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7% To achieve
maximum
performance, single-
chip multiprocessor
DSPs require a
sophisticated
performance-
monitoring tool such
as the MVP
Performance
Momitor. Using the
MPM, programimers
can easily and
efficiently analyze
and optimize DSP
applications.

upport for performance monitoring and tuning of complex par-
allel digital systems has long been an active research area. In
recent years, the emphasis has been on evaluating the perfor-
mance of large-scale parallel programs. For example, many per-
tormance tools have been developed for tuning parallel programs
in shared-memory multprocessors or distributed systems.!~ In this arti-
cle, we discuss performance monitoring and tuning for much smaller par-
allel architectures: single-chip multiprocessor digital signal processors.
To meet the heavy computing requirements of emerging multimedia
applications dealing with real-world data types such as video and voice, a
new generation of high-performance programmable DSPs have been
developed. These DSPs have a highly integrated parallel architecture,
incorporating special-purpose hardware features, large on-chip memory,
and multiple processors into a single chip. Figure 1 shows a generic archi-
tectural model of these DSPs. The on-chip memory, I/0 controller, and
processing elements connect through an interconnection network (for
example, shared buses or a crossbar switch network). Because of the large
data requirement in multimedia applications, data transfer by the I/O
controller occurs in parallel with data processing by the PEs, thus improv-
ing the overall performance. Most high-performance DSPs, such as Ana-
log Devices” ADSP-21060 Super Harvard Architecture (Share) DSP,* the
Motorola DSP96002 Processor,® and the Texas Instruments TMS320C80
Multimedia Video Processor (MVP), belong to this architectural family.
Developing an efficient DSP program for a single-chip multiprocessor
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performance bottlenecks such as re-
source conflicts and unbalanced syn-
chronization. This extra overhead could
significantly degrade the program’s
overall performance. Unfortunately,
this botdeneck is often difficult to pre-
dict and identify, even for experienced DSP program-
mers. Because DSPs are mainly used to achieve high per-
formance, single-chip multiprocessor DSPs require
performance-monitoring tools.

A performance-monitoring tool for DSPs must satisfy
the DSP-specific requirements and support the perfor-
mance parameters posed by DSPs. The MV'P Perfor-
mance Monitor, which works with TI’'s MVP, is such a
tool. To demonstrate the MPM’s effectiveness, we used
it to analyze and optimize a 2D discrete cosine transform
(DCT) implementation.

Figure 1. Sing

Performance-moniloring tools for
digital signal processors

In general, there are four performance-instrumentation
levels: bavdware, system software, runtime system software,
and application code.” However, target application codes
typically execute directly on top of the hardware in DSP-
based systems, without much system software or run-
time system support to minimize the overhead. So, more
information from the hardware and application levels is
necessary to further improve the performance of DSP
applications.

Depending on the mechanism used to gather perfor-
mance data, a performance-monitoring tool can be clas-
sified as a bardware-based monitor or sofrware-based neonitor.

A hardware-based monitor has separate performance-
monitoring circuitry consisting of several hardware
counters attached to an event-detection and activation
logic module. Selection of the monitored events can be
controlled by software. A performance counter is incre-
mented whenever an event associated with a counter
occurs. The hardware-based monitor is best suited for
collecting hardware-performance data (for example,
instruction-execution rate and cache-hit rate) in real
time. Detailed hardware-performance information is
useful in understanding the low-level behavior and
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le-chip multiprocessor DSP architecture.

interactions of programs running on a target systeml.
Because separate hardware logic is dedicated to perfor-
mance monitoring, the hardware-based monitor is
unobtrusive (that is, the performance monitoring intro-
duces no perturbation in the behavior of the monitored
applications) and collects accurate performance data.
However, gathering higher-level information is gener-
ally difficult, unless part of the monitor has been specif-
ically designed to collect such information.

Performance monitoring is supported more often by
software instrumentation. This approach modifies appli-
cation programs to incorporate the instrumentation
code, to collect performance data during program exe-
cution. The instrumentation code is manually inserted
by modifying programs, or is automatically added by
code-generation tools using their profiling features.
Typically, software-based monitors measure primitive-
level activities, such as process creation and destruction,
message sending and receiving, procedure entry and
exit, and blocking and unblocking by the scheduler.

Software instrumentation allows a more flexible and
richer environment for performance monitoring than
does the hardware-based approach. However, because
the monitored application includes the instrumentation
code, the performance-monitoring mechanism can per-
turb the application’s behavior. This invasiveness of the
data-collection mechanism reduces the accuracy of the
collected performance data.

For DSP-based performance optimization, none of
the hardware- or software-based approaches are ade-
quate. In DSP applications, small code segments (for
example, part of a single procedure) often dominate the
overall performance. For these segments, software-
instrumentation points are not easily defined, because
not enough meaningful primitive-level activities exist
in the segments. Furthermore, these segments are often
written in assembly language, making it more difficult
to pinpoint primitive-level activities for performance
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monitoring. Because the performance of small code seg-
ments is being monitored in DSP applications, the soft-
ware-instrumentation code added to these applications
can significantly distort their runtime behavior, result-
ing in inaccurate performance data. On the other hand,
a hardware-based monitor does not provide enough
higher-level information, because of its limited moni-
toring scope.

To collect accurate hardware performance data, as
well as higher-level information, without perturbing the
system’s behavior, a software-monitor approach based
on a hardware-simulator model is more appropriate. If
an accurate hardware-simulator model is available, this
approach supports both detailed hardware data collec-
tion and higher-level analysis without introducing any
significant artifact into measurements. Developing an
accurate hardware simulator usually requires significant
effort. In DSP-based systems, however, this is not an
extra burden, because an accurate DSP simulator model
is typically available from the DSP manufacturer. For
example, most low-level DSP programs are developed
using a simulator for a specific DSP. Thus, a perfor-
mance-monitoring tool for this DSP can be developed
by extending the existing DSP simulator.

REQUIREMENTS
A performance-monitoring tool for developing DSP
applications should have at least four features.

First, the tool should be seamlessly integrated with
debugging tools.® Debugging and performance moni-
toring should be unified: a continuum exists between
debugging for correct functionality and debugging to
achieve the desired performance objectives. Integration
is especially important in DSP-based systems where the
debugging tools play a central role in developing appli-
cation programs. Mode switching between function
debugging and performance monitoring should be sim-
ple and easy, so that these integrated tools are usable.

Second, the tool should present a uniform and famil-
iar user interface throughout all its components, to
relieve the users from learning many different inter-
faces. For example, the user should be able to use the
same commands to control the program’s flow in both
the function-debugging mode and the performance-
debugging mode.

Third, the tool should produce useful results at a rea-
sonable cost. In DSP applications, a multiple number
of small code segments such as tight loops are often the
candidates for in-depth performance monitoring and
analysis. If performance monitoring takes an excessive

amount of time to produce measurements and analysis
results, its usefulness is significantly reduced.

Fourth, the user should be able to extend the tool.
For example, for a single-chip multiprocessor, predict-
ing all the possible combinations of events is impossi-
ble. The user should be able to add new types of events
to be monitored.

PERFORMANCE-MONITORING PARAMETERS
The target DSPs we’ve described have three main per-
formance factors.

The firstis the balance between 1/0 time (by the I/O
controller) and compute time (by the PEs). Because our
target DSPs can perform data processing and data
movement concurrently, analyzing data processing and
data movement requirements for a given function is very
important. T'o achieve an optimal program implemen-
tation, we must know whether a specific implementa-
ton of an individual subtask (of a program) is I/O-bound
or compute-bound. We must also know cach subtask’s
degree of I/O-boundness or compute-boundness. For
example, if we find that one subtask is I/O-bound, its
degree of I/O-boundness can guide us in implementing
other subtasks, as we wy to balance I/O time and com-
pute time for the overall program.

"The second factor is on-chip instruction-cache behav-
1or. Because one I/O controller serves both instruction-
cache misses and data-movement requests from PEs in
target DSPs, instruction-cache misses affect not only a
specific function’s compute time but also its I/O time.
Cache misses increase the overall I/0 time of an I/O-
bound implementation because they interrupt the /O
controller’s data-transfer services. Thus, cache misses
directly affect the overall program’s execution time.
Because small code segments typically dominate DSP
programs and the cache-miss service time varies depend-
ing on the I/0 controller’s workload, a simple count of
the total cache misses would not provide enough infor-
mation to understand and improve the program’s cache
behavior. More detailed information such as source
address, frequency, and service time for each cache miss
18 necessary.

The third factor is interconnection-network con-
tentions among PEs and the I/O controller. Contentions
among PEs would increase the total compute time, while
contentions between PEs and the 1/0 controller would
increase either the compute time or the I/O time,
depending on the interconnection-network priorities of
the PEs’ and the 1/0 controller’s accesses. For inter-
connection-network contentions, the total number of
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connection-network priorities for PEs
and the I/0 controller tend to remain
relatively constant and can be modified

based on the total number of con-
tentions. If these priorities must be
changed more dynamically, detailed
information for each contention, such

as contending PEs, would be necessary.  Processor.

The MVP Performance
Monitor

The MPM, based on a cycle-accurate DSP simulator,
satisfies the requirements of DSP-based monitoring
tools and supports the three performance parameters
we've just considered. However, before we discuss the
MPM, let’s briefly look at the MVP, the DSP for which
we designed it.

Tre TMS320C80 MVP

The MVP is a single-chip, heterogeneous, MIMD
multiprocessor connected by a crossbar to multiple on-
chip shared-memory modules.®*1? It combines a RISC
processor, four parallel processors, an intelligent direct-
memory-access controller, and two video controllers. It
can process more than 2 billion operations per second,
with on-chip data transfer of 2.4 Gbytes per second. To
reduce the data-transfer overhead from external mem-
ory and devices, the MVP has a large on-chip memory
(25 2-Kbyte modules).

Figure 2 shows a high-level diagram of the MVP’s
major functional blocks. The mzaster processor is a general-
purpose RISC processor with an integral IEEE 754-
compatible floating-point unit. In a typical operation
mode, the MP serves as the main supervisor and distrib-
utor of tasks within the MVP. Also, the MP is the pre-
ferred processor for performing floating-point opera-
tions. The four parallel processors—advanced DSPs—have
a highly parallel architecture optimized for multimedia,
video and image compression, image and signal process-
ing, and computer graphics. Each ADSP can perform up
to 15 RISC-equivalent operations in a single clock cycle
via a long-instruction-word (64 bits) mechanism. It also
has many powerful features not available in conventional
DSPs. For example, each ADSP has a three-operand, 32-
bit arithmetic and logical unit (ALU), which can be
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Figure 2. High-level block diagram of the TMS320C80 Multimedia Video

optionally split into two 16-bit or four 8-bit units.
"The video controllers (VCs) support programmable video
timing to control both capture and display. The high-
performance crossbar switch nerwork fully interconnects
the processors and on-chip shared-memory modules.

While five processors (the MP and four ADSPs)
provide the computing power, the transfer controller, a
dedicated memory controller with sophisticated data-
transfer logic, manages all the data-transfer requests and
cache misses from these processors. The T'C prioritizes
different types of data-transfer requests and transfers
data within and between the on-chip and external mem-
ories. Because of the high data bandwidth required for
multimedia applications and the overhead of accessing
off-chip memory directly, five processors typically work
with data brought into the on-chip shared memory by
the T'C. Because the processors and the T'C can oper-
ate in parallel, most data transfers performed by the TC
are hidden to the processors in the optimized imple-
mentation. While a processor works on the current
block of data in the shared memory, the TC services a
request for the next block in parallel.

The TC’s main data-transfer mechanism is a packer
transfer, a transfer of data blocks between two areas of
the MVP memory. The MP, ADSPs, VC, or external
devices initiate packet transfers by sending requests to
the TC, using software or hardware. Once a processor
has submitted a transfer request, it can continue program
execution without waiting for the transfer’s completion.
Many different modes of packet transfers are available,
such as mulddimensional transfers, table-guided trans-
fers, fill-with-value, and serial register transfers.°

MPM ARCHITECTURAL OVERVIEW
Figure 3 shows the MPM’s architecture. The MPM is
tightly integrated with the Texas Instruments MVP
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Debugger tool, which is widely used in developing MVP
programs. The user can interactively switch between
the performance-monitoring mode, using the MPM,
and the function-debugging mode, using the MVP
Debugger. The performance-monitoring mode is
approximately three times slower than the function-
debugging mode (running at a speed of 700 to 1,000
instructions per second on a Sun Sparcstation 20). This
speed is adequate for monitoring the performance of
multiple code segments switching interactively between
the two modes.

The MPM’s core is the extended MVP simulator,
which consists of

* the MVP C++ simulator, which accurately models the
MVP up to a half-cycle resolution (when the MVP
runs at 50 MHz, a full clock cycle is 20 ns, so a half
cycle is 10 ns);

o customized MPM extensions to the MVP C++ simula-
tor, which include three types of monitoring support
and TC debugging capability; and

* 4 communication and synchvonization module, which
communicates with the MPM user interface.

The MPM user interface spawns a child process that
monitors the user-specified event.

PERFORMANCE MONITORING

The MPM supports the performance parameters with
cache monitoring, contention monitoving, and custom mon-
iroring. Figure 4 shows a snapshot of the MPM envi-
ronment. The whole simulation starts from the MPM
user interface (the upper-left window). Once the MPM
starts, the MVP Debugger starts simulating the MVP

If the simulation stops at the break-
point, the user selects an appropriate
type of monitoring from the MPAI
user interface, and the user interface
for the selected monitoring event
appears (the upper-right window). In
Figure 4, cache monitoring is selected.
The user then sets another breakpoint
at the end address of S and continues
the simulation. When the simulation

Figure 3. The MVP Performance Monitor's software architecture. stops, the user can examine the mon-

itoring result on a separate (the lower-

left) window. For a typical DSP tight
loop (consisting of approximately 10 to 30 instruc-
tions), a data-collection session takes from a few dozen
seconds to a few minutes.

For cache monitoring, the MPM displays (in the
lower-left window in Figure 4) the collected informa-
tion on cache misses for the code segment S, including
the total number of cache misses, the total cache-miss
service time, the total number of noncompulsory cache
misses, and the total cache-miss service time for non-
compulsory cache misses. The MPM also displays the
summary of all the cache misses in a table that lists the
source and destination addresses, average service time,
and frequency of each cache miss. Based on this infor-
mation, the user can restructure the MVP program or
adjust the program size to reduce the number of non-
compulsory cache misses. Contention monitoring works
similarly and displays the total number of crossbar
switch contentions for each processor.

Custom monitoring is used to observe a user-defined
event—unlike cache and contention monitoring, where
the MPM predetermines monitoring events. The MPM
specifies a user-defined event by ADSP checkpoints that
are the addresses of selected ADSP instructions. Cus-
tom monitoring records the execution of ADSP check-
points. The MPM displays the result graphically (see
Figure 5). The x-axis of this graph indicates the MVP
clock cycle numbers. The lines in the upper row display
the status of data movements (that is, packet transfers)
requested by a specific ADSP. The thick line indicates
when the packet transfer service is delayed because the
"I'C s busy servicing higher-priority requests. The thin
line indicates when the T'C services the requested packet
transfer. The line in the lower row shows when the spec-
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ified ADSP checkpoint executes. (If an ADSP instruc-
ton at the checkpoint executes only once, the graph dis-
plays a point instead of a line.) The user can measure
each interval by clicking the mouse button.

One main use of custom monitoring is to evaluate
whether an implemented MVP program is compute-
bound or I/O-bound. In the MVP, ADSPs (or the MP)
submit data-transfer requests to the I/0O controller (the

Figure 4. Snapshot of the MPM environment: the MPM user interface (upper left); the TI MVP Debugger (lower
right); the cache-monitoring user interface (upper right); the cache-monitoring result (lower left).
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TC) and check for the data-transfer completion by
polling a predetermined register. Therefore, by custom-
monitoring the ADSP polling instruction for the packet-
transfer completion, we can determine if the requested
data transfer has completed. For example, if an ADSP
checkpoint was set to the ADSP polling instruction for
the packet-transfer completion, Figure 5 would show
that this polling instruction executed for a large number
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Table 1. Four possible cases of an algorithm s
and its implementation Q.

THEORETICAL ANALYSIS MOoNITORING RESULT

Case | I/0-bound 1/0-bound
Case i 1/0-bound Gompute-bound
Case Il Compute-bound I/0-bound

Case IV Compute-bound

Compute-bound

of cycles (a solid line in the lower row). This would indi-
cate that ADSP 3 was wasting a number of cycles just
waiting for the requested packet transfer to complete.

PERFORMANCE-TUNING STRATEGIES

An algorithm implementation on the ADSP is either
compute-bound or I/0O-bound, depending on whether
the processing time or transfer time is dominant. There-
fore, the strategy for improving an MVP program’s per-
formance is different for different cases.

Table 1 summarizes four cases of an algorithm s and
its ADSP implementation Q,. We can classify the algo-
rithm s as compute-bound or I/O-bound based on pure
theoretical analysis, using the pure processing time #,,,
processing a0d pure data-transfer time #, /0. T compute
the real data-transfer time for the MVP, we multiply
toure ifo DY the number of ADSPs used in the algorithm
implementation, because the single I/O controller needs
to serve data-transfer requests from muldple ADSPs.
Once the algorithm s is realized into a specific imple-
mentation €2, we classify the implementation as com-
pute-bound or I/0-bound, based on the monitoring
results. We make this classification by custom moni-
toring with an ADSP checkpoint set to the address of
the ADSP polling instruction that checks for the packet-
transfer completion.

In all four cases, the first step should be checking
whether significant cache-miss overhead exists, because
the cache misses affect both the processing time and trans-
fer time. Once the noncompulsory cache misses have
been handled, more case-specific optimization can start.

If the implementation is /O-bound, as expected from
the theoretical analysis (Case I), further optimization
might be achieved by improving the program’s dataflow
portion so that the data transfers are more efficient.
Crossbar-contention monitoring might also be neces-
sary, because the transfer time can increase significanty
if the T'C stalls because of a large number of crossbar
contentions between the TC and ADSPs. If muldple
routines are to be integrated, combining an I/O-bound
routine with other compute-bound routines might
improve the overall execution time if the dataflow pat-
tern of these routines is compatible and the combina-
tion does not introduce additional overhead.

When the implementation is compute-bound as ana-
lyzed theoretically (Case IV), the optimization options
are limited to the improvement of the tight loops. Fur-

ther parallelization or more efficient use of perfor-
mance-enhancing features could shorten the execution
time. The performance can also be improved by reduc-
ing the number of crossbar contentions with the other
ADSPs and the TC if these contentions stall the ADSP.
When the I/O part of the implementation performs
less efficiently than expected (Case III), a close exami-
nation of the current dataflow design is required. The
program’s dataflow portion might need redesigning.
Reducing the number of T'C stalls caused by crossbar
contentions with the other ADSPs can also improve per-
formance in this case. Combining some necessary com-
puting steps from other routines with the tight loops, if
possible, could decrease the effect of slower /O perfor-
mance, thereby shortening the overall execution time.
If the computing part of the implementation performs
less efficiently than analyzed (Case II), examining the level
of optimization in the tight loops is necessary. Further
monitoring of the crossbar contentions with the other
ADSPs and TC is also necessary, assuming the noncom-
pulsory cache misses have been managed already.

A performance-tuning example

We used the MPM to improve the performance of an
8x8 block-based 2D DCT on the MedjaStation 5000, an
MVP-based multimedia system.!! (We have previously
reported on a more complex example.'?) The program
first divides an NxM 8-bit input image into many (/N/8
x M/8) nonoverlapping 8x8 blocks. Then, the program
performs a 2D DCT on each 8x8 block, via row-wise
8-point DCT's followed by column-wise 8-point DCTs.
The output block has the same spatial resolution (8x8)
as the input block. With the 8 bits-per-pixel input gray-
scale image, the 2D DCT output coefficients range from
-2,048 to +2,047, because of the repeated multiplica-
tions (with the cosine values) and accumulations. Thus,
the DCT coefficients are stored as 16-bit fixed-point
numbers. Out of 16 bits, the four least significant bits
represent the fractional part, while the upper twelve bits
represent the integer part.

The 2D DCT program consists of two tasks: 8-bit to
16-bit conversion (convert) and 16-bit 8x8 block-
based 2D DCT (dct). The separate convert task is
necessary to prepare the input data properly for the det
task. Using 8-bit input pixels in det to produce the 16-
bit fixed-point DCT coefficients requires an extra shift-
ing between a 16-bit cosine value and an 8-bit input pixel
after every multiplication. The extra shifting changes
the multiplication result back to a 16-bit number. Addi-
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tionally, to perform two 16-bit arithmetic operations
simultaneously by splitting the ALU, the program must
pack two 16-bit muldplicaton results into a 32-bit word.
With the preconverted 16-bit input pixels, however, the
extra shifting and packing are unnecessary because the
program uses the hardware swapper of the ADSP’s mul-
tiplier unit, which cannot be used with 8-bit pixels. Of
the various fast DCT algorithms, we used Lee’s algo-
rithm in det. B

We highly optimized two processing cores for con-
vert and det, heavily using many advanced features of
the ADSP. The convert processing core takes 1.25
cycles per output pixel, while the dct processing core
takes 352 cycles per 8x8 block, or 5.5 cycles per output
pixel. Four ADSPs running in parallel at 50 MHz, with
each ADSP processing a quarter of the image, would take
a total of 8.84 ms to perform the 8x8 2D DCT for a
512x512 inputimage. Convert would take 1.63 ms, while
det would take 7.21 ms. However, these estimates are
pure processing times and do not include any overhead.

Using the two processing cores as building blocks, we
implemented the first version of the integrated program
by combining the two cores in a single ADSP-level func-
tion (see Figure 6). One 8x8 8-bit input block is brought
into the on-chip memory at a time, and one 8x8 16-bit
DCT coefficient block is written out to the external
memory. The convert processing core and det pro-
cessing core share the same data flow. This version per-
formed surprisingly poorly. It took 44.5 ms, 35.66 ms
longer than the theoretical estimate of 8.84 ms.

INSTRUCTION-CACHE MONITORING
Through cache monitoring in the two processing cores,
we identified that each iteration (each 8x8 block pro-
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Dct processing core
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Figure 6. The structure of the 2D discrete cosine
transform program, first version.

cessing) used approximately 1,100 to 1,200 extra cycles
for servicing instruction-cache misses. Figure 7 illustrates
this overhead for ADSP 2 with the four ADSPs operat-
ing in parallel. Figure 7a shows the cache-monitoring
result for ADSP 2 after processing the third 8x8 block,
while Figure 7b shows the result after the fourth 8x8
block. Between the processing of these two blocks, the
total cache-service cycles increased by 1,208. We did not
expect this large number of cache-miss service cycles,
because the convert and det processing cores use 75
ADSP assembly-language instructions (20 for convert
and 55 for det). This number is considerably lower than
the maximum number (256) of instructions that can
fit into the ADSP’s 2-Kbyte instruction cache. (The
2-Kbyte instruction cache is divided into four blocks,
each of which can store 64 64-bit instructions. There-
fore, the instruction cache can store four different code
segments simultaneously.)

"The large number of cache misses happened between
the successive subroutine calls to the convert and dct
processing core routines. The MVP linker was putting
these routines in the instruction cache without any

ot corhpulsngy service :

3603

(b)

Figure 7. Cache-monitoring results for ADSP 2: (a) after processing the third 8x8 biock; (b) after processing the

fourth 8x8 block.
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MP function for 8-bit to 16-bit conversion

Data flow for convert task
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512 16-hit pixels | On-chip to external
T

Convert processing core
T

MP function for 8x8 block-based 2D DCT

—

Data flow for det task
[7] External to on-chip
On-chip to external

™

Dct processing core
]

Figure 8. The structure of the 2D DCT program'’s second version.

64-instruction block consideration—for example, start-
ing a routine in the beginning of a cache block. Fur-
thermore, the linker did not place these two routines
close to each other when building an executable mod-
ule. So each core routine required two 64-instruction
cache blocks. Four 64-instruction blocks for two core
routines and two additional 64-instruction blocks for
the ADSP-level C code (that is, for statement blocks)
caused cache misses for each subroutine call. The over-
head from these noncompulsory cache misses caused
the performance loss of between 22.5 and 24.6 ms.

To reduce the number of cache misses between con-
vert and det, the program’s second version placed the
two processing cores into separate ADSP-level func-
dons (see Figure 8). The program stored the converted
image in the MS5000’s external memory before the sec-
ond function performed the DCT on the image. For
more efficient data movement, the convert task for
each ADSP brings 512 8-bit pixels (or four rows of 128
pixels) into the on-chip memory at a time, instead of a
single 8x8 8-bit input block. For this organization, cache
monitoring showed that using two ADSP-level func-

(b)
Figure 9. Custom-monitoring results for ADSP 2: (a) for the 8-bit to 16-bit conversion ADSP-level function; (b) for

the 16-bit 8x8 2D DCT ADSP-level function.
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Common data flow for two tasks
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Figure 10. The structure of the 2D DCT program'’s third
version.

tions caused no extra cache misses. "The execution time
decreased from 44.5 ms to 16.3 ms, an improvement of
28.2 ms. The improvement was about 4 to 6 ms larger
than you might expect from a reduction of cache misses.
This is because unnecessary cache misses affect the
transfer time as well as the processing time, and the sig-
nificant reduction in cache misses also improves the
overall I/O performance.

I/ O-BOUNDNESS MONITORING

However, both ADSP-level functions became I/0-
bound, as the custom-monitoring results for ADSP 2
show (see Figure 9). As we mentioned before, we setan
ADSP checkpoint to be the address of the ADSP
polling instruction that checks for the packet-transfer
completion. The lines in the lower row in Figure 9 indi-
cate that ADSP 2 executed this polling instruction for
a large number of cycles before the requested packet
transfer completed. The long thick lines in the upper
row show that the TC’s unavailability delayed the
packet-transfer service for many cycles. The thin lines
indicate when the TC serviced the requested packet
transfer. Because of convert’s simple computation
steps in the processing core, it spent about two thirds

of its computing cycles waiting for the packet-transfer
completion (see Figure 9a), while det spent more than
50% of its cycles waiting for the packet-transfer com-
pletion (see Figure 9b).

To reduce the overall I/O time, the program’s third
version combined the two processing cores into a sin-
gle core (see Figure 10). With the same data flow, the
decreased I/0 time reduced the execution time to 11.6
ms. The new combined processing core did not have
any noncompulsory cache misses. However, custom
monitoring indicated that the implementation was still
1/0-bound. Figure 11 illustrates this I/O-boundness
for ADSP 2, although combining the two I/O-bound
routines into a single routine achieved a better balance
between the I/0 time and the processing time. The
total length of the lines in the lower row is much shorter
in Figure 11 than in Figure 9, meaning that ADSP 2
spent much less time checking for the packet-transfer
completion. However, the ideal 2D DCT implemen-
tation would not have any lines in the lower row.

Because the third version was still I/O-bound, we had
to analyze the data flow in depth. We did not expect this
version to be I/O-bound, because the combined process-
ing core was supposed to take only 6.75 cycles per output
pixel, while the number of pure I/O cycles was only 48
cycles/64 pixels, or 0.75 cycles per output pixel. (Using
two cycles per memory access and 64-bit data width, read-
ing in 64 8-bit data—64 bytes—takes 16 cycles, and writ-
ing back 64 16-bit data takes another 32 cycles, a total of
128 bytes.) With four ADSPs submitting data-transfer
requests at the same time, the effective data-transfer rate
for the MVP is four times larger than 0.75 cycles per
output pixel. On close examination, we found that the
row-time access overhead contributed greatly to the

o 852500

Figure 11. Custom-monitoring result for ADSP 2 for the ADSP-level function with the two processing cores

combined into one.
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Common data flow for two fasks
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Figure 12. The structure of the 2D DCT program’s
fourth version.

large 1/0 time because accessing an 8x8 block requires
frequent memory page boundary crossings.

(The MS5000’s main memory subsystem supports
2-Kbyte pages. With 512x512 images, two row-time
accesses are necessary to read an input 8x8 block [8 bits
per pixel], and four row-time accesses are necessary to
write back the 8x8 results [16 bits per pixel]. With two
cycles per memory access and 64-bit data width, pure
data transfer would take 48 cycles. Approximately 90
extra cycles are necessary for six row-time accesses. So,
it takes 2.16 cycles per output pixel on each ADSP. With
four ADSPs running in parallel, the total data-transfer
rate for the MVP becomes 8.63 cycles per output pixel,
which is greater than the combined processing core’s
6.75 cycles per output pixel.)

To reduce the row-time access overhead, the pro-
gram’s fourth version broughtin and processed four 8x8
blocks at a time, instead of one. Figure 12 shows the
overall program structure for this version, which became
compute-bound (see Figure 13). An ADSP checkpoint
executed only once (indicated in Figure 13 by a single
point in the middle of the lower row). This execution

Table 2. The performance of the four versions
of the 8x8 2D DCT program on a 512x512

input image.
PROGRAM ORGANIZATION PERFORMANCE  SPEEDUP OVER
(ms) THE FIRST VERSION
First version 44 5 —
Two ADSP-level functions 16.3 2.73
Combined processing core 11.6 3.84
Four 8x8 blocks at a time 953 4.67

occurred well after the requested packet transfer com-
pleted (indicated by the end of the thin line in the upper
row). This version executed in 9.53 ms.

Table 2 summarizes the four versions of the 2D
DCT program. We achieved the overall speedup of
4.67 by tuning the performance based on the moni-
toring results from the MPM. The final version’s
execution time of 9.53 ms is slightly larger than the
theoretical minimum of 8.84 ms. However, further
performance improvement would be much more dif-
ticult, and the achievable performance gain would be
small compared to the necessary effort.

chieving good performance on high-

performance single-chip multiprocessor

DSPs is challenging. There is almost no

end to optimizing any complex algo-

rithm. However, tools such as the MPM
can simplify this task.

L
G71500

672000

into one and processing four 8x8 blocks at a time.

Figure 13. Custom-monitoring result for ADSP 2 for the ADSP-level function, combining two processing cores
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With the MPM, MVP programmers identify the
DSP-specific performance bottlenecks. It presents the
monitored results so that the programmer gains a clear
view of program execution and areas of potential
mmprovement. The tight integration between the famil-
iar functional debugger and performance monitor
allows the MPM to easily and efficiently fine-tune DSP
applications. So, as our example shows, with judicious
use of the MPM and experience, intuition, and rea-
sonable effort, programmers can considerably improve
and optimize the performance of image-computing
algorithms.

We plan to add more functions to the MPM. For
example, in the current version, only one type of user-
defined event can be specified for a single monitoring
session. The MPM can be extended to support a mult-
ple number of user-defined events simultaneously

. . . . . Z
within one monitoring session. 7
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