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ABSTRACT

We present a low-overhead ransomware-proof SSD, called Ran-
somBlocker (RBlocker). RBlocker provides 100% full protections
against all possible ransomware attacks by delaying every data
deletion until no attack is guaranteed. To reduce storage overheads
of the delayed deletion, RBlocker employs a time-out based backup
policy. Based on the fact that ransomware must store encrypted
version of target files, early deletions of obsolete data are allowed
if no encrypted write was detected for a short interval. Otherwise,
RBlocker keeps the data for an interval long enough to guarantee
no attack condition. For an accurate in-line detection of encrypted
writes, we leverages entropy- and CNN-based detectors in an inte-
grated fashion. Our experimental results show that RBlocker can
defend all types of ransomware attacks with negligible overheads.

1 INTRODUCTION

Ransomware stealthily encrypts user files and demands a ransom
from a user for an encryption key to access the files. The high
financial benefits of ransomware make it a profitable business,
which motivates many cyber-criminals to develop and distribute
various ransomware programs. In the first six months of 2018, 181.5
million ransomware attacks have been reported, which is a 229%
increase over the same period in 2017 [11].

Typical anti-ransomware solutions attempt to protect user files
by detecting ransomware before it runs and/or by backing up files
on remote or local storage. However, since most anti-virus programs
run in a host system as a user application, they are vulnerable to
evasion attacks with root privileges. Backing up original files cannot
be a 100% reliable solution either because a backup system itself
can be infected [5]. Moreover, creating a backup for recovery can
cause significant overheads, which may degrade user experience.

To address the potential vulnerability and backup overheads of
host-level defense schemes, storage-level solutions have been pro-
posed recently [3, 5]. They put ransomware detection/recovery log-
ics in a NAND flash-based solid state drive (SSD) which is physically
decoupled from a host, and leverage the out-of-place update property
of NAND flash to lessen backup overheads. NAND flash memory
does not support in-place updates, so SSDs handle host writes in an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06....$15.00
https://doi.org/10.1145/3316781.3317889

append-only manner, leaving obsolete file data unmodified. Only
SSD firmware, a flash translation layer (FTL), can explicitly remove
them later through garbage collection (GC). Therefore, by prevent-
ing GC from erasing possibly attacked data, SSD-level solutions
can back them up at no I/O cost. Furthermore, since this backup
and removal processes are done inside SSDs, they can protect data
from evasion attacks at the host level.

The existing SSD-level solutions, however, are insufficient either
to be widely used in practice. FlashGuard [5], which provides 100%
full protections from ransomware attacks, suffers from a very high
space overhead of maintaining backup data owing to its overly con-
servative backup policy. Since every ransomware has to first read a
victim file to encrypt it, FlashGuard assumes that once data are read
by a host, they are possibly attacked by ransomware, thus keep-
ing them until no ransomware attack is guaranteed. Although this
simple scheme guarantees the highest level of protection, normal
data (not attacked by ransomware) are also unnecessarily stored
in an SSD. This high space overhead makes FlashGuard almost
impossible to be used. Even worse, it greatly increases the overall
GC cost.

SSD-Insider [3] addresses the limitations of FlashGuard by lever-
aging a ransomware detection algorithm on the storage side. By
monitoring unique I/O footprints of ransomware, it is able to de-
tect whether a host is under a ransomware attack or not within
10 seconds. This early detection enables SSD-Insider not to main-
tain backup data for a long time, which mitigates the high space
overhead problem. SSD-Insider, however, could be easily compro-
mised by ransomware variants that intentionally issue modified
I/O patterns that evade the SSD-Insider’s detection algorithm.

In this paper, we propose a novel SSD-level protection technique
against ransomware attacks, called RansomBlocker (RBlocker). Un-
like the existing SSD-level solutions, RBlocker examines the content
of incoming data for detecting ransomware attacks. Specifically,
at run time, RBlocker determines whether incoming data are en-
crypted. Since encrypting victim files is an invariant step of all
ransomware attacks, if an incoming write is not encrypted, we
can guarantee that the data are not infected by ransomware. If
encrypted data are identified, RBlocker delays the deletion of its
original data by excluding them from GC process. Such a selective
backup can significantly mitigate the space overhead, and is not
affected by new variants that change I/0O footprints because the
backup decision is based on the actual content of data.

Achieving high accuracy in detecting encrypted writes is a key
challenge in designing RBlocker. RBlocker uses entropy of input
data as a key metric to determine encrypted writes, based on the
fact that encrypted data have a high entropy value. However, nor-
mal files like images and videos also exhibit high entropy, which



makes entropy less effective. To address this, we leverage convolu-
tional neural networks (CNN) to accurately identify only the data
encrypted by cryptographic algorithms, filtering out normal data
with high entropy. Unlike entropy that can be quickly computed
with hardware logics [7], a CNN-based classifier takes a relatively
long time. To lessen its overhead, RBlocker takes a two-phase ap-
proach which first examines an entropy value of input data and
then applies the CNN-based classifier only to data with high en-
tropy. To further minimize the detection cost without sacrificing
the accuracy, RBlocker also employs a file-based detection policy
that performs per-file basis detection, rather than small blocks.

Another challenge in designing RBlocker is that RBlocker can-
not logically link encrypted data with its original data. If we can
assume that all ransomware attacks simply overwrite original data
with encrypted data, it is straightforward to figure out this linkage
between the encrypted data and the original data. However, more
complex ransomware variants, such as CryptoLocker, can execute
out-of-place attacks which write encrypted data to a new file and
delete original one [10]. In this case, RBlocker cannot tell which
deleted data are the original data of the encrypted data. RBlocker
overcomes this problem by employing a time-out based backup pol-
icy. When a file is deleted, RBlocker delays a deletion request by a
given time-out threshold r. After 7 time units, RBlocker checks if
there were any encrypted writes in the past 7 units. If no encrypted
writes were present, RBlocker concludes that it is safe to process
the deletion request. If there were encrypted writes, RBlocker as-
sumes that there was a ransomware attack and does not process
the deletion request until no attack is guaranteed.

To evaluate the effectiveness of RBlocker, we have implemented
it on an open SSD development platform [8]. To support the in-line
detection of encrypted writes, we have implemented a hardware
accelerator for the CNN-based detection. Our experimental results
show that RBlocker defends all types of ransomware attacks, and
incurs negligible overheads for data backup and detection.

The rest of the paper is organized as follows. In Section 2, we
review NAND flash-based SSDs and present a key motivation of our
work. Section 3 describes the protection mechanism of RBlocker.
We present the design and implementation of RBlocker in Section
4, followed by its evaluation in Section 5. We conclude in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 SSD-Level Ransomware Defence

Figure 1 depicts an architecture of a NAND flash-based SSD. Modern
SSDs run an FTL, storage firmware, which is in charge of providing
backwards compatibility to the block I/O interface. NAND devices
do not allow in-place updates, so a page (a unit of reads and writes)
cannot be overwritten before it is erased. The erasure operation is
done in a unit of a block, which is a group of multiple pages. To
hide such properties, an FTL always takes an out-of-place update
strategy that writes incoming data to free pages, and for serving
future reads, it maintains logical-to-physical (L2P) mappings to
keep track of the locations of physical pages that are mapped to
logical pages which are seen by the host.

In the example of Figure 1, when a logical page 0 (LP#0) is
overwritten with new data A’ , an FTL writes it to a free physical
page 3 (PP#3), and updates the L2P mapping. After that, an FTL
changes the status of the physical page 0 (PP #0) as invalid which
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Figure 1: An overview of a NAND flash-based SSD.

was mapped to LP#0. FTL’s GC module reclaims PP#0 later to
create free space for future writes. Valid pages in a block selected
for GC (e.g., PP#3 in block 0) must be copied to free pages in other
blocks. To minimize GC costs, an FTL typically selects a block with
the largest number of invalid pages as a victim. To further lessen GC
overheads, a new command, called a trim, is recently added [6]. It
allows SSDs to know which data are removed from file systems. For
example, if data B is deleted, LP#1 is trimmed by the host and the
FTL invalidates the corresponding PP #1. Without a trim support,
PP#1 would be copied during GC since it is still considered valid.

The existing SSD-level approaches take advantage of the out-
of-place update nature of an SSD. Invalid pages are permanently
removed from NAND devices only when GC erase them. Thus,
even when ransomware overwrites or deletes a file, an SSD is able
to preserve its data by not allowing GC to erase corresponding
pages. For example, in Figure 1, suppose that an FTL marks PP#0
and PP#1 as suspicious pages after they are (logically) overwritten
with new data and trimmed. As long as it is not clear whether the
pages are actually attacked by ransomware, GC copies them along
with valid pages to a free block so as to use them for recovery
later. Those suspicious pages will be permanently removed once
no ransomware attack is (somehow) confirmed.

How long suspicious pages should be kept as valid in an SSD
is an important factor in designing SSD-level techniques. If they
are erased too shortly (e.g., after few minutes), users may lose a
chance to recover original files after ransomware attacks. Keeping
suspicious pages for a very long time (e.g., several weeks) is also
not a reasonable choice because of its high space and GC overheads,
in particular, when they are not actually attacked by ransomware.
As shown in Figure 1, with an SSD-level protection, GC has to copy
two more pages (i.e., PP#0 and PP#1), which negatively affects
both the performance and lifetime of the SSD.

2.2 Limitations of Existing Approaches

Two existing approaches, FlashGuard [5] and SSD-Insider [3], choose
one of the above two extremes, respectively. FlashGuard keeps all
invalid pages for 2-4 weeks, if the pages have been read before
invalidation. This is based on the fact that ransomware has to read
and encrypt victim files. While it may be the most thorough way
to protect user files against ransomware attacks, the space and
GC overheads cannot be avoided. By analyzing block I/O traces
collected from enterprise systems, FlashGuard’s authors conclude
that only few files are removed after being read. However, many
counterexamples can be found in various scenarios. For a simple
example, suppose that a user downloads, plays, and removes a video



file. With FlashGuard, this file will not be removed from an SSD for
a very long time, unnecessarily occupying huge space.
SSD-Insider [3] maintains suspicious data for a short period of
time. It puts a ransomware detection algorithm to an FTL which is
able to detect ransomware running in a host within 10 seconds by
analyzing headers of block I/O requests. Suspicious pages which are
invalidated 10 seconds ago can be garbage collected, because they
are confirmed safe from ransomware attacks by the detector. Thus,
SSD-Insider does not waste lots of free space to keep suspicious data,
and does not seriously suffers from GC overheads. The detection
algorithm of SSD-Insider, however, can be easily compromised by
ransomware variants. For example, SSD-Insider guesses that there
may be ransomware attacks if a sharp increase of overwrite requests
from a host is observed for a short time interval. If ransomware
intentionally slows down its encryption speed, SSD-Insider may
fail to detect it, allowing GC to permanently erase victim data.

3 ENCRYPTION-AWARE PROTECTION

The proposed RBlocker overcomes the limitations of the existing
solutions by leveraging another invariant feature of ransomware
attacks: encrypted writes. Here, encrypted writes are defined to
be write requests that carry data encrypted by cryptographic al-
gorithms. All ransomware programs have to encrypt user files to
block user access to them. Thus, if we can (1) detect encrypted
writes from ransomware and (2) identify the locations of their vic-
tims, a more accurate selection of backup candidates is possible.
In contrast to FlashGuard that has to back up all overwritten and
deleted data, it may require a small amount of free space to keep
suspicious data. Moreover, since encrypted writes are involved in
all ransomware attacks, the selection accuracy of backup candidates
would be maintained high, regardless of the types of ransomware.

3.1 Two-Phase Detection of Encrypted Writes

For an encryption-based protection to work, the detection of en-
crypted writes should be accurate enough to satisfy the following
two conditions: zero false-negative-rate (FNR) and near-zero false-
positive-rate (FPR). The FNR represents a rate of which RBlocker
misjudges an encrypted write as non-encrypted one. If FNR > 0, we
are not able to guarantee 100% full protections because GC may
erase data manipulated by ransomware. On the other hand, the FPR
indicates a rate of which RBlocker misjudges a non-encrypted write
as an encrypted one. The higher FPR is, the more data RBlocker
unnecessarily keeps for recovery, thus wasting precious free space.

To tackle this technical challenge, we propose two detection
schemes: one based on entropy of incoming data and the other
based on convolutional neural networks (CNN). The entropy-based
detection is effective in achieving a zero FNR. To make users im-
possible to decrypt victim files, ransomware uses cryptographic
algorithms, such as AES-128, whose resultants have extremely high
entropy. Hence, just by setting a sufficiently low entropy value as a
threshold, all data encrypted with such algorithms can be effectively
detected. For example, based on the Shannon’s entropy estimation
whose resulting value ranges from 0 to 8 [12], encrypted data with
cryptographic algorithms exhibit 7.99+ entropy values. If a thresh-
old value is set to 7.9, we can achieve an effectively-zero FNR in
detecting encrypted writes. Another benefit of the entropy-based
detection is its high performance. By using hardware accelerators,
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Figure 2: A two-phase detection with file-based filtering.

a throughput of 30 Gbit/s (~ 3.75GB/s) is achievable [7], which is
higher than the write bandwidth of recent high-speed SSDs [9].

The entropy-based detection is able to achieve an effectively-zero
FNR, but it provides a high FPR ranging from 0.1 to 0.45 depending
on target data. This is because of data that are not encrypted but
have high entropy values, like media files and compressed files.
Fortunately, those files are stored according to standard formats, and
pieces of data belonging to the same file do not have high entropy
all the time (owing to headers, footers, and metadata embedded in
the middle of a file). This implies that if their unique signatures
and patterns can be detected, we can distinguish their data from
encrypted data with cryptographic algorithm. To this end, we devise
a simple CNN-based detector with five convolution layers and two
fully connected layers, which can provide a much lower FPR close
to 0.05 through an intensive training with a large file set.

What we should consider next is the efficient integration of the
entropy- and CNN-based detectors. It is infeasible to use the CNN-
based detector as a primary detector, since its maximum throughput
is limited to 16 MB/s even with an FPGA implementation. For
this reason, we employ a two-phase approach. The entropy-based
detector first filters out low entropy data with zero FNR. Then, it
sends the rest to the CNN-based detector, so that normal files with
high entropy can be excluded. In normal PC usage scenarios, only
a small fraction of data (less than 10%) have higher entropy than
7.9, so its impact on performance would not be so severe.

3.2 File-Based Detection Policy

The two-phase detection has serious drawbacks. First, even though
lots of data traffic is reduced by the entropy-based detector, CNN-
based detector still could be a performance bottleneck, particularly
when many media files are burstly written. We alleviate this prob-
lem by adopting a file-based detection policy, which is depicted in
Figure 2 (left). It is motivated by an observation that ransomware
encrypts victims on a file basis, and almost all data in a resultant file
have high entropy values. A clustering of high entropy data within
a single file, therefore, is a strong indicator that the file might be
generated in ransomware attacks. If file data along with its inode
number can be delivered to an SSD, the entropy-based detector is
able to check whether the incoming file contains low entropy pages.
If so, the entire writes on the file are simply ignored. In Figure 2,
among four files, only two files, B. jpgand D . crypto, are passed
to the CNN-based detector since low entropy writes (dashed lines)
are found in A .mp3 and C. txt.

Second, there is a possibility that the CNN-based detection makes
amistake by judging an encryptedfile (e.g.,D . crypt o) as a normal
file. This cannot be avoided because it is the nature of CNN-based
algorithms. The probability is low (about 1.0+%) for 8-16 KB page,
but it could be a serious security hole. We address this by extending



the file-based detection policy. Under the extended, entire n writes
on a file are considered non-encrypted, if more than k writes out
of them are classified as non-encrypted ones. This probabilistic
classification works well in practice. For example, with values of n
= 1,000 and k = 46, we can decrease the FNR to less than 10716, the
bit error rate of the standard SSD requirements [4]. In Figure 2 (left),
B. jpg turns out to be non-encrypted since 15 normal pages are
detected. More generally, given n, the minimum number of k that
makes the FNR lower than 1071€ is plotted in Figure 2 (right) !. Note
that when n is too small to make a probabilistic decision on a file,
the CNN-based detector assumes that all the writes are encrypted.
To deliver inode numbers to an SSD, system layers, including a
file system, a device driver, and a storage protocol, must be properly
modified. However, it does not involve the changes of their principle
designs. Moreover, considering the high flexibility of the recent
NVMe layers, adding such a feature to an SSD would not be a
serious obstacle in realizing the idea of the file-based detection.

3.3 Time-Out Based Backup Policy

Identifying victim data that are being replaced with encrypted
writes is challenging due to various patterns of ransomware attacks.
Most ransomware attacks remove victim files by overwriting them
with encrypted ones (i.e., in-place update attack). In this case, we
easily find the location of victim data because victim and encrypted
data stored in the same logical address. However, some ransomware
variants delete (trim) victim files before or after writing encrypted
ones in a new file (i.e., out-of-place attacks). In such a case, there is
no way to associate encrypted writes with victim data since they
are located in different logical addresses.

Let’s consider a following example. Suppose that ransomware
performs out-of-place attacks on LP #0, and at the same time, LP #1
is deleted by a user. Two trims for LP#0 and LP#1 are sent to
an SSD, and the encrypted data of LP#0 are written to a new
logical page LP#2 slightly later. The SSD receives two trims and
one encrypted write, but cannot know which one, LP#0 or LP#1,
is associated with LP#2. Note that the arriving order of trim and
write requests is exchangeable, depending on ransomware polices;
the encrypted write at LP#2 may arrive before the trim for LP#0.

We address this challenge by employing a time-out based backup
policy. It temporarily backs up all the pages trimmed by the host.
Then, if no encrypted writes are observed for a certain period of
time (e.g., 1 hour), it allows an FTL to erase them. The rationale
behind this policy is that ransomware tries to complete attacks as
soon as possible (e.g., several minutes), in order not to be noticed
by users [5]. Suppose that PP#X is trimmed at time ¢. If there
are no encrypted writes between (t — Atpr) and (¢ + Atyy), it is
safe to erase PP #X. Here, Aty is the maximum interval between a
trim request and encrypted writes from the out-of-place attacks. If
there are encrypted writes between (¢ — Atyr) and (¢ + Atpg), PP#X
has to be kept in an SSD longer. Since Aty is different depending
on variants, it should be sufficiently long. Currently, Aty is set
to 1 hour. Considering that ransomware attacks finish in several
minutes, it is chosen in a conservative manner.
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Figure 3: An organizational overview of RBlocker.

4 DESIGN OF RANSOMBLOCKER

Based on the detection and backup polices explained in Section 3,
we have designed a low-overhead ransomware-proof SSD, called
RBlocker. Figure 3 depicts an overall organization of RBlocker,
which is based on an existing page-level FTL. The main additions
for RBlocker are an Encrypted Write Tracker (EWT), a Time-Out
based Invalidator (TOI), and a Read Tracker Table (RTT). The EWT
is in charge of identifying and tracking encrypted writes using the
hardware accelerators. The page backup for recovery is managed
by the TOL It invalidates all trimmed or overwritten pages only
when they turn out to be safe. Same as FlashGuard, RTT is used to
keep track of which physical pages have been read by the host, in
order to exclude unread pages from backup candidates.

4.1 Encrypted Write Tracker

It is straightforward to detect potential in-place attacks of ran-
somware. With the detection technique explained in Section 3, the
EWT can identify whether an incoming overwrite is encrypted. If
so, the information required for recovery (e.g., locations of victim
to be overwritten) is delivered to TOI, so that the invalidation is
delayed until its safety is confirmed. Detecting potential out-place
attacks, however, is rather complicated, because of its time-out
based backup policy. For all the pages trimmed by the host, the
EWT sends their information to the TOL Moreover, for every new
write located to free page, it is necessary to keep track of its status
(encrypted or not), along with a timestamp, for at least Atys period.
Obviously, maintaining all those information could be a serious
burden, so the EWT takes an approximate approach.

Figure 4 illustrates how the EWT deals with the history of en-
crypted writes. The EWT divides the monitoring period, Atyy, into
multiple time frames. Then, it maintains a linear bitmap table, where
each bit entry indicates whether encrypted writes occur for a corre-
sponding time frame. If Aty is 1 hour and a time frame is 1 minute,
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Figure 4: An encrypted write tracking in the EWT.



4 Time-Out Based Invalidator (TOI)
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Figure 5: An operational overview of the TOI module.
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the EWT maintains a 60-bit long bitmap. Suppose that, at the time
frame 0, more than one encrypted writes are observed. If it is, the
LSB entry in the bitmap is set to 1. After the time frame 0 is expired,
the EWT shifts the bitmap by one bit left. If no encrypted writes are
observed during the time frame 1, the new LSB entry is set to 0. An
overflowed bit is simply discarded because we are not interested in
the information of time frames older than Aty.

4.2 Time-Out Based Invalidator

The TOI is responsible for deciding how long data invalidation
should be delayed. Figure 5 depicts how the TOI works. The TOI
receives the information of potential victim pages from the EWT,
which includes their physical locations. Upon receiving, the TOI
first sees if victims were read by the host before. If not, it ignores
them because they are safe from ransomware attacks. Otherwise,
the TOI puts a pair of victim’s physical location and a current
timestamp (e.g., (PP #0, tp) in Figure 5) into one of the three queues
according to their types (explained below). Note that data that are
put into a queue are still valid in an SSD. Each queue has a different
backup time, Atg. The TOI monitors items in the queues regularly.
If one that stays longer than Atg is found (e.g., t — tx > Atp in
Figure 5, where ¢ is current time), the TOI removes it from the
queue, invalidating its page in an SSD.

Overwritten victim pages are pushed to OPQueue (Overwritten
Page Queue). Atg for OPQueue is set long enough (e.g., 1 week). On
the other hand, trimmed pages are put into either TPQueue-Short
or TPQueue-Long (note: TPQueue is an abbreviation for Trimmed
Page Queue). If the EWT bitmap is 0, it means that there have no
encrypted writes for the past Aty period. Since trimmed pages are
yet safe from ransomware attacks, they are put into TPQueue-Short
with a short Atg (e.g., 1 hour). If the bitmap is larger than 0, it implies
that encrypted data were written before pages are trimmed. Thus,
they are pushed to TPQueue-Long with longer Atg, says a week.
Items staying in TPQueue-Short should be moved to TPQueue-
Long if encrypted writes occur. The TOI merges two TPQueues by
moving items in TPQueue-Short to the tail of TPQueue-Long.

4.3 Garbage Collection

Garbage collection (GC) in RBlocker is performed in a very similar
way as that of typical SSDs. The only additional task RBlocker’s
GC module should take care of is to update physical locations of
victim pages in the TOI's queues when their locations have changed.
This happens when GC copies victim pages in a NAND block to
another one. For example, in Figure 5, if GC moves data of PP#10
to PP#20, the new location should be provided to the TOI so as
to update the relevant information in the queue (i.e., (PP#10, t)
to (PP#20, t1)). Knowing which physical page is in the queues is
easy. During GC, RBlocker can retrieve the logical page number of

a physical page to move by reading its spare (out of band) area. If
this page is marked valid (in the page status table) but the mapping
entry points to a different physical page, it means that the page is
backed up for recovery purpose.

4.4 Discussion

Recovery Issue: If files are infected by ransomware, they can be
recovered by using a recovery tool for RBlocker. There are two key
issues. The first is how to perfectly reconstruct original files from
backup data kept in RBlocker. It is straightforward when files are
destroyed by the in-place attacks, since logical page numbers of
victim files can be used to find matched physical pages in RBlocker.
However, in case of the out-of-place attacks, more efforts are re-
quired because infected files were written in different locations. For
recovery, it may be necessary to use techniques adopted in existing
forensic tools. Fortunately, RBlocker is able to group victim pages
belonging to the same file by using an inode number obtained from
the file system, which makes it easier for us to reconstruct original
files. The second is that a recovery tool, which runs a host system,
can be abused by virus software. This problem can be avoided by
running a tool on a clean system that is not compromised by virus.

HW Accelerator: Adding HW accelerators inevitably increases
the price of an SSD. In our experience, the CNN-based detector im-
plemented using Xilinx’s CHaiDNN utilizes about 80% of ZCU102’s
FPGA fabrics, requiring considerable hardware resources. However,
considering the recent advance of embedded Al accelerators (e.g.,
Edege TPU and Jetson), running the CNN-based detector inside an
SSD will be a feasible design choice in the near future.

5 EXPERIMENTAL RESULTS
5.1 Experimental Settings

We have implemented RBlocker using an open flash development
platform [8]. It supports 512 GB device capacity in maximum, but
we limited the SSD capacity to 32 GB for fast evaluations. Our SSD
platform consisted of 8 channels, each of which had 8 NAND chips.
Each chip had 512 NAND blocks with 256 4-KB NAND pages.

For experiments, we have developed three in-house ransomware
variants by extending open ransomware [1, 2]. Each ransomware
behaved differently in terms of attack patterns; the first performs
in-place attacks; the second performs out-of-place attacks with
a ‘delete-before-write’ order; and the last performs out-of-place
attacks as well, but with a ‘delete-after-write’ order. They used
different cryptographic algorithms, AES, DES, and RC, respectively,
which were often used by well-known ransomware [3, 5, 10].

Four distinct real-world workloads were used for our evaluation.
Table 1 summarizes their important characteristics (I/O intensive-
ness and read/write ratio). PC and DEV were collected from general
PC usages (e.g., documenting, installing programs, etc.) and from de-
velopment servers, respectively. DOC and MEDIA were generated
by Filebench [13] that emulated file servers that store documents
(e.g., .pdf, .docx, etc.) and media files (e.g., jpg, png, mp3, and

Table 1: I/O characteristics of four benchmark workloads.

workload pPC DEV DOC MEDIA

read:write 1:4 1:2 1:3 4:1
I/0O intensiveness || low | moderate

moderate | high
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Figure 6: Comparisons of the impact of different techniqeus on the SSD performance and lifetime.

mp4), respectively. We extended Filebench to issue I/Os with actual
contents of 40-GB documents and 20-GB media files.

We compared RBlocker with a FlashGuard-enabled SSD (fe SSD),
which was configured to keep backup data for 1 week. We also
compared three versions of RBlocker; one only with the entropy-
based detection (rblkr—-), another with the entropy- and file-
based detection (rblkr-), and the other with every detection
approach (rblkr). The throughputs of hardware accelerators in
RBlocker were emulated by software based on the numbers reported
by [7] (for encryption-based one) and our FPGA implementation
(for CNN-based one). Finally, we set Aty and Atp of all the RBlocker
variants to 1 hour and 1 week, respectively.

5.2 Evaluation Results

To compare the impact of RBlocker on the SSD performance and
lifetime, we measured IOPS values and block erasure counts as
shown in Figure 6(a) and (b), respectively. IOPS values and block
erasure counts were normalized by those of an unmodified SSD with
no ransomware protection policy. All the three versions of rblkr
outperformed feSSD. FeSSD provided comparable performance
only under PC which exhibited a low I/O intensiveness and thus
was less affected from GC. As shown in Figure 6(b), the block erase
count of £eSSD was significantly increased by up to 124% over the
unmodified SSD, because of a large amount of data unnecessarily
backed up. While rblkr achieved almost the same performance
and lifetime over unmodified SSD, rblkr— and rblkr—- incurred
non-trivial the performance and lifetime loss for some workloads.
In particular, IOPS values of rblkr-- was almost the same as
those of £eSSD under most workloads.

To better understand how effectively RBlocker reduced backup
overheads in detail, we measured the proportion of backup pages as
shown in Figure 6 (c). Under every workload, the space overhead of
RBlocker was less than 13% of the total SSD capacity, while that of
fesSsSD was up to 41%. This implies that our two-phase detection
was very effective in achieving a low FPR, even guaranteeing an
effective-zero FNR. In particular, RBlocker effectively filtered out
multimedia files that have high entropy but were not encrypted. As
shown in results from MEDIA, almost all of writes to multimedia
files were filtered by the entropy-based detector. Considering a
huge difference between rblkr- and rblkr--, we found that
the file-based detection was effective. The CNN-based detector
showed consistently good performance across all the workloads.

Finally, we evaluated the backup accuracy of RBlocker. To this
end, we ran our in-house ransomwares under all the workloads.
Once ransomware attacks were finished, we read all the pages kept
in the TOI queues, and checked whether all the victim data were

successfully backed up. For a thorough assessment, we repeated
the above steps 100 times, and confirmed that, for all the cases,
RBlocker was able to successfully keep all of the original pages.

6 CONCLUSIONS

We have presented RBlocker which provided a 100% full protec-
tion against ransomware attacks. By examining host writes on the
SSD side with HW accelerated detectors, RBlocker can selectively
back up only the data which are highly likely to be attacked by
ransomware. As a results, RBlocker showed almost the same perfor-
mance and lifetime over an SSD without ransomware protection.

We plan to extend RBlocker so that it can be efficiently integrated
with Al acceleration chips (e.g., Edge TPU) for more quick and
accurate ransomware detection. Developing an efficient and secure
recovery tool is also one of our future plans.
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