAID recovery is limited (e.g., only 10% of the total I/O bandwidth for the host) to

minimize the impact of the RAID recovery on the performance of host request processing, then

reparoCDR* is about 110 times faster than baseline, which takes more than 3 days in a 32-TB SSD.

Note that the rebuild time of reparo techniques very slowly increases over baseline when the SSD

capacity increases. This observation illustrates the advantage of the reparo schemes that repair a

single die instead of rebuilding an SSD as in baseline.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:17

Fig. 11. Comparisons of Identifier performance.

Figure 10(b) compares four techniques in terms of the total amount of data movements during

the rebuild time. Compared to baseline, the reparo schemes require up to two orders of magni-

tude fewer data movements during the recovery. Unlike baseline, the reparo schemes generate

the same amount of rebuild traffic during the recovery regardless of the capacity of SSDs, be-

cause they rebuild a failed die only. Although reparoCDR moves more data over reparoIDR because

of logical space adjustment, the overall rebuild time of reparoCDR is smaller than reparoIDR be-

cause reparoCDR significantly reduces time for finding failed LBAs by parallel query processing.

Figure 10(c) shows a detailed breakdown of the total rebuild time during the rebuild process in a

32-TB SSD. As shown in reparoIDR, the time taken by Identifier is the dominant factor of the total

recovery time. The parallel Identifier of reparoCDR reduces the Identifier execution time by 76%

over reparoIDR. ReparoCDR* further reduces the Identifier execution time by 31% over reparoCDR

by the P2L entrustment technique.

To better understand the effect of various Identifier optimization techniques, we compared the

performance of the failed LBA identification step in detail under varying number of flash cores

participating in the parallel search and different P2L entrustment techniques. Figure 11 shows the

normalized performance of the failed LBAs identification step for different SSD capacities. (The

identification performance represents the processing speed measured from a host after a failed LBA

query was sent to an SSD. The higher the identification performance, the shorter Identifier takes.)

All the values were normalized over the query processing speed on a 4-TB SSD when a single core

was used. As the capacity of the SSD increases, the identification speed tends to increase. This

tendency is related to how often failed LBAs appear. For example, on a 4-TB SSD, on average, one

of the 16 LBAs in the victim core is stored on the failed die, whereas on a 32-TB SSD, one of the

128 LBAs on the victim core is stored on the failed die. Whenever a failed LBA is identified, an

internal data structure update is required to transmit the information to the host, and the mapping

information related to the failed LBA needs to be updated. This is why the higher the frequency of

failed LBAs, the slower the query processing speed. The high frequency of failed LBAs also gives a

negative effect on the efficiency of parallel processing. Therefore, on a 4-TB SSD, the performance

of the 4-core parallel search is about twice that of the single-core search. However, on a 32-TB

SSD, the performance of the 4-core parallel search is 3.1 times higher than that of the single-core

search.

As shown in Figure 11 the page-level P2L entrustment technique is quite slow, because it needs

to read a large number of pages to identify failed LBAs from neighboring pages. For example, it

takes longer than the 4-core parallel search case in all four SSDs. However, the block-level P2L

entrustment technique can identify failed LBAs much faster than the 4-core parallel search on all

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:18 D. Hong et al.

Fig. 12. Performance comparisons after die failure recovery.

SSD capacities. For example, on a 16-TB SSD and a 32-TB SSD, the block-level P2L entrustment

technique outperforms the 4-core parallel search by 48% and 44%, respectively.

7.2.2 Post-recovery Performance/WAF Impact. To understand how a reparo-repaired SSD be-

haves in performance and lifetime aspects, we measured IOPS and WAF values after a single die

failure was repaired by the reparo schemes. All the measurements are normalized over those of

a new SSD without any die failure. We used four representative synthetic workloads generated

through FIO.

Figure 12 compares IOPS values between the reparo schemes under four workloads. For the

sequential read and random read workloads shown in Figure 12(a) and (b), different reparo schemes

show almost the same performance as the new SSD. ReparoIDR has a performance drop up to 3.4%

for random read under low-capacity conditions when the SSD capacity is relatively low (i.e., 4

TB), but the performance degradation is marginal in the other conditions. This is because the read

bandwidth of the NAND flash is sufficient to satisfy the host interface speed even if the number

of dies is reduced.

However, for write workloads, there is a little more performance differentiation among the

proposed schemes although their difference is not significant. As shown in Figure 12(c), in the

case of sequential write workload, small performance differences are largely from the reduced

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:19

Fig. 13. Impact of die repairs on WAF.

NAND parallelism. For example, reparoIDR is 1.1% worse than reparoCDR in a 4-TB SSD, because

its NAND parallelism is affected by the isolated die recovery scheme. In the random write

workload, as shown in Figure 12(d), the performance difference between reparoIDR and reparoCDR

is substantial, because the efficiency of GC is combined with the proposed schemes. ReparoCDR

outperforms reparoIDR from 3% to 102%. This is mainly because reparoCDR better manages the

performance-critical space utilization of flash cores over reparoIDR. Imbalanced space utilization

in reparoIDR directly affects the efficiency of GC, which, in turn, significantly degrades the overall

IOPS. ReparoCDR* shows almost the same performance as reparoCDR, with only a performance

drop of less than 1.5%, because reparoCDR* uses the last page of each block for storing a list of

LBAs, which reduces the capacity of the OP space slightly.

Figure 13 compares WAF values between the reparo schemes under two different write work-

loads. WAF values are normalized over the baseline case where no die failure occurs in a given

SSD capacity. For the sequential write workload, as shown in Figure 13(a), WAF values do not

increase significantly. Except for reparoIDR whose WAF value increased up to 7% at a 4-TB SSD,

all the other schemes increased their WAF values by less than 2% over four different SSDs with

different capacities. However, as shown in Figure 13(b), in the random write workload, there are

larger variations in WAF values among different schemes in different SSDs. For example, the WAF

value increases by 47% in reparoIDR for an 8-TB SSD while the WAF value increases less than 9%

in reparoCDR for the same SSD. Large differences in Figure 13(b) come from the efficiency of GC

in each scheme, because each scheme affects differently on the available OP space. As shown in

Figure 13(b), reparoCDR is the most efficient in maintaining the available OP space evenly among

flash cores. ReparoCDR*, which has a smaller effective OP space than reparoCDR, results in an ad-

ditional 1.5% increased WAF value.

Figure 14 compares the performance of each scheme after a die failure is recovered using en-

terprise workloads from the Iometer benchmark. All the measurements were normalized over the

SSD performance of the same capacity with no die failure. As expected, there are large differ-

ences among reparoIDR and reparoCDR on a small SSD when workloads are write-intensive. For

example, in Archives and Medical Imaging workloads with high write request ratios, reparoCDR

outperformed reparoIDR by 96.4% and 99.5%, respectively, on a 4-TB SSD. Even for write-intensive

workloads, if the access pattern is sequential, the influence of the OP space can be low. However,

when the random and sequential patterns are mixed, the influence of the OP space is large, similar

to the 100% random pattern even if the random ratio is low. However, in read-intensive workloads,

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:20 D. Hong et al.

Fig. 14. Performance comparisons after die failure recovery with enterprise workloads.

there is not much difference in performance for each scheme, which is in line with the evaluation

results of Figure 12(a) and (b).

Note that we did not directly compare the lifetime impact of each scheme. However, since the

total amount of written data to an SSD can be a useful indicator of the SSD lifetime, we can estimate

the lifetime impact of each scheme using its WAF value w . Given a fixed amount Whost of host

writes, the total amountTdata of written data to the SSD can be computed byTdata×w . Using WAF

values of Figure 13, for example, we can estimate that reparoIDR can decrease the SSD lifetime over

when no die fails, by 2.9% and 31.9%, respectively, for sequential workload and random workload,

on an 8-TB SSD after a single die is repaired. For the same conditions, reparoCDR shows a longer

SSD lifetime, reducing the SSD lifetime by 0.8% and 7.8% only.

7.2.3 Post-recovery Impact of Multi-die Failures. Unlike when a single die failure is repaired,

reparoIDR and reparoCDR shows significant differences in the post-recovery performance/WAF

when multiple die failures are repaired. Figure 15 shows how performance and WAF changes un-

der the random write workload as the number of failed dies increases assuming that all die failures

occur in the same flash core, considering the worst case. As shown in Figure 15(a) and (c), when

an SSD is repaired by reparoIDR, its performance is quickly degraded while its WAF is rapidly in-

creased. However, as shown in Figure 15(b) and (d), when an SSD is repaired by reparoCDR, its

performance is much slowly degraded as with the WAF increase.

Slow performance degradation of reparoCDR can be an important advantage in enterprise stor-

age systems. In such systems, to support the sustained RAID performance [29], each SSD has

a strict requirement on the performance degradation (such as the maximum 10% performance

drop) [30]. For example, when the maximum performance drop is set to 10%, reparoCDR can sur-

vive up to four die failures in a 32-TB SSD. However, reparoIDR can only handle a single die failure

under the same condition.

7.2.4 Sensitivity for the Space Utilization. Since die failure recovery is performed by utilizing

the OP space, the available size of the OP space affects the performance and WAF after die failure

recovery process. If the space utilization of an SSD is low, then more OP space is available and the

performance impact by using reparo is reduced. To validate this observation, we measured perfor-

mance and WAF while varying the space utilization from 0.9 to 0.87. Figure 16 shows how per-

formance changes for successive die failures under different space utilization ratios. When space

utilization is low, the performance degradation is also slowed accordingly. For example, in a 32-TB

SSD, when the space utilization ratio is 0.87, reparoCDR can repair up to five die failures with a less

than 10% performance degradation over four die repairs when the space utilization ratio is 0.90.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:21

Fig. 15. Impact of multi-die failures on performance and WAF.

8 RELATED WORK

Fast RAID recovery techniques have been extensively investigated in enterprise storage sys-

tems [31–36]. For example, several groups have focused on devising efficient data layout methods

that can reduce the impact of a RAID rebuild process on normal I/O requests from a host. The

parity declustering layout was proposed by Muntz and Lui [31] to shorten rebuild time and im-

prove user response by minimizing the number of disks required for reconstructing a failed disk so

that the rest of disks can continue to handle host requests. Wan et al. [35] proposed a skewed sub-

array organization in a RAID structure, which splits large disks into small logical disks to form

sub-arrays but are configured to be skewed among physical disks. This enables a RAID rebuild

process to be performed on multiple physical disks in parallel without access conflicts.

Although these schemes can reduce the total rebuild time by intelligently overlapping rebuild

operations with host request processing, they do not reduce the total amount of data that need to

be read for a RAID reconstruction task. Rebuild Assist [19] takes a different approach to expedite

the RAID rebuild process. When an SSD fails, Rebuild Assist distinguishes the failed LBAs from

the readable LBAs in the failed SSD. For the latter, Rebuild assist simply copies their data from

the failed SSD to a replacement SSD without rebuilding them using a RAID scheme, thus reducing

data reads from the rest of RAID storage. Reparo, which is based on a subset of new commands

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

21:22 D. Hong et al.

Fig. 16. Impact of the space utilization on performance and WAF.

proposed by Rebuild Assist, is fundamentally different from Rebuild Assist in that reparo does not

build a replacement SSD but repairs failed dies.

Reparo is similar to Redundant Array of Independent NAND (RAIN) techniques [37–43]

in that they can recover a failed die inside a failed SSD. However, the existing RAIN techniques

work at the individual SSD level rather than the RAID storage level, making them very difficult to

use efficiently in a RAID storage system. For example, when a storage system is consist of RAIN-

enabled SSDs, if an SSD fails (although such an SSD failure is much less likely because of an internal

RAID configuration in a RAIN-enabled SSD configuration), its RAID recovery procedure will be

as slow as that of a RAID storage system with normal SSDs. Since RAID should be supported in

an individual SSD, the existing RAIN techniques incur a significant resource overhead (e.g., OP

space reduction) as well as a flash lifetime degradation [44]. Therefore, the performance/lifetime

of RAIN-enabled SSDs is poorer than SSDs without RAIN support. Furthermore, when a RAIN-

enabled SSD is recovered after a die failure using a RAIN scheme, the OP space of the RAIN-

enabled SSD will be further reduced, thus quickly degrading the performance/lifetime of the SSD.

Since we are interested in continuing a normal operation of a RAID storage system after a failed

die is recovered without replacing a failed SSD, we did not consider the RAIN techniques as a

viable alternative solution for repairing failed dies. However, reparo, which was proposed for a

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs 21:23

RAID recovery purpose, imposes little overhead on an individual SSD level while it can minimize

the impact of the die-level recovery on the performance and lifetime of the repaired SSD.

9 CONCLUSIONS

We have presented a new RAID recovery scheme, reparo, to reduce the RAID recovery overhead

from die failures in UL SSDs. Based on our key insight that a failed die of a UL SSD should be rebuilt

at the die level (instead of the expensive and time-consuming SSD level), reparo, which employs the

cooperative die recovery scheme, quickly recovers from a die failure and ensures no negative post-

recovery performance/lifetime degradation on the repaired SSD. We have implemented reparo in a

commercial enterprise SSD to validate its effectiveness. Our experimental results show that reparo

can recover from a die failure about 57 times faster than the existing rebuild method while little

degradation on the SSD performance and lifetime is observed after recovery.

The current version of reparo can be further improved in several directions. For example, if a

die failure can be predicted with a high probability before it actually occurs, a die failure can be

handled more effectively. Building such a predictor would be an interesting future direction if it

can be possibly combined with a data-driven machine learning approach. In addition, we are also

interested in improving the data transfer mechanism during the recovery process. For example, if

data migrations between flash cores could be performed inside an SSD, unnecessary data transfers

between the SSD and host can be reduced during the recovery process.

REFERENCES

[1] Samsung SSD. 2018. Retrieved from https://www.samsung.com/semiconductor/insights/news-events/samsung-

starts-producing-industrys-largest-capacity-ssd/.

[2] David Patterson, Garth Gibson, and Randy Katz. 1988. A case for redundant arrays of inexpensive disks (RAID). In

Proceedings of the ACM-SIGMOD International Conference on the Management of Data.

[3] Broadcom. 2018. 12Gb/s MegaRAID Tri-Mode Software. Retrieved from https://docs.broadcom.com/docs/MR-TM-

SW-UG105.

[4] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in production: The expected and the

unexpected. In Proceedings of the USENIX Conference on File and Storage Technologies.

[5] Bianca Schroeder and Garth Gibson. 2007. Disk failures in the real world: What does an MTTF of 1,000,000 hours

mean to you? In Proceedings of the USENIX Conference on File and Storage Technologies.

[6] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. 2020. A study of SSD reliability in large scale

enterprise storage deployments. In Proceedings of the USENIX Conference on File and Storage Technologies.

[7] Jimmy Yang and Feng-Bin Sun. 1999. A comprehensive review of hard-disk drive reliability. In Proceedings of the

Annual Reliability and Maintainability Symposium.

[8] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. 2012. Error patterns in MLC NAND flash memory: Measurement,

characterization, and analysis. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE’12).

[9] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. 2017. Error characterization, mitigation, and

recovery in flash-memory-based solid-state drives. Proc. IEEE 105, 9 (2017), 1666–1704.

[10] Myungsuk Kim, Youngsun Song, Myoungsoo Jung, and Jihong Kim. 2018. SARO: A state-aware reliability optimization

technique for high density NAND flash memory. In Proceedings of the Great Lakes Symposium on VLSI.

[11] Micron. 2011. TN-29-59: Bad Block Management. Retrieved from https://www.micron.com/-/media/client/global/

documents/products/technical-note/nand-flash/tn2959_bbm_in_nand_flash.pdf.

[12] Samsung. 2014. Samsung V-NAND Technology, White Paper. Retrieved from https://studylib.net/doc/8282074/

samsung-v-nand-technology.

[13] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni. 2019. SSD failures in the field: Symptoms, causes, and predic-

tion models. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis.

[14] Over-provisioning. 2020. Retrieved from https://www.seagate.com/tech-insights/ssd-over-provisioning-benefits-

master-ti/.

[15] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson. 1994. RAID: High-

performance, reliable secondary storage. ACM Comput. Surv. 26, 2 (1994), 145–185.

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

https://www.samsung.com/semiconductor/insights/news-events/samsung-starts-producing-industrys-largest-capacity-ssd/
https://docs.broadcom.com/docs/MR-TM-SW-UG105
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2959_bbm_in_nand_flash.pdf
https://studylib.net/doc/8282074/samsung-v-nand-technology
https://www.seagate.com/tech-insights/ssd-over-provisioning-benefits-master-ti/

21:24 D. Hong et al.

[16] Serial AT Attachment. Retrieved from https://sata-io.org/.

[17] NVM Express. Retrieved from https://nvmexpress.org/resources/specifications/.

[18] SCSI Storage Interfaces. Retrieved from http://www.t10.org.

[19] Seagate Technology. 2011. Reducing RAID Recovery Downtime. Retrieved from https://www.seagate.com/files/

staticfiles/docs/pdf/whitepaper/tp620-1-1110us-reducing-raid-recovery.pdf.

[20] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. 2013. Understanding the robustness of SSDs under power

fault. In Proceedings of the USENIX Conference on File and Storage Technologies.

[21] Ying Y. Tai. 2016. High performance FTL for PCIe/NVMe SSDs. In Proceedings of the Flash Memory Summit.

[22] Shunzhuo Wang, Fei Wu, Chengmo Yang, Jiaona Zhou, Changsheng Xie, and Jiguang Wan. 2019. WAS: Wear aware

superblock management for prolonging SSD lifetime. In Proceedings of the Design Automation Conference.

[23] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The multi-streamed solid-state drive. In

Proceedings of the Workshop on Hot Topics in Storage and File Systems.

[24] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul Lee,

and Jihong Kim. 2019. Fully automatic stream management for multi-streamed ssds using program contexts. In Pro-

ceedings of the USENIX Conference on File and Storage Technologies.

[25] Ulink. DriveMaster. 2019. Retrieved from https://ulinktech.com/products/drivemaster-8-enterprise-sas/.

[26] Jens Axboe. 2020. FIO. Retrieved from https://github.com/axboe/fio.

[27] Iometer. 2014. Retrieved from http://www.iometer.org/.

[28] Eden Kim. 2014. Enterprise Applications: How to Create a Synthetic Workload Test. Retrieved from https://www.snia.

org/sites/default/files/EdenKim_Enterprise_Applications_WorkLoad_Test_SDC_2014.pdf.

[29] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee, David A. Dillow, and Feiyi Wang. 2011. Harmonia: A

globally coordinated garbage collector for arrays of solid-state drives. In Proceedings of the Symposium on Mass Storage

Systems and Technologies.

[30] Ulrich Hansen. 2012. The SSD Endurance Race: Who’s Got the Write Stuff? Retrieved from https://www.

flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TC11_Hansen.pdf.

[31] Richard R. Muntz and John C. S. Lui. 1990. Performance analysis of disk arrays under failure. In Proceedings of the

International Conference on Very Large Databases.

[32] Mark Holland and Garth Gibson. 1992. Parity declustering for continuous operation in redundant disk arrays. In

Proceedings of the Architectural Support for Programming Languages and Operating Systems.

[33] G. A. Alverez, Walter A. Burkhard, L. L. Stockmeyer, and Flaviu Cristian. 1998. Declustered disk array architectures

with optimal and near-optimal parallelism. In Proceedings of the International Symposium on Computer Architecture.

[34] Siu-Cheung Chau and Ada Wai-Chee Fu. 2002. A gracefully degradable declustered RAID architecture. Clust. Comput.

5, 1 (2002), 97–105.

[35] Jiguang Wan, Jibin Wang, Changsheng Xie, and Qing Yang. 2013. S2-RAID: Parallel RAID architecture for fast data

recovery. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2013), 1638–1647.

[36] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan Wang, and Weimin Zheng. 2018. RAID+: Deter-

ministic and balanced data distribution for large disk enclosures. In Proceedings of the USENIX Conference on File and

Storage Technologies.

[37] Scott Shadley. 2011. SSD RAIN. Retrieved from https://www.micron.com/~/media/documents/products/technical-

marketing-brief/brief_ssd_rain.pdf.

[38] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song. 2009. FRA: A flash-aware redundancy array of flash storage devices.

In Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis.

[39] Soojun Im and Dongkun Shin. 2011. Flash-aware RAID techniques for dependable and high-performance flash mem-

ory SSD. IEEE Trans. Comput. 60, 1 (2011), 80–92.

[40] Sehwan Lee, Bitna Lee, Kern Koh, and Hyokyung Bahn. 2011. A lifespan-aware reliability scheme for RAID-based

flash storage. In Proceedings of the ACM Symposium on Applied Computing.

[41] Yi Qin, Dan Feng, Jingning Liu, Wei Tong, Yang Hu, and Zhiming Zhu. 2012. A parity scheme to enhance reliability

for SSDs. In Proceedings of the International Conference on Networking, Architecture, and Storage.

[42] Heejin Park, Jaeho Kim, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2015. Incremental redundancy to reduce

data retention errors in flash-based SSDs. In Proceedings of the International Conferece on Massive Storage Systems and

Technology.

[43] Jaeho Kim, Eunjae Lee, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2016. Chip-level raid with flexible stripe size

and parity placement for enhanced ssd reliability. IEEE Trans. Comput. 65, 4 (2016), 1116–1130.

[44] Bryan S Kim, Jongmoo Choi, and Sang Lyul Min. 2019. Design tradeoffs for SSD reliability. In Proceedings of the

USENIX Conference on File and Storage Technologies.

Received August 2020; revised December 2020; accepted February 2021

ACM Transactions on Storage, Vol. 17, No. 3, Article 21. Publication date: August 2021.

https://sata-io.org/
https://nvmexpress.org/resources/specifications/
http://www.t10.org
https://www.seagate.com/files/staticfiles/docs/pdf/whitepaper/tp620-1-1110us-reducing-raid-recovery.pdf
https://ulinktech.com/products/drivemaster-8-enterprise-sas/
https://github.com/axboe/fio
http://www.iometer.org/
https://www.snia.org/sites/default/files/EdenKim_Enterprise_Applications_WorkLoad_Test_SDC_2014.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TC11_Hansen.pdf
https://www.micron.com/~/media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf

