
15

Exploiting Sequential and Temporal Localities to Improve
Performance of NAND Flash-Based SSDs

SUNGJIN LEE, Massachusetts Institute of Technology
DONGKUN SHIN, Sungkyunkwan University
YOUNGJIN KIM, Ajou University
JIHONG KIM, Seoul National University

NAND flash-based Solid-State Drives (SSDs) are becoming a viable alternative as a secondary storage
solution for many computing systems. Since the physical characteristics of NAND flash memory are different
from conventional Hard-Disk Drives (HDDs), flash-based SSDs usually employ an intermediate software
layer, called a Flash Translation Layer (FTL). The FTL runs several firmware algorithms for logical-to-
physical mapping, I/O interleaving, garbage collection, wear-leveling, and so on. These FTL algorithms not
only have a great effect on storage performance and lifetime, but also determine hardware cost and data
integrity. In general, a hybrid FTL scheme has been widely used in mobile devices because it exhibits high
performance and high data integrity at a low hardware cost. Recently, a demand-based FTL based on page-
level mapping has been rapidly adopted in high-performance SSDs. The demand-based FTL more effectively
exploits the device-level parallelism than the hybrid FTL and requires a small amount of memory by keeping
only popular mapping entries in DRAM. Because of this caching mechanism, however, the demand-based FTL
is not robust enough for power failures and requires extra reads to fetch missing mapping entries from NAND
flash. In this article, we propose a new flash translation layer called LAST++. The proposed LAST++ scheme
is based on the hybrid FTL, thus it has the inherent benefits of the hybrid FTL, including low resource
requirements, strong robustness for power failures, and high read performance. By effectively exploiting
the locality of I/O references, LAST++ increases device-level parallelism and reduces garbage collection
overheads. This leads to a great improvement of I/O performance and makes it possible to overcome the
limitations of the hybrid FTL. Our experimental results show that LAST++ outperforms the demand-based
FTL by 27% for writes and 7% for reads, on average, while offering higher robustness against sudden power
failures. LAST++ also improves write performance by 39%, on average, over the existing hybrid FTL.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; B.3.2 [Design
Styles]: Mass Storage

General Terms: NAND Flash Memory, Solid-State Drives, Storage Systems

Additional Key Words and Phrases: Flash translation layer, address mapping, garbage collection

This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-
2013R1A6A3A03063762). The work of Jihong Kim was supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (MSIP) (NRF-
2013R1A2A2A01068260). The ICT at Seoul National University and IDEC provided research facilities for
this study.
Authors’ addresses: S. Lee, the Computer Science and Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, Cambridge, MA; email: chamdoo@csail.mit.edu; S. Lee’s current address is Department
of Computer Science and Information Engineering, Inha University, Incheon, Republic of Korea; email:
sungjin.lee@inha.ac.kr; D. Shin, College of Information & Communication Engineering, Sungkyunkwan
University, Suwon-si, Gyeonggi-do, Republic of Korea; email: dongkun@skku.edu; Y.-J. Kim, Department
of Electrical and Computer Engineering, Ajou University, Republic of Korea; email: youngkim@ajou.ac.kr;
J. Kim, Seoul National University, Republic of Korea; email: jihong@davinci.snu.ac.kr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1553-3077/2016/05-ART15 $15.00
DOI: http://dx.doi.org/10.1145/2905054

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

http://dx.doi.org/10.1145/2905054

15:2 S. Lee et al.

ACM Reference Format:
Sungjin Lee, Dongkun Shin, Youngjin Kim, and Jihong Kim. 2016. Exploiting sequential and temporal
localities to improve performance of NAND flash-based SSDs. ACM Trans. Storage 12, 3, Article 15 (May
2016), 39 pages.
DOI: http://dx.doi.org/10.1145/2905054

1. INTRODUCTION

NAND flash memory has been widely used as storage media for mobile embedded sys-
tems, such as MP3 players and mobile phones, because of its low-power consumption,
nonvolatility, high performance, and high mobility [Lawton 2006]. With continuing
improvements in both the capacity and the price of NAND flash memory, NAND flash-
based Solid-State Drives (SSDs) are increasingly popular in general-purpose computing
markets. For example, many laptop and desktop PC vendors have replaced Hard Disk
Drives (HDDs) with NAND flash-based SSDs. Enterprise systems are employing more
flash-based SSDs to improve storage performance and energy efficiency.

The physical structures and characteristics of NAND flash memory are different
from those of traditional HDDs. NAND flash memory consists of multiple blocks, and
each block is composed of multiple pages. A page is a unit of read and write (program)
operations, and a block is a unit of erase operations. NAND flash memory does not sup-
port overwrite operations because of its write-once nature. To update data previously
written to a specific page, a block with that page has to be erased first. The number
of Program/Erasure (P/E) cycles allowed for each block is usually limited to several
thousand cycles. To hide such physical characteristics and to provide a block device
interface, an intermediate software layer, called a Flash Translation Layer (FTL), is
used between a file system and NAND flash memory.

The FTL is responsible for several functions that have a great effect on hardware re-
sources, performance, lifetime, and data integrity. The FTL maps logical addresses from
a file system to physical addresses in NAND flash. This mapping function of the FTL
helps us to avoid the write-once nature of NAND flash. However, it often requires lots of
DRAM because it has to maintain a logical-to-physical mapping table. Moreover, since
logical-to-physical mapping decides the place to which incoming pages are written, it
has a huge influence on the exploitation of device-level parallelism. Garbage collection
is one of the important functions. Logical-to-physical mapping inevitably creates in-
valid pages in NAND flash. The garbage collection of the FTL reclaims wasted space
occupied by invalid pages and supplies new free space for future writes. The FTL selects
a block with invalid pages and erases the block after copying valid pages to a free block.
All I/O activities associated with garbage collection are extra overheads, so they must
be minimized for better I/O performance. Because of the limited P/E cycles of blocks,
the FTL must support wear-leveling that prolongs the overall lifetime of NAND flash
by evenly distributing the number of P/E cycles across flash blocks. In addition to hard-
ware resources, performance, and lifetime, the FTL has a high effect on the robustness
of a storage device against sudden power failures and system crashes. The FTL not only
manages important mapping information, but also performs several management oper-
ations. These functions of the FTL are completely hidden behind the block I/O interface,
making it difficult for the OS to ensure data integrity in cases of sudden power failures
[Zheng et al. 2013; Moon et al. 2010]. The improper design of the FTL thus results in
permanent data loss and/or requires a significant amount of time for system recovery.

A hybrid FTL and a demand-based FTL have been widely used for many flash
storage systems. As its name implies, the hybrid FTL uses a hybrid mapping approach
that combines page- and block-level mapping. The main advantage of the hybrid FTL
is that it requires a small amount of DRAM space for logical-to-physical mapping,
exhibiting fairly good performance. It also offers high data integrity for sudden
power failures or system crashes. This hybrid mapping, however, is less efficient than

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

http://dx.doi.org/10.1145/2905054

Exploiting Localities to Improve SSD Performance 15:3

fine-grain mapping (e.g., page-level mapping) for exploiting highly parallelized storage
architectures and also often incurs high garbage collection overheads. Unlike the
hybrid FTL, the demand-based FTL is based on pure page-level mapping. By keeping
only popular mapping entries in a small DRAM cache, it reduces memory requirements
for logical-to-physical mapping. Based on fine-grain mapping, the demand-based FTL
can maximally exploit device-level parallelism and considerably improve garbage
collection efficiency, resulting in higher performance than the hybrid FTL. Because
of its caching mechanism, however, the demand-based FTL is vulnerable to power
failures. Moreover, whenever a mapping entry is not available in the DRAM cache,
DFTL has to read the entry from NAND flash before servicing a read request, which
results in degradation of read performance.

In this article, we propose a new FTL scheme, called LAST++, which addresses
the shortcomings of two representative FTL designs (i.e., the hybrid and demand-
based FTLs). LAST++ is based on the hybrid FTL; therefore, it can enjoy the inherent
benefits of the hybrid FTL, such as low resource requirements, strong robustness for
power failures, and high read performance. At the same time, LAST++ is designed
to overcome the problems of hybrid FTLs, achieving better I/O parallelism and low
garbage collection overheads. The key contributions of LAST++ are as follows:

—Efficient exploitation of localities of I/O references is the main novelty of LAST++.
LAST++ considers two kinds of localities, temporal and sequential, which are typi-
cally observed in a storage device. I/O requests with different localities are isolated
into different types of flash blocks: sequential and random log blocks. This separa-
tion of incoming write requests not only increases device-level parallelism, but also
improves overall garbage collection efficiency. Data destined to random log blocks
are also differently managed depending on their temporal locality, which helps us to
further reduce garbage collection costs.

—In order to effectively handle data that have neither sequential nor temporal local-
ity (which is commonly called cold data), LAST++ supports a background garbage
collection technique which hides garbage collection overheads for cold data from end-
users. In particular, LAST++ selects a victim block that contains only cold data to
prevent lifetime degradation from premature garbage collection.

—LAST employs a simple yet efficient recovery scheme that keeps logical-to-physical
mapping information in reserved pages of flash blocks. This recovery scheme is not
only easily combined with hybrid FTL architectures, but also supports quick recovery
time even when an SSD capacity is huge.

—We developed a trace-driven FTL simulator and carried out a series of evaluations us-
ing several workloads to evaluate LAST++. We compared LAST++ with the demand-
based FTL scheme [Gupta et al. 2009] and several hybrid FTL schemes [Kim et al.
2002; Lee et al. 2007; Kang et al. 2006]. Our experimental results showed that
LAST++ outperformed the demand-based FTL: It improved write performance by
27% and read performance by 7%, respectively, while providing higher robustness
against sudden power failures. LAST++ also improved write response times and
storage lifetimes by 39% and 40%, on average, over other hybrid FTLs.

The rest of this article is organized as follows. In Section 2, we give a brief description
of the FTL. We explain well-known FTL schemes in Section 3. Section 4 explains
the details of the proposed LAST++ scheme. Experimental results are presented in
Section 5. Finally, Section 6 concludes with a summary and directions for future work.

2. BACKGROUND

In this section, we first introduce the basics of the FTL, including the hybrid and
demand-based FTLs, especially focusing on their pros and cons in terms of resource
requirements, performance, I/O parallelism, and data integrity.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:4 S. Lee et al.

2.1. Flash Translation Layer (FTL)

Generally, FTL schemes can be classified into two groups depending on the granular-
ity of address mapping: page-level and block-level FTL schemes. In the page-level FTL
scheme [Kim and Lee 1999; Chiang and Chang 1999], logical pages from the file system
can be mapped to any physical pages in NAND flash. The page-level FTL exhibits ex-
cellent garbage collection efficiency and maximally exploits the inherent parallelism of
high-performance SSDs equipped with multiple buses. Because of its huge mapping ta-
ble size, however, the page-level FTL is impractical for real-world products. In the block-
level FTL scheme [Ban 1995], a logical block is mapped to a physical block, and a page
offset within a block is always fixed. By using coarse-grain mapping, the block-level
FTL reduces the size of a mapping table significantly. Keeping the offset of a page in a
block, however, incurs lots of page copies whenever overwrites occur. To update the data
of a page in a block, for example, valid pages in that block as well as new data have to be
written to another free block. The original block must be erased for future use. This not
only increases the number of extra page copies, but also shortens the lifetime of NAND
flash. To overcome these disadvantages, hybrid and demand-based FTLs are proposed.

2.2. Hybrid FTL

The hybrid FTL is a well-known alternative to the block- and page-level FTLs [Lee
et al. 2008; Kim et al. 2002; Lee et al. 2007; Kang et al. 2006]. Even though many
hybrid FTLs have been proposed, their overall architectures are similar. The hybrid
FTL divides NAND flash blocks into data blocks and log blocks. Data blocks represent
an ordinary storage space and are managed by block-level mapping. Log blocks are an
invisible storage space for logging newly updated data. Unlike data blocks, log blocks
are managed by page-level mapping. In the hybrid FTL, only a small number of blocks
are used as log blocks. Therefore, the size of a page-level mapping table for managing
log blocks is small. The hybrid FTL appends newly updated data to pages in log blocks,
invalidating pages in data blocks that contain the old version of data. This helps us to
avoid lots of page copies to maintain the block-level mapping information of data blocks.
Once free space in log blocks is exhausted, however, the hybrid FTL has to create free log
blocks by flushing valid data in log blocks to data blocks. This operation is called a merge
operation because valid pages in log and data blocks are merged into new data blocks.

Figure 1 illustrates three types of the merge operations: switch merge, partial merge,
and full merge operations. We assume that a block is composed of four pages. A white
box represents a page with up-to-date data, whereas a shaded box is a page with
obsolete data. The former is called a valid page and the latter an invalid page. A
number inside a box denotes a Logical Page Number (LPN) from the file system. The
switch merge is the cheapest merge operation. As shown in Figure 1(a), the FTL simply
erases the data block only with invalid pages and changes the log block to the new data
block: it requires only one block erasure with no page copies. The switch merge is
performed only when all the pages in the data block are updated sequentially, starting
from the first logical page (i.e., the page 0 in Figure 1(a)) to the last logical one (i.e.,
the page 3). The partial merge is similar to the switch merge, but it requires extra
page copies from the data block to the log block, as depicted in Figure 1(b). After all
the valid pages are copied (i.e., the page 3 in Figure 1(b)), the FTL performs the switch
merge. The partial merge is typically observed when semi-sequential writes occur that
are sequential but not long enough to fill up the entire block.

The full merge is the most expensive operation and is typically observed when logical
pages are randomly updated. Figure 1(c) shows the snapshot of the full merge. There
are two log blocks, LB0 and LB1, and two data blocks, DB0 and DB1. We assume that
LB0 is selected as a victim log block. The FTL first allocates two free blocks and copies
all the valid pages from LB0, LB1, DB0, and DB1 to the free blocks. The data blocks DB0

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:5

Fig. 1. Three types of merge operations.

and DB1 are called associated data blocks of LB0 because they have the invalid pages
for the valid pages in the victim block LB0 (i.e., the valid pages 0 and 4 in Figure 1(c)).
The number of the associated data blocks can be increased up to the number of pages
per block. After copying all the valid pages, the free block becomes the new data block,
and DB0, DB1, and LB0 are erased. As a result, the FTL gets one free block after
the full merge. The full merge requires many extra copies and block erasures. In this
example, eight pages are copied and three blocks are erased. In particular, the number
of associated data blocks of a log block, which we call an association degree, decides full
merge costs [Lee et al. 2007; Cho et al. 2009].

The hybrid FTL has been widely used for mobile devices such as MP3 players and
digital cameras. Many mobile applications mostly issue sequential writes for storing
multimedia files, along with a small number of random writes for metadata. For this
reason, cheap switch merges are frequently performed whereas full merges are rarely
conducted. Another benefit of the hybrid FTL is great robustness against sudden power
failures. The hybrid FTL stores logical-to-physical mapping information in dedicated
blocks called map blocks. Map blocks keep track of physical locations of log and data
blocks and are used to reconstruct mapping information at boot time. In the hybrid
FTL, updates of map blocks are performed in a single atomic write operation. This
assures that mapping information stored in map blocks is always consistent [Kim et al.
2002]. Moreover, physical locations of log and data blocks are only changed after a block
merge operation is performed, so extra I/Os required to manage map blocks are very
small [Kim et al. 2002].

In spite of these advantages, the hybrid FTL has serious limitations. First, the
hybrid FTL exhibits low performance in general-purpose systems like desktop PCs and
laptops. Unlike mobile systems, general-purpose systems run complicated applications
that issue lots of random writes to SSDs. This results in a large number of full merge
operations. Second, hybrid FTLs have been designed for single-channel SSDs. Thus,
they do not effectively support recent high-performance SSDs with multiple channels.
Even though there have been several efforts to use the hybrid FTL in multichannel
SSDs [Shim et al. 2012; Park et al. 2009], they still exhibit limited performance because
of a relatively low channel utilization and a high merge cost over fine-grain mapping
FTLs like the page-level FTL.
ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:6 S. Lee et al.

2.3. Demand-based FTL

The demand-based FTL is based on the pure page-level FTL. This allows the demand-
based FTL to effectively exploit device-level parallelism, exhibiting better performance
than the hybrid FTL. Moreover, since full merge operations do not occur, the demand-
based FTL yields smaller garbage collection overheads in comparison with the hybrid
FTL. To reduce the DRAM requirement, it maintains popular mapping entries in
DRAM. In-memory mapping entries are usually managed by an LRU-based replace-
ment algorithm, and only nonpopular mapping entries are evicted to NAND flash.
Evictions of nonpopular entries incur extra writes, but those do not seriously affect
overall storage performance because of the relatively high write hit ratio of an LRU
cache [Gupta et al. 2009].

Unfortunately, the demand-based FTL has some serious drawbacks. First, the
demand-based FTL is not robust enough because important mapping entries main-
tained in DRAM are easily lost when power failures or system crashes happen. To
recover from a crash, the entire NAND flash space has to be fully scanned, which
inevitably takes a very long time. One feasible solution that reduces recovery time
while assuring reasonable data integrity is to employ a method that stores changes
of mapping information in NAND flash, for example, periodically writing mapping in-
formation to NAND flash. Even when sudden power failures occur, SSDs are brought
back to a consistent state by reading the latest mapping information kept in NAND
flash. This approach, however, not only incurs many extra writes, but also causes ex-
tra garbage collection overheads. In our observation, the demand-based FTL performs
more poorly than the hybrid FTL even when a relatively loose consistency method is
used. Second, the demand-based FTL usually exhibits slower read performance, which
has a higher impact on end-users’ experiences. To read a flash page whose mapping
entry is not available in DRAM, the demand-based FTL has to read a mapping entry
from NAND flash after evicting existing entries from DRAM. This incurs additional
I/O operations, thus degrading read performance.

3. RELATED WORK

In this section, we first review well-known FTL schemes and explain enhancements
over our previous study in this field.

Review of previous FTL schemes: Kim et al. proposed the first hybrid FTL
scheme that uses Block Associative Sector Translation (BAST) [Kim et al. 2002]. In
BAST, one data block is associated with one log block. If a page in a data block is
overwritten, its new data are written to a log block that is mapped to that data block.
The block merge is triggered when there is no free log block that accommodates a newly
updated page. BAST exhibits efficient garbage collection for consumer devices where
sequential writes are mainly observed. However, the space utilization of log blocks
gets worse with random writes. This is because even a single page update of a data
block requires a whole log block. When a large number of small random writes are
issued from the file system, most log blocks are selected as victim blocks with only a
small portion of blocks being utilized. This phenomenon is called a log block thrashing
problem [Lee et al. 2007]. Since all underutilized log blocks have to be merged by full
or partial merges, the merge cost is greatly increased.

To overcome this shortcoming of BAST, Fully Associative Sector Translation (FAST)
[Lee et al. 2007] has been proposed. In FAST, one log block is shared by several data
blocks: up-to-date pages are written to any log blocks regardless of their data blocks.
The block merge is performed only when all available free pages in log blocks are
exhausted. This approach effectively removes the block thrashing problem, increas-
ing the garbage collection efficiency for random writes. The problem of FAST is its

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:7

expensive full merge cost. One log block is associated with several data blocks in FAST,
so as the association degree between log and data blocks increases, the cost of full
merges linearly increases. For example, if a log block is associated with 4 data blocks
(i.e., the association degree is 4) and the number of pages per block is 128, 512 pages
have to be copied, and 5 blocks must be erased to create only one free block.

A SUPERBLOCK scheme [Kang et al. 2006] has been proposed to overcome the lim-
itations of both BAST and FAST. Similar to FAST, SUPERBLOCK allows up-to-date
pages from several data blocks to be stored in a log block, but it limits the maximum
number of data blocks that can share the same log block. This not only reduces the over-
all full merge cost, but also mitigates the log-block thrashing problem. SUPERBLOCK
employs page-level mapping inside a superblock, which is a set of consecutive logical
blocks. Using this page-level mapping information, it separates hot pages from cold
ones, further reducing the overall full merge cost. However, SUPERBLOCK does not
effectively exploit temporal localities of I/O references because of its superblock-based
address management. Another shortcoming of the SUPERBLOCK scheme is that page-
level mapping information has to be stored in the spare area that is used for keeping
error-correction codes.

Gupta et al. first presented a demand-based FTL scheme, called DFTL [Gupta et al.
2009]. DFTL is different from hybrid FTL in that it uses pure page-level mapping to
manage the whole NAND flash. DFTL completely removes full merge operations, and,
because of the flexibility of page-level mapping, it is also more suitable to exploit the
I/O parallelism of multichannel SSDs. DFTL is also not affected by the block-thrashing
problem. Despite all those benefits, the inability of DFTL to cope with power failures
seriously limits its use in real-world applications. The penalty caused by slow read
performance also could outweigh its advantages over the hybrid FTL.

Many other studies improve hybrid or demand-based FTLs. Lim et al. proposed an
improved version of FAST, called FASTer, which exploited temporal localities of I/O ref-
erences to reduce block merge costs [Lim et al. 2010]. Cho et al. presented an enhanced
version of FAST, called KAST, for real-time systems. By limiting an association degree
between log and data blocks [Cho et al. 2009], KAST guaranteed the worst-case merge
time for real-time applications, thus providing nonfluctuating I/O performance. They
did not, however, consider the efficient adoption of their FTLs in multichannel SSDs.
Park et al. developed a convertible flash translation layer, CFTL, which improved the
read performance of DFTL [Park et al. 2010]. By employing a small block-level mapping
table (in addition to a page-level mapping table), CFTL handled random read-oriented
workloads more effectively, showing better read performance than DFTL. Jiang et al.
and Thontirawong et al. improved the mapping table management policy of DFTL to
accomplish a high hit ratio with limited DRAM cache size by exploiting localities of
workloads [Jiang et al. 2011; Thontirawong et al. 2014]. Similarly, Xu et al. presented a
compact address mapping scheme for DFTL, which packed consecutive logical mapping
entries into a single entry, thereby improving the effective capacity of DRAM cache [Xu
et al. 2012]. Unfortunately, all those techniques focused on improving the performance
of DFTL and did not take into account the data integrity issue with DFTL.

As mentioned earlier, many FTL schemes have been proposed, but almost all of them
are based on hybrid or DFTL. For this reason, we compare the performance of LAST++
with well-known hybrid FTLs (including BAST, FAST, and SUPERBLOCK) and DFTL
in this study.

Enhancements over our previous study: We showed that the exploitation of
localities of I/O references could greatly improve the performance of the hybrid FTL
scheme [Lee et al. 2008]. Our previous study has some serious limitations that we
address in this work. First, our earlier version of LAST++ was designed for the single-
channel architecture that was rarely used in recent high-performance SSDs. In this

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:8 S. Lee et al.

Fig. 2. The overall architecture of LAST++.

study, we improve the LAST++ scheme so that it effectively works for the multichan-
nel architecture of modern SSDs. The organization of log blocks, logical-to-physical
mapping algorithms, and block merge processes are modified to support multichannel
SSDs. Second, by leveraging sequential and temporal localities of I/O references, the
earlier version of LAST++ greatly reduced the cost of block merge operations. How-
ever, it still required high merge costs for cold data that was randomly written to
log blocks. LAST++ resolves this problem by performing block merge operations in
the background. To minimize the lifetime penalty caused by premature block merges,
LAST++ carefully performs background merges only for cold data that remain valid for
a long time. Third, data integrity (which is considered an important issue in designing
the FTL) was not taken into account in our previous study. In this work, we develop a
simple but efficient recovery scheme for LAST++. We also show that LAST++ is more
durable than the demand-based FTLs, exhibiting better I/O performance. Finally, the
previous version of LAST++ had several tunable parameters. Even though it would
be beneficial to offering better performance, it increased the overall design complexity.
All those tunable parameters are eliminated or simplified in our new design without
greatly sacrificing performance.

4. LOCALITY-AWARE SECTOR TRANSLATION

LAST++ is designed to overcome the limitations of hybrid FTL while preserving its
advantages over demand-based FTL. Localities of I/O references typically observed
in general-purpose systems are a key consideration that LAST++ uses to resolve the
limitations of the existing FTL solutions. In this section, we explain how LAST++ reor-
ganizes log and data blocks of the hybrid FTL and how it manages mapping information
to maximally exploit I/O localities taking full advantage of multichannel SSDs.

4.1. Overall Architecture

Figure 2 shows the overall architecture of LAST++. Similar to hybrid FTL, LAST++
divides all flash blocks into two groups: data blocks and log blocks. Data blocks are
used as an ordinary storage space offered to end-users, whereas log blocks are used
as a write buffer that temporarily stores incoming data. Log blocks are also divided
into sequential and random log blocks. A sequentiality detector finds sequential write
requests and sends them to sequential log blocks. Other requests are regarded as
random and are destined for random log blocks. This separation of sequential writes

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:9

Fig. 3. The management of sequential and random log blocks in LAST++.

from random ones avoids useless full merges for sequential requests. Random log blocks
are divided into hot and cold partitions. Frequently updated data (i.e., hot data) are
written to the hot partition, whereas infrequently updated data (i.e., cold data) are
sent to the cold partition. This hot/cold separation further reduces full merge costs by
reducing an association degree between log and data blocks. Data temporally stored in
log blocks is evicted to data blocks using block merge operations (i.e., full, partial, and
switch merges) in a foreground or background manner.

LAST++ manages data blocks and sequential log blocks using block-level mapping.
Figure 3(a) shows an example of how LAST++ manages sequential log blocks. Unless
otherwise stated, in this article, we assume that the number of channels is 4 and
the number of pages per block is 4. We also assume that 13 pages (whose logical
page addresses are 1, . . . , 13) are sequentially written. Unlike conventional block-level
mapping, LAST++ statically maps adjacent logical pages to different channels and
writes them together. For example, the logical page 1 is written to the sequential log
block 1 in the channel 1, and, at the same time, the logical page 2 is written to the
log block 2 in the channel 2. Since all write requests sent to sequential log blocks
are sequential, this static mapping allows us to maximally exploit I/O parallelism. A
sequential log block is associated with only one data block, and the page offsets of
logical pages within those blocks are fixed. Three kinds of merge operations, including
switch, partial, and full merges, occur in sequential log blocks, but cheap switch and
partial merges are mostly performed.

In LAST++, data blocks are grouped by a segment. A segment is a fixed set of blocks,
one per channel. For example, in Figure 3(a), the data blocks 0, 1, 2, and 3 on different
channels are grouped into one segment. Logically consecutive pages are mapped to the
same segment in a zigzag manner. For instance, in Figure 3(a), logical pages 0, 1, . . . ,
15 belong to the same segment. The zigzag arrangement of logical pages in the segment
enables us to perform partial and switch merges between data blocks and sequential
log blocks.

Random log blocks are managed by page-level mapping. Figure 3(b) shows how
LAST++ manages random log blocks when 16 pages are randomly written. Incoming
write requests can be written to any locations, regardless of their logical page addresses,
so LAST++ accomplishes high I/O parallelism even for random writes. For example,
the logical pages 1, 8, 2, and 0 are written to four different channels simultaneously.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:10 S. Lee et al.

Similar to hybrid FTL, however, each random log block can be associated with the
maximum N data blocks, where N is the number of pages per block. In Figure 3(b), the
random log block 3 is associated with two data blocks, the data blocks 2 and 3. This
results in expensive full merges.

4.2. Separation of Sequential Writes from Random Writes

LAST++ detects sequential and temporal localities of I/O requests and separates them
into different types of log blocks (i.e., sequential and random log blocks). This separation
is not only useful for reducing the number of full merges, but also is effective for
preventing the block thrashing problem. If sequential writes are written to random log
blocks, they must be evicted to data blocks by full merge operations. These full merge
operations are actually useless: If they were written to sequential log blocks, switch
and partial merges would be applied. On the other hand, if random writes are written
to sequential log blocks, it causes the log-block thrashing problem like BAST: If they
were written to random log blocks, the log-block thrashing would not occur.

Figure 4(a) illustrates write access patterns of a real user on a desktop computer
where several applications like a web browser, a word processor, and games run. Mi-
crosoft’s Windows XP with the NTFS file system is used for trace collection. Note that
we borrowed this trace from the authors of Kang et al. [2006]. As labeled in Figure 4(a),
write requests with temporal localities (labeled as ©1) and sequential localities (labeled
as ©2) are commonly observed. There are also random writes that have no temporal and
sequential localities (labeled as ©3).

In LAST++, the sequential and temporal localities of I/O requests are detected by
referring to the size of a write request that arrives at the device, which is simply
called a device-level request size. Figure 4(b) shows a relationship between an update
frequency and a device-level request size. The update frequency of the request of size
S is the average number of updates over all the write requests of size S. The unit of
a request size is a sector (512 bytes). The higher the update frequency, the higher a
temporal locality is. As the size of a write request becomes shorter, a temporal locality is
strongly observed. Figure 4(c) shows a relationship between the size of an application-
level write request and the size of a device-level request. Here, the application-level
write request is a write request issued by applications to the file system. As shown in
Figure 4(c), short device-level writes mostly come from short application-level writes,
and long device-level writes are likely to be a part of long sequential writes. We can
thus safely assume that a short write request usually has a high temporal locality; on
the other hand, a long write request has a relatively high sequential locality. Note that
similar observations were also reported by Chang [2010].

Based on our observations in Figure 4, we propose a threshold-based locality detec-
tion policy that decides the types of localities of incoming write requests by comparing
their sizes with a threshold value. If the size of a write request is larger than the
threshold value, it is regarded as having a strong sequential locality and is sent to se-
quential log blocks. Otherwise, it is written to random log blocks. This threshold value
must be carefully determined. If the threshold is too short, a large amount of small
data is written to sequential log blocks, which causes the block thrashing problem. If
the threshold is too long, many sequential writes are forwarded to random log blocks,
and this increases the number of full merge operations.

As illustrated in Figure 4, device-level writes that are longer than 128 sectors belong
to long application-level writes whose sizes are 2–3 MB on average. Other requests
belong to short application-level requests whose sizes are several kilobytes (0.5K–
400K). Considering that the segment size is several MB (e.g., 4 MB in our configuration
with 128 4 KB pages and 8 channels), sending device-level requests larger than 128

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:11

Fig. 4. The characteristics of write requests depending on their sizes.

sectors to sequential log blocks is the best choice. This decision is well supported by
our experiments.

As astute readers may notice, LAST++ sends short or middle-sized random writes
with no localities (see the label ©3) to random log blocks. It prevents the log block
thrashing problem, but since cold data are mixed with hot data in random log blocks, it
results in many full merges. To more effectively deal with such cold data, LAST++ em-
ploys hot/cold partitioning and background merge techniques, which will be discussed
in Section 4.4 in detail.

4.3. Management of Sequential Log Blocks

LAST++ sends write requests whose lengths are longer than the threshold value to
sequential log blocks. Algorithm 1 shows how LAST++ handles write requests for
sequential log blocks. When a new write request comes, LAST++ divides a write request

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:12 S. Lee et al.

ALGORITHM 1: Write a Page to Sequential Log Blocks
Input: Logical Page Address (LPA)
Output: Boolean

1 channel := getChannelNumber (LPA); // from Eq. (1)
2 segment := getSegmentNumber (LPA); // from Eq. (1)
3 page := getPageOffset (LPA); // from Eq. (1)
4 seg entry := getEntryFromSeqBlockMappingTable (segment); // See Figure 5
5 if seg entry.chls[channel] = NULL then
6 phyBlkAddr := getFreeBlock (channel);
7 if phyBlkAddr = NULL then
8 doBlockMerge (); // trigger a block merge operation
9 phyBlkAddr := getFreeBlock (channel);

10 end
11 seg entry.chls[channel].phyBlkAddr := phyBlkAddr; // initialize a mapping entry
12 seg entry.chls[channel].PST := 0;
13 seg entry.SeqID := SeqID++;
14 else
15 phyBlkAddr := seg entry.chls[channel].phyBlkAddr;
16 end
17 if seg entry.chls[channel].PST < (1�page) then
18 writePage (channel, phyBlkAddr, page);
19 seg entry.chls[channel].PST[page] := 1;
20 return TRUE;
21 end
22 return FALSE; // write a page to random log blocks

into several logical pages. For each logical page, LAST++ gets a channel number, a
segment number, and a page offset using its Logical Page Number (LPA) as follows:

Channel number = LPA % # of channels
Segment number = LPA/# of pages per segment

Page offset = LPA % # of pages per segment/# of channels
(1)

where the number of pages per segment is 16 (i.e., 4 pages per block × 4 channels).
Using the segment number, LAST++ finds a segment entry in a block mapping

table to which a logical page belongs. For a fast lookup, LAST++ uses a hash table (a
more detailed explanation of the hash table is described in Section 4.6.1). Then, using
the channel number, LAST++ finds a channel entry that points to the location of the
physical block address in the corresponding channel. The channel entry also maintains
a Page Status Table (PST) that keeps the status of pages in individual sequential log
blocks. The size of the PST is N bits, where N is the number of pages per block. Each
bit of the PST indicates whether the corresponding page is empty (‘0’) or has up-to-date
data (‘1’). A Seq-ID is a unique segment ID and increases by one when a new segment
is allocated to the block mapping table. The Seq-ID is used to select a victim block
later. Figure 5 depicts the block mapping table for sequential log blocks and shows how
LAST++ handles write requests in sequential log blocks. This example illustrates the
situation in the example of Figure 3(a), where the logical pages 4 and 5 arrive.

If the channel entry does not point to any physical block, it means that a physical
block is not mapped yet. LAST++ has to obtain a free physical block from a free block
list in the corresponding channel. If a free block is not available in the channel, LAST++
performs a merge operation to create free space. A more detailed explanation of block
merge operations on sequential log blocks is discussed later. LAST++ then writes the
new page to the page offset in the block. The corresponding position of the PST is

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:13

Fig. 5. An example of how LAST++ handles write requests in sequential log blocks. It shows the situation
in the example of Figure 3(a), where the logical pages 4 and 5 arrive. ©1 A write request for the logical page 4
arrives. LAST++ first obtains the channel number, the segment number, and the page offset using the LPA,
which are 0, 0, and 1, respectively. The corresponding entry of the block-level mapping table does not point
to any physical block. ©2 LAST++ gets a free physical block whose address is 1002 in the channel 0. Then,
it writes the page data to the second page (whose page offset is 1) in the physical block. The logical page
address is also written to the spare area. ©3 LAST++ updates the mapping entry to point to the new physical
block. ©4 A write request for the logical page 5 arrives. The channel number, the segment number, and the
page offset are 1, 0, and 1, respectively. The corresponding mapping entry is already mapped to the physical
block 1001 in the channel 1. ©5 LAST++ writes the page data to the second page in the physical block, along
with its LPA. ©6 Finally, the PST of the mapping entry is updated.

set to ‘1’ to indicate that the new page is written. If the channel entry points to a
physical block, LAST++ sees if the new page can be written to the physical block. If
the corresponding position of the PST is ‘0’ and its page offset is the highest, LAST++
writes the data to the page offset in the block. Otherwise, LAST++ sends it to random
log blocks because there is no available free space in the block.

LAST++ maintains several sequential log blocks. Maintaining several log blocks not
only avoids a number of premature partial merges, but also increases the chance of
performing switch merges because it delays the invocation of merge operations until
all the free space is used up. In particular, it is also useful to effectively handle multiple
sequential write streams that are sent from several user applications simultaneously;
LAST++ can accommodate multiple write streams in several sequential log blocks. Fig-
ure 6 shows how LAST++ handles write requests, especially when multiple sequential
write streams arrive at the SSD.

When sequential log blocks are fully used and there is no free space to accommo-
date newly updated data, LAST++ triggers block merge operations. LAST++ selects
the least-recently allocated segment as a victim using the Seq-ID. Then, it performs
multiple block merges at once for all the sequential log blocks in the victim segment.
For example, if there are four channels in the SSD, four sequential log blocks in dif-
ferent channels (of the same segment) are merged simultaneously. LAST++ spreads
sequential writes over all the channels, so if free blocks in one channel are exhausted,
free blocks in other channels are also exhausted soon. Furthermore, performing mul-
tiple block merges in different channels in parallel is more performance efficient than
doing block merges separately because it can exploit parallelism of multiple channels.
Figure 7 shows an example of block merges in sequential log blocks.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:14 S. Lee et al.

Fig. 6. An example of how LAST++ handles multiple write streams from several applications. Here, we
assume that the number of channels is four and the number of pages per block is four. The sequentiality
threshold is assumed to be four. There are two applications, Applications A and B, which issue two sequen-
tial write streams, Write Streams A and B, simultaneously. Each write stream is composed of 16 consecutive
logical pages (e.g., (0, 1, . . . , 14, 15) for Write Stream A and (16, 17, . . . , 30, 31) for Write Stream B).
Two write streams are mixed at the level of the FTL (at the level of the device) and arrive in the following
order: (0, 1, 2, 3), (16, 17, 18, 19), . . . , (28, 29, 30, 31). Since LAST++ maintains several sequen-
tial log blocks using block-level mapping, two different write streams are automatically isolated in different
blocks according to Equation (1). If only one sequential segment is maintained, similar to FAST FTL (i.e.,
sequential log blocks 0, 1, 2, and 3 are only maintained), a partial merge occurs inevitably because there are
no available log blocks to accommodate the pages from Write Stream B (i.e., (16, 17, 18, 19)).

Fig. 7. An example of block merges in sequential log blocks. The initial status of sequential log blocks and
data blocks is the same as Figure 3(a). Three different types of block merge operations occur. For channel 0,
the full merge is required because the page 0 in data block 0 cannot be copied to sequential log block 0 due
to the sequential program restriction. LAST++ allocates a new free block and copies all the valid pages from
log and data blocks to the free block. The free block becomes the new data block 0, and the log block and the
data block are erased. For the channel 1, the cheapest switch merge is applied. The sequential log block 1
becomes the new data block 1 and the old data block 1 is erased. For channels 2 and 3, partial merges are
applied. After copying valid pages 14 and 15 to sequential log blocks 2 and 3, LAST++ erases data blocks 2
and 3. The sequential log blocks become the new data blocks.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:15

ALGORITHM 2: Write a Page to Random Log Blocks
Input: Logical Page Address (LPA)
Output: NULL

1 channel = getLRWChannel ();
2 phyBlkAddr = getPhyBlockAddr (channel);
3 if a free page is not available in phyBlkAddr then
4 phyBlkAddr = getFreeBlock (channel); // trigger a block merge operation
5 if phyBlkAddr = NULL then
6 doBlockMerge ();
7 phyBlkAddr = getFreeBlock (channel);
8 end
9 end

10 page = getFreePageOffset (phyBlkAddr);
11 writePage (channel, phyBlkAddr, page); // write the page to random log blocks
12 entry old = NULL;
13 entry = getEntryFromPageMappingTable (LPA); // See Figure 8
14 if entry != NULL then
15 entry old = entry;
16 end
17 entry.channel = channel; // update the hash table
18 entry.phyBlkAddr = phyBlkAddr;
19 entry.page = page;
20 updateMergeCostTable (entry old, entry); // update the merge cost table

LAST++ skips unprogrammed pages at the beginning of sequential log blocks. This
results in full merges (e.g., see Channel 0 in Figure 7). In our observation, however,
sending sequential writes to sequential log blocks is more beneficial than writing them
to random log blocks even if unprogrammed pages are created. If a large amount of
data belonging to sequential write streams is written to random log blocks, other pages
(which are likely to update in the near future) must be evicted. Since sequential writes
are not frequently updated, they stay in random log blocks for a long time, occupying
precious log block space uselessly. Finally, several full merges have to be carried out
when they are evicted from random log blocks. On the other hand, if sequential write
streams are sent to sequential log blocks, they are separate from random log blocks
and evicted to data blocks through full merges. Note that since only sequential writes
are sent to sequential log blocks, the block thrashing problem does not occur.

4.4. Management of Random Log Blocks

All write requests that cannot be written to sequential log blocks are sent to random
log blocks. Algorithm 2 shows how LAST++ handles write requests for random log
blocks. LAST++ divides a write request into several logical pages and distributes them
over different channels. To maximize I/O parallelism, LAST++ gets the random log
block from the Least-Recently Written (LRW) channel. If the block has no free pages,
LAST++ triggers a block merge to create free space in random log blocks. The page
data are then written to the free page in the block. After writing the page, LAST++ has
to update the page mapping table. To quickly find the physical location of the logical
page, LAST++ uses a hash table that points to the corresponding entry of the page-
level mapping table. Each mapping entry has a channel number, a block number, and
a page offset. The entry also contains a 2-bit update counter that is increased by one
whenever the logical page is overwritten (we explain this later in detail). If the entry

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:16 S. Lee et al.

Fig. 8. An example of how LAST++ handles write requests in random log blocks. It shows the situation in
the example of Figure 3(b), where logical pages 11 and 1 are written. ©1 A write request for logical page 11
arrives. Channel 0 is the Least-Recently Written (LRW) channel, and physical block 2002 is being used as a
random log block in the channel 0. The mapping entry does not point to any physical location because page
11 was not written before. ©2 LAST++ writes page 11 to the second page of physical block 2002 in channel
0. The logical page number is also written to the spare area. ©3 The mapping entry is updated to point
to the physical location. ©4 A write request for logical page 1 arrives. Channel 1 is the LRW channel, and
physical block 2001 is being used as a random log block. The mapping entry points to the physical location
(i.e., channel 0, block 2002, and page 0) where logical page 1 was previously written. ©5 LAST++ writes page
1 to the second page of block 2001 in channel 1, along with its LPA. ©6 Finally, the mapping entry is changed
to point to the new physical location.

exists in the mapping table, LAST++ keeps the location of the old page to invalidate
it later. Figure 8 illustrates the situation in the example of Figure 3(b), where logical
pages 11 and 1 are sent to random log blocks after pages 1, 8, 2, and 0 are written.

To keep track of valid and invalid pages in random log blocks, LAST++ uses a merge-
cost table. The merge-cost table maintains association degrees between random log
blocks and data blocks. When a merge operation is triggered, LAST++ uses the merge-
cost table to select a victim log block associated with the smallest number of data
blocks. Note that choosing a victim block in this way is not new and has been used by
Kang et al. [2006], Lee et al. [2008], and Cho et al. [2009]. The entry of the merge-cost
table corresponds to each random log block. It contains a set of data blocks associated
with a random log block and the number of valid pages of data blocks stored in the
random log block. If the logical page is newly written to a random log block, it has a
new associated data block or the number of valid pages of the corresponding data block
increases by one. If a logical page becomes invalid in random log blocks, the number of
valid pages of the corresponding data block decreases by one. If it reaches 0, that data
block is removed from the entry and the number of associated data blocks decreases by
one.

Figure 9(a) is an example of the merge-cost table corresponding to the random log
blocks in Figure 3(b). The maximum number of data blocks that can be associated with
a random log block is decided by the number of pages per block. Since the number
of pages per block is assumed to be 4, the number of entries for data blocks is 4. In
practice, a block has 128 or 256 pages, so the merge-cost table requires a large DRAM
space, and the time taken to search the table could be so high. To avoid this, LAST++

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:17

Fig. 9. Examples of two different types of merge-cost tables that correspond to the random log blocks in the
example of Figure 3(b). Note that data blocks 4 and 5 are not shown in Figure 3(b).

Fig. 10. An example of block merge operations in random log blocks. The initial status of the random log
blocks is the same as Figure 3(b). Here, we assume that random log blocks 0, 1, 2, and 3 are selected as
victim blocks, and they are associated with six data blocks: the data blocks 0, 1, 2, 3, 4, and 5. LAST++ first
allocates six free blocks and copies all valid pages from the log and data blocks to the free blocks. Then,
LAST++ erases 10 blocks (4 victim log blocks and 6 data blocks), and the free blocks become the new data
blocks. As a result, LAST++ gets four free blocks for individual channels.

uses a reduced merge-cost table that maintains the limited number of associated data
blocks for individual random log blocks. Instead, LAST++ adds a one-bit overflow flag
to each log block. The maximum number of data blocks is set to 32 for NAND flash
with 128 pages per block. If associated data blocks become larger than 32, the overflow
flag is set to ‘1’ to indicate that the random log blocks have more than 32 data blocks.
If the number of the associated data blocks is reduced to 31, LAST++ still maintains
the overflow flag as ‘1’, indicating that it could be associated with more than 31 data
blocks. When choosing a victim, LAST++ preferentially chooses a log block with the
overflow flag of ‘0’ if there are log blocks associated with the same number of data
blocks. Figure 9(b) shows the example of the reduced merge-cost table for Figure 3(b)
when the number of associated data blocks is limited to 2.

When available free space in random log blocks is exhausted, LAST++ triggers full
merges to create free space. Figure 10 shows the overall steps of a full merge in the
example of Figure 3(b). The full merge in LAST++ is similar to that in the existing
hybrid FTL, except that it has to perform multiple full merges to create free log blocks
in all channels. LAST++ chooses victim blocks and copies valid pages from both random
log blocks and data blocks to free blocks. The cost of full merges is much expensive

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:18 S. Lee et al.

than that of partial or switch merges. In particular, since LAST++ performs several
full merges at once, it incurs a lot of page copies, thus degrading the overall SSD
performance. In the example of Figure 10, six data blocks are associated with victim
log blocks, so LAST++ has to copy 24 pages and erase 10 blocks.

To reduce full merge costs, LAST++ employs two strategies: log-block partitioning
and log-block replacement techniques. The log-block partitioning technique divides
random log blocks into two partitions, a hot partition and a cold partition, and writes
incoming pages to different partitions depending on their localities. This separation of
hot pages from cold creates many blocks with no valid pages in the hot partition, thus
lowering overall full merge costs. The log-block partitioning technique can be more
effective when it is combined with the log-block replacement technique. The log-block
replacement technique selects a victim block in a way that minimizes full merge costs,
and, at the same time, it dynamically resizes the hot and cold partitions so that the hot
partition contains enough hot pages adapting to changing workloads.

4.4.1. Log-Block Partitioning Technique. In our observation, a large number of invalid
pages occupy random log blocks, and many of them originate from hot pages whose
data are updated frequently. Invalid pages are distributed into several log blocks,
so random log blocks have both invalid and valid pages. This results in full merges
that incur many live page copies. The log-block partitioning technique addresses this
problem by partitioning random log blocks into hot and cold partitions. This ensures
that a large number of dead blocks holding only invalid pages are created in the hot
partition. The full merges of dead blocks do not require any page copies. By aggressively
evicting dead blocks from the partition, the overall full merge cost is greatly lowered.
In addition, this also makes cold pages stay longer in the cold partition, giving more
chances for cold pages to be invalid before they are chosen as a victim block.

To detect hot pages, LAST++ uses a 2Q-like approach [Johnson and Shasha 1994].
LAST++ initially writes incoming pages to the cold partition. Then, if a page in the
cold partition is updated, the up-to-date data of that page are sent to the hot partition.
Once a page is written to the hot partition, it is regarded as a hot page until it is
evicted to a data block. Sending all the pages updated in the cold partition to the hot
partition, however, often makes a wrong decision because infrequently updated pages
are also considered hot pages. To avoid this, LAST++ refers to the update frequency of
a newly updated page. Only cold pages that are updated more than four times in the
cold partition are sent to the hot partition. To monitor the update frequency of pages,
LAST++ uses the 2-bit update flag in the page-level mapping table. Once the update
flag reaches 3 (i.e., 11 binary), the logical page is regarded as hot and is sent to the hot
partition. If the hot page is evicted from the hot partition, the corresponding mapping
entry is reset. If the same logical page is written to random log blocks again, it starts
again with the update flag of 0 in the cold partition. This helps LAST++ to adapt to the
changing locality.

4.4.2. Log-Block Replacement Technique. The random log-block replacement policy is pro-
posed to provide an intelligent victim block selection. To properly resize the partitions
according to input write traffic, LAST++ adjusts the partition sizes while doing log-
block replacement. The log-block replacement is composed of three steps: (i) victim
partition selection, (ii) victim block selection, and (iii) partition resizing, and it operates
differently depending on which partition requires free space to write incoming data. If
free space in the hot partition is exhausted, LAST++ first sees if there is a dead block
in the hot partition. If so, LAST++ chooses a dead block as a victim log block from the
hot partition. The victim block is erased and is inserted into a free block list. LAST++
gets a new free block from the free block list, assigning it into the hot partition. The
sizes of the partitions are not changed. If there are no dead blocks in the hot partition,

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:19

LAST++ picks up a victim from the cold partition. To reduce full merge costs, LAST++
selects a block with the smallest association degree by referring to the merge-cost table
and performs a full merge. The freed block is inserted into the free block list. LAST++
gets a new free block and assigns it to the hot partition. The size of the hot partition
is thus increased by one. This increase is necessary: If there are no dead blocks in the
hot partition, it means that its size is not large enough to create dead blocks.

LAST++ attempts to select a victim block from the hot partition even when the cold
partition requires more free space. If a dead block exists in the hot partition, LAST++
selects it as a victim and erases it to create a free block with no live page copies.
Then, LAST++ increases the cold partition by assigning a new free block and writes
incoming data to the newly assigned free block. The existence of dead blocks in the
hot partition means that it is large enough to contain hot pages, so the decrease of the
hot partition (or the increase of the cold partition) is a reasonable choice. On the other
hand, if there are no dead blocks in the hot partition, LAST++ performs full merges
in the cold partition to create new free space. As expected, a block with the smallest
association degree is chosen as a victim. Since a free block created in the cold partition
is reassigned to the cold partition, there are no changes in the sizes of the partitions.

LAST++ chooses only a dead block as a victim from the hot partition. This is effective
in reducing full merge costs. However, this makes cold pages (which were previously
hot but are now not hot) stay in the partition forever, occupying precious log blocks use-
lessly. To expel those pages, once the hot partition reaches its maximum size, LAST++
selects a victim from the hot partition even if there are no dead blocks. The maximum
hot partition size is set proportional to the number of hot pages in random log blocks.
For example, if the number of valid pages in random log blocks is 10 and hot pages
are 5, the maximum hot partition size is 0.5 * the number of random log blocks. The
overall steps of log-block replacement are described in the flowchart of Figure 11.

4.5. Background Merge for Cold Partition

By leveraging sequential and temporal localities, LAST++ mitigates the high merge
cost problem in the hybrid FTL. However, cold pages staying in the cold partition
have neither sequential nor temporal locality. For this reason, full merge operations
in the cold partition often incur lots of live page copies that inevitably delay incoming
write requests for a long time, degrading the experience of end-users. One feasible
approach that resolve this problem is to perform block merges in background. In this
article, we propose a new background merge policy for the proposed LAST++ scheme.
Background garbage collection is not new and has been studied by other researchers
[Lee et al. 2009; Park et al. 2014]. Our background merge policy is based on those
previous studies, but it is different from earlier work in that it is designed to be more
suitable for the architecture of LAST++.

As illustrated in Figure 12, LAST++ attempts to conduct full merges in advance
during idle periods before expensive foreground full merges have to be performed.
LAST++ uses a simple static timeout-based approach that triggers a background merge
whenever observed idle time is longer than a fixed threshold value (which is denoted by
TO in Figure 12). This simple threshold-based approach is known to be useful for flash
storage since it does not incur a serious penalty by misprediction even with a relatively
short threshold value [Lee et al. 2009]. Note that more advance triggering policies like
a dynamic timeout-based policy also can be used with LAST++ [Park et al. 2014]. From
the perspective of hiding full merge overheads from end-users, it would be reasonable
to aggressively perform as many block merges as possible during available idle periods.
This aggressive approach creates a lot of free blocks in the cold partition, so it can delay
foreground merges as long as possible, thus minimizing user-perceived I/O latencies.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:20 S. Lee et al.

Fig. 11. The flowchart of the log-block replacement steps.

Unfortunately, this approach often incurs lots of premature block merges that move
soon-to-be-obsolete pages to data blocks, thus degrading overall SSD lifetime.

To resolve this problem, we propose a new victim selection policy for background
merges, one that performs background merges conservatively to achieve the same level
of SSD lifetimes as foreground merges. LAST++ uses a new data structure called a
sorted-merge-cost list. The sorted-merge-cost list is a list of random log blocks in the
cold partition that are sorted in an ascending order of their merge costs. Figure 13 is an
example of the sorted-merge-cost list. The topmost log block of the list is the cheapest
one for block merges (e.g., ‘Log Block A’ in Figure 13). It also has an additional flag,
called a latest update ID, which is a timestamp updated whenever the merge cost (i.e.,
an association degree) is reduced. A timestamp is always increasing, so log blocks with
large update IDs are recently updated ones, meaning that their merge costs are reduced
in the near past. This indirectly shows that log blocks with larger IDs have more hot
pages than other blocks with smaller IDs. For example, in Figure 13, log blocks A, B,
C, and E have larger IDs (i.e., 98), so they may have more hot pages than log block D
with a smaller update ID (i.e., 95).

Figure 14 illustrates a simple example of how LAST++ selects a victim log block using
the sorted-merge-cost list. We start with the same table shown in Figure 13. LAST++
maintains a timestamp, called a merge sequence ID, that increases by one whenever
a foreground merge is invoked. For example, in Figure 14, there are four foreground
merges, so the merge sequence ID is increased to 102 from 99. This sequence ID is used

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:21

Fig. 12. Examples of foreground and background merges. Foreground full block merges occur while writing
incoming data to random log blocks. LAST++ has to perform full merges while suspending incoming writes
to create sufficient free space in random log blocks. By conducting full merges in background, LAST++ can
hide from end-users the overheads caused by full merges.

Fig. 13. An example of a sorted-merge-cost list.

as a timestamp for the sorted-merge-cost list. In the preceding example, the current
sequence ID is 98. When the 99th full merge starts (i.e., the first full merge in Figure 14),
LAST++ selects log block A as a victim because its merge cost is smallest. Then, log
block A is removed from the list. The merge sequence ID is set to 99. Before the next
foreground merge (i.e., 100th merge) is invoked, the merge costs of the log blocks B and
E are decreased by one because some pages in B and E become obsolete. Thus, their
latest update IDs are updated to 99. After the next foreground merge is called, LAST++
selects log block B as a victim. The current merge sequence ID now becomes 100. After
finishing the 100th merge, a long idle period is detected, so a background merge is
called. LAST++ first looks at the sorted-merge-cost list to select a victim. There are
three candidates: log blocks C, D, and E. Selecting log block C is the cheapest way.
However, since its merge cost was reduced after the latest block merge (i.e., after the
merge sequence ID is 99), LAST++ expects that the merge cost of log block C is likely
to reduce soon. For the same reason, log block E is not selected. On the other hand,
the latest update ID of log block D is 95—log block D was not updated for the past five

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:22 S. Lee et al.

Fig. 14. An example of victim selection for background merges.

block merges. Therefore, it is unlikely that the merge cost of D is reduced in the near
future. As a result, LAST++ selects log block D as victim.

Figure 14 shows two different cases where log block C or D is selected as a victim,
respectively. If log block D is selected, only two log-block erasures are required in the
future. This is because log blocks C and E become dead blocks when the foreground
merges (i.e., 101th and 102th) are invoked. In the case where log block C is selected,
LAST++ has to erase five blocks, including two log blocks and three data blocks, because
of premature victim selection.

We now can generalize our victim selection policy for conservative background
merges. LAST++ selects a victim log block using following two metrics: (i) a position
in the sorted merge-cost list and (ii) a distance between the current merge sequence
ID and log block’s latest update ID. Whereas the position metric indicates how soon a
log-block is selected as a victim for foreground merges in the future, the distance metric
shows the likelihood of when the merge cost of a log block is reduced in the future. Back
to the example in Figure 14, LAST++ gets two metrics using the sorted merge-cost ta-
ble available when the background merge is called. For log block D, the position and
the distance are 2 and 5 (i.e., 100–95), respectively. Using the position metric, LAST++
expects that log block D is selected as a victim when the 102th foreground merge is
invoked (i.e., 100 + 2). Using the distance metric, LAST++ also expects that there will
be no changes in the merge cost in the future five merges because the merge cost was
not reduced for the past five merges. Based on this, LAST++ predicts that log block
D will be selected as a victim and be merged by foreground garbage collection before
its merge cost is reduced. Therefore, there will be no penalty to perform a background
merge for log block D. On the other hand, in the case of log block E, its position and
distance metrics are 3 and 1, respectively. These show that the merge cost of log block
E will be reduced before the next foreground merge (i.e., 101th merge), but it will be
selected as a victim much later (i.e., 103th merge). Therefore, selecting log block E
could incur premature merges. In that sense, LAST++ only selects a log block whose
distance metric is larger than its position metric. If there are no log blocks that meet
this condition, it does not perform background merges.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:23

Finally, we talk about the management issues of the sorted merge-cost table. For
explanation purposes, we displayed the sorted merge-cost tables for the foreground
merges in Figure 14. However, it is not necessary to use the sorted merge-cost tables
for foreground merges because LAST++ can select the cheapest log block using the
existing merge cost table. Instead, when the background merge is invoked, LAST++
creates the sorted merge-cost table on demand by referring to the existing merge cost
table. To support background merges, we just need to add the latest update ID to the
merge cost table. Building the sorted merge-cost table could take some time, but since it
is built in background during idle times, it would not seriously affect I/O performance.

4.6. Computational Complexity and Memory Requirements

4.6.1. Computational Complexity. In order to quickly find the physical location of a log-
ical page, LAST++ maintains two hash tables for sequential and random log blocks,
respectively. Theoretically, the computational complexity of the hash table is O(1), but
a large number of memory accesses could occur for a single hash lookup depending on
the number of items in the hash. In the current implementation, LAST++ uses simple
linear-probing to build the hash tables [Morris 1968]. According to Heileman and Luo
[2005], linear-probing usually exhibits good performance with a load factor of less than
0.8. To maintain a reasonable load factor, LAST++ carefully decides the number of
buckets in the hash tables. In case of sequential log blocks, the number of hash buckets
is set to ‘# of sequential log blocks / # of channels × 2’. The number of entries in the
block-level mapping table is the same as ‘# of sequential log blocks / # of channels’,
so LAST++ maintains the load factor of 0.5. For random log blocks, the number of
buckets in the hash table is the same as the number of pages per random log blocks.
Based on our observation, valid pages account for 50% of the total pages in random log
blocks. Only 50% of hash buckets point to entries of the page-level mapping table, so
the load factor of the hash table is maintained about 0.5. As will be discussed in the
experimental section, the number of memory references per hash lookup is about 5.5.

The victim selection of LAST++ could incur computational overheads. As mentioned
in Sections 4.3 and 4.4, LAST++ selects the least-recently allocated blocks as a victim
block for sequential log blocks. LAST++ also chooses the block associated with the
smallest data blocks as a victim for random log blocks. LAST++ maintains several
thousands of flash blocks (e.g., 1,024 blocks) for sequential and random log blocks.
For this reason, whenever it selects a victim block in sequential or random log blocks,
LAST++ has to check all the entries in the block-level mapping table or the merge cost
table. This problem can be overcome by applying some runtime optimizations. Unlike
normal reads or writes that must be handled as soon as possible on demand from the
host system, choosing a victim log block can be done in the background or processed
in a pipelined manner with other operations. For example, LAST++ selects victim log
blocks for future merge operations while performing the current merge operation. The
cheapest block merge operation (e.g., a switch merge or a dead block merge) requires
at least one block erasure that takes several milliseconds (e.g., 3.5ms), but checking all
the entries (e.g., 1,024 entries when 1,024 log blocks are used) in both the block-level
mapping table and the merge-cost table just requires several microseconds (e.g., 117
μs = 1,024 entries × 114 ns for a single DRAM latency [Leibowitz et al. 2010]). As a
result, by overlapping computation and I/O operations, LAST++ completely hides the
overheads for victim selection.

4.6.2. Memory Requirements. LAST++ maintains the block-level mapping table, the
page-level mapping table, the merge-cost table, and two hash tables. The table sizes
are different depending on the SSD capacity and the number of log blocks. We assume
the SSD of 256 GB with 8 channels (= 23). The size of a page is 4 KB, and the number

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:24 S. Lee et al.

Table I. A Summary of the Table Sizes of LAST++

Sequential Random Merge-cost
Table log blocks log blocks table Data blocks Hash tables

of table entries 32 98,304 768 524,288 64 (sequential)
98,304 (random)

Entry size (bit) 1,157 bits 28 bits 854 bits 19 bits 64 bits
Table size (KB) 4.52 KB 336 KB 80 KB 1,216 KB 768.5 KB

Total table size (MB) 2.34 MB

Table II. A Comparison of the Mapping Table Size of Different FTL Schemes

Hybrid FTL
FTL Scheme Block-level FTL Page-level FTL (BAST/FAST/SUPERBLOCK) LAST++

Table Size 1.18 MB 208 MB 2.09 MB 2.34 MB

of pages per block is 128 (= 27). There are a total of 524,288 (= 219) blocks in the SSD
and 65,536 (= 216) blocks per each channel. 1,024 blocks are used as log blocks: 256 for
sequential log blocks and 769 for random log blocks. Table I summarizes the sizes of
the tables in LAST++.

—Sequential log blocks: LAST++ maintains 32 total entries for the block-level mapping
table for sequential log blocks (i.e., 256 sequential log blocks / 8 channels). As depicted
in Figure 5, each segment entry is composed of the Seq-ID (5-bit), 8 physical block
addresses belonging to different channels (16-bit each), and 8 page status tables
(128-bit each). The block-level mapping table is thus 4.52 KB.

—Random log blocks: LAST++ maintains a total of 98,304 entries (i.e., 768 blocks ×
128 pages per block) for the page-level mapping table. As depicted in Figure 8, each
mapping entry has the channel number (3-bit), the block number in the channel
(16-bit), the page offset (7-bit), and the update flag (2-bit). The page-level mapping
table size becomes 336 KB.

—Merge-cost table: For the individual entries of the merge-cost table, LAST++ keeps
the number of associated data blocks (5-bit) and the overflow bit (1-bit), as illustrated
in Figure 9. Each entry of the merge-cost table also contains a list of 32 data blocks,
each of which consists of the data block number (19-bit) and the number of valid
pages (7-bit). To support background merges, each entry of the merge-cost table also
has a 16-bit flag for the latest update ID to keep the merge sequence ID. There are
768 random log blocks, so the size of the merge-cost table is 80 KB.

—Data blocks: For the block-level mapping table for data blocks, LAST++ maintains
the 19-bit data block number for individual entries. The number of entries is 524,288
(i.e., 524,288 flash blocks – 1,024 log blocks). Thus, its size is 1,216 KB.

—Hash table: Regarding the hash tables, finally, if a hash entry is 8 bytes, the sizes of
the hash tables for the block-level mapping table and the page-level mapping table
are 0.5 KB (= 64 × 8 bytes) and 768 KB (= 98,304 × 8 bytes), respectively.

As a result, the total amount of the memory space for the tables is 2.34 MB.
Table II compares the memory requirements of different FTL schemes, including

page-level, block-level, BAST, FAST, SUPERBLOCK, and LAST++ FTLs. As expected,
the block-level FTL requires the smallest memory space (1.18 MB), whereas the page-
level FTL requires the largest memory space (208 MB). The mapping table size of BAST,
FAST, and SUPERBLOCK FTLs is 2.09 MB. LAST++ requires 12% more memory space
than other hybrid FTLs because it maintains the hash table to quickly find the physical
location of a logical page. However, considering a high capacity of a recent DRAM chip
(e.g., 32–128MB), a 12% larger mapping table of LAST++ would be not a serious obstacle
to its adoption.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:25

4.7. Reliability Issues

For fast startup, LAST++ stores the snapshot of block-level and page-level mapping in
NAND flash when the SSD is normally turned off. This is a common way to support
an instant booting and is widely used in most FTL schemes, including the hybrid and
demand-based FTLs. Unfortunately, if system crashes or power failure occur, the snap-
shot information cannot be stored, so LAST++ has to recover the mapping information
by scanning the NAND flash medium.

LAST++ maintains map blocks to keep track of physical locations of log and data
blocks, and this allows LAST++ to recover the mapping information. The management
of map blocks is exactly the same as in other hybrid FTLs [Kim et al. 2002; Lee et al.
2007]. The block-level mapping table for data blocks can be quickly built by reading
map blocks. To construct the hash tables and the block- and page-level mapping tables,
however, LAST++ has to scan entire pages in log blocks to read logical page addresses
from spare areas. This could take very long time if the number of log blocks is large. For
example, suppose that the capacity of the SSD is 256 GB and the size of log blocks is
25.6 GB (which is 10% of the total capacity). Further suppose that the maximum read
bandwidth is 320 MB/s with eight NAND channels [Agrawal et al. 2008]. The recovery
time taken to scan the entire log blocks is about 81.92 seconds (= 25.6 GB/320 MB/s).

To address this problem, we propose a simple recovery technique that keeps page-
level mapping of individual log blocks in their last pages via a summary page. This
allows us to quickly build a page-level mapping table by reading only one page per log
block. LAST++ only needs to scan all the pages in a log block in the worst case where
a summary page is not completely committed to that log block. Note that a similar
scheme was introduced by Birrell et al. [2007] for page-level mapping. Back to the
previous example: 52,429 log blocks are required for 25.6 GB. LAST++ needs to read
52,429 pages, which is 204.8 KB. Thus, the recovery time is about 0.64 seconds. The
last pages of individual log blocks are reserved for summary pages, so the effective
capacity of random log blocks is inevitably reduced by 1/128 (= 0.78%) if the number
of pages per block is 128. This reserved log-block space is not so huge, so its effect on
performance is negligible in our observation. We will show this in our experimental
section.

4.8. Handling of Read Requests

The handling of read requests is straightforward in LAST++. For each page read re-
quest coming from the host system, LAST++ checks whether the page is stored in
random log blocks or not by searching the hash table. LAST++ reads the page data
from random log blocks if it is available. If random log blocks do not have the recent
version of the page, LAST++ looks at the block-level mapping table to see if sequential
log blocks have that page. If it is, LAST++ reads the data from sequential log blocks. If
the page does not exist in random and sequential log blocks, the page in data blocks is
transferred to the host system.

4.9. Wear-Leveling Issue

In LAST++, hot pages are kept in the hot partition, so random log blocks belonging to
the hot partition are intensively erased. On the other hand, random log blocks in the
cold partition are rarely overwritten; thus, their erasure counts become much smaller
than those in the hot partition. The address mapping and garbage collection of LAST++
works independently of existing wear-leveling mechanisms. Therefore, this uneven
wear problem can be resolved by employing well-known wear-leveling algorithms like
hot/cold swap algorithms [Chang 2007]. It must be noted that inappropriate integration
of LAST++ and wear-leveling algorithms could badly affect their performance. Thus, it

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:26 S. Lee et al.

Table III. Key Parameters of NAND Flash Memory

NAND Flash Memory Organization
Block size 512 KB
Page size 4 KB
Number of pages per block 128

Operation Latency
Page read 50 usec
Page write 900 usec
Block erasure 3500 usec

Table IV. Descriptions of Benchmarks

Trace Description Write Read Duration

Desktop1 Collected from desktop/laptop PCs 6.1 GB 5.28 GB 8 hrs
Desktop2 where several applications like editors, 3.5 GB 1.7 GB 9 hrs
Laptop games, web browsers, and messengers ran. 5.7 GB 7.02 GB 97 hrs

Emulated the behaviors of mail and netnews
Postmark services. 200K transactions were performed 6.1 GB N/A 37 mins

and 30K files with 4–16 KB were created.
Performed writes/re-writes and reads/re-reads

Iozone on a 1 GB file. The I/O flush was enabled, 6.0 GB N/A 73 mins
and the stripped access was disabled.

Tiobench
Created 1 GB files from eight threads that 1.2 GB N/A 3 mins

wrote 4K blocks randomly and sequentially.
Performed different types of file system

Bonnie++ operations. Several files/directories were 1.0 GB N/A 2 mins
sequentially and randomly written.

Financial1
Collected from OLTP applications 12.5 GB 2.2 GB 10 hrs
running at financial institutions.

Proxy1 Collected from web-proxy servers. 53.3 GB 99.8 GB 12 hrs
Msnfs Collected from MSN storage file servers. 50.5 GB 110 GB 120 hrs

is necessary to investigate the impact of combining LAST++ and wear-level schemes
on both lifetime and performance in detail. We leave this issue for future investigation.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setting

To evaluate the performance of the proposed LAST++ scheme, we developed a trace-
driven FTL simulator. We compared LAST++ with four existing FTL schemes: BAST
[Kim et al. 2002], FAST [Lee et al. 2007], SUPERBLOCK [Kang et al. 2006], and DFTL
[Gupta et al. 2009]. NAND flash parameters used in our simulation were based on
Micron’s MT29F16G08 NAND flash memory [Micron Technology Inc. 2012] and are
listed in Table III.

Table IV summarizes 10 traces used for our evaluations. Desktop1, Desktop2, and
Laptop were I/O traces collected from desktop and laptop PCs. Except for Laptop,
which used the FAT32 file system, the NTFS file system was used to collect I/O traces.
Postmark, Iozone, Tiobench, and Bonnie++ were obtained while running well-known
file-system benchmarks on Microsoft’s Windows XP with the NTFS file system. Finan-
cial1, Proxy1, and Msnfs were taken from SNIA’s trace repository [SNIA 2015].

The total capacity of the SSD was set to 256 GB (=238 bytes), excluding log blocks for
hybrid FTLs and an overprovisioning area for DFTL. To evaluate the effect of garbage
collection algorithms on performance, the number of log blocks was set differently
depending on the working-set size of benchmarks. For two small I/O traces, Bonnie++
and Tiobench, we used 256 log blocks. For middle-sized traces, Desktop1, Desktop2,
Laptop, Postmark, and Iozone, 1,024 log blocks were used. Because of a large working-
set size, we used 4,096 log blocks for Financial1 and Proxy1, while 16,384 log blocks

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:27

Fig. 15. A comparison of the number of I/O operations.

were assigned to Msnfs. For LAST++, 25% of the total log blocks were used for sequential
log blocks, while other blocks were used for random log blocks. The number of channels
was set to 8 by default. All data blocks were initially filled with valid pages to mimic
aged SSDs.

BAST, FAST, and SUPERBLOCK FTLs were not designed for multichannel SSDs.
For this reason, we used a design method, called FTL-MM, which enabled the hybrid
FTL designed for single-channel SSDs to exploit the parallelism of multichannel SSDs
[Shim et al. 2012]. In FTL-MM, individual flash chips were separately managed by
independent instances of the single-channel–based hybrid FTL. To exploit I/O par-
allelism of multiple channels, FTL-MM distributed logically continuous pages over
multiple chips. For DFTL, a page-level stripping policy was employed with a greedy
garbage collection policy [Agrawal et al. 2008; Gupta et al. 2009]. Note that the DRAM
cache size of DFTL was set the same as the DRAM requirement of LAST++.

5.2. Experimental Results with Hybrid FTLs

We first compare the performance of LAST++ with three hybrid FTL schemes: BAST,
FAST, and SUPERBLOCK. We compare LAST++ with DFTL in Section 5.3 in detail.
Figure 15 shows the number of I/O operations. LAST++ exhibits the best performance
among all the FTL schemes; it reduces the number of I/O operations by 299%, 39%, and
70%, on average, over BAST, FAST, and SUPERBLOCK, respectively. BAST performs
the largest I/O operations because of high merge costs, and this is mainly caused by
the block thrashing problem. The log block utilization of BAST is 14%; on the other
hand, LAST++ exhibits a log block utilization of 86%, the highest among all the FTL
schemes (see Figure 19).

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:28 S. Lee et al.

Fig. 16. Average elapsed time (μsec).

By allowing a single log block to be shared by several data blocks, FAST mitigates
the block thrashing problem. However, it cannot outperform LAST++ for the following
reasons. FAST maintains only one log block for sequential writes, which is called a
sequential log block. In general-purpose systems, several sequential write streams
are sent to SSDs simultaneously, competing for one sequential log block. For this
reason, one sequential write stream often expels the other sequential streams stored
in the sequential log block, thus incurring many partial merges. Unlike FAST, LAST++
maintains many sequential log blocks; thus, it can accommodate multiple sequential
write streams so that they are evicted to data blocks by cheap switch merges. FAST
often sends sequential writes to random log blocks, and they have to be evicted by full
merges later. LAST++ sends only sequential writes to sequential log blocks, increasing
the probability of performing partial or switch merges, which are much cheaper than
full merges. Unlike FAST, that does not exploit the temporal locality of random writes,
LAST++ increases the number of dead blocks by separating hot and cold pages in
random log blocks.

Similar to FAST and LAST++, SUPERBLOCK allows several data blocks to share
the same log block. To reduce the association degree, it limits the maximum number
of data blocks that can be associated with a single log block. Even though it helps
us to limit the maximum full merge costs, the block thrashing block problem cannot
be completely avoided. For example, SUPERBLOCK performs worse than FAST for
Tiobench, Desktop1, Desktop2, Proxy1, and Msnfs, where block thrashing is frequently
observed. SUPERBLOCK cannot effectively reduce full merge costs, exhibiting a higher
log-block association degree than LAST++ (see Table V). SUPERBLOCK attempts to
separate hot pages from cold pages, but this hot/cold separation is only applied to
pages in the same superblock because of its superblock-based mapping policy. Unlike
SUPERBLOCK, LAST++ detects and separates hot and cold pages regardless of their
locations in NAND flash. This allows LAST++ to generate a large number of dead
blocks in the random log blocks, further reducing the overall association degree.

Figure 16 shows the elapsed time for writing a single page to the SSD. As shown,
LAST++ exhibits the smallest elapsed time over all the FTL schemes; LAST++ out-
performs BAST, FAST, and SUPERBLOCK by 255%, 41%, and 73%, respectively, on
average. The overall elapsed time is highly related to the number of I/O operations
depicted in Figure 15. As the cost of block merges increases, more valid pages have to
be copied to free blocks before servicing incoming write requests from the host system.
This inevitably increases the overall write response times.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:29

Fig. 17. The differences of the utilizations of eight channels (%).

Another key factor that highly affects write response times is channel utilization.
Figure 17 shows the differences of channel utilizations among eight channels. We use
channel 0 as a reference point, so its value is always 0. If the difference of a certain
channel is 10%, 10% more or less requests are served in that channel than channel
0. BAST, FAST, and SUPERBLOCK use the same stripping policy proposed in FTL-
MM [Shim et al. 2012], so they exhibit the same channel utilizations. As depicted in
Figure 17, LAST++ shows much higher channel utilization than other FTL schemes.
In the case of random log blocks, LAST++ fully utilizes the I/O parallelism of multiple
channels because of flexible page-level mapping. Even though block-level mapping is
used, LAST++ also exhibits high channel utilizations for sequential log blocks because
only sequential write requests are sent to sequential log blocks. Unlike LAST++, other
FTL schemes distribute incoming page writes across different channels according to
their logical page addresses. For this reason, the overall channel utilization is decided
by the patterns of incoming write requests.

Figure 18 shows how much the number of channels affects performance. We se-
lect two traces, Desktop2 and Laptop, which show different channel utilizations. As
illustrated in Figure 17(a), BAST, FAST, and SUPERBLOCK show a relatively even
channel utilization for Laptop, but exhibit an uneven utilization for Desktop2. LAST
achieves high utilizations for both. We measure the number of pages written per sec-
ond while varying the number of channels from 4 to 32. As expected, the overall write

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:30 S. Lee et al.

Fig. 18. The effect of channel numbers on performance.

Fig. 19. Log block utilization (%).

performance is improved in proportion to the number of available channels. In the case
of Desktop2, the performance improvements of BAST, FAST, and SUPERBLOCK are
seriously limited because of their low channel utilizations. For Laptop, where BAST,
FAST, and SUPERBLOCK show good utilization, the performance scales very well as
the number of available channels increases. Regardless of the benchmarks, LAST++
shows good performance scalability.

Figure 19 shows the log-block utilization of four different FTL schemes. As pointed
out earlier, BAST exhibits the lowest utilization for all I/O traces. SUPERBLOCK also
shows low utilizations for Tiobench, Desktop1, Desktop2, Proxy1, and Msnfs. FAST
achieves a log-block utilization of 100% for random log blocks. However, because of
frequent partial merges in the sequential log block, its overall block utilization is
reduced to 73%. Similar to FAST, LAST++ also exhibits 100% utilization for random
log blocks. By maintaining multiple sequential log blocks and sending only sequential
writes to them, it prevents many sequential log blocks from being evicted to data blocks
with a low utilization. For this reason, LAST++ shows the highest log-block utilization.

Table V compares the average association degrees during full merges for 10 I/O
traces. As expected, LAST++ shows the smallest association degree among all the FTL
schemes. This benefit mainly comes from a large number of dead blocks created in
random log blocks. In LAST++, 70% of victim blocks are selected as dead blocks from
random log blocks for full merges, and this reduces the overall association degree. Note
that, for BAST, the association degree is always fixed to 1.

Figure 20 shows the number of block merges according to their types. BAST shows
the largest number of block merges among all the FTL schemes because of block
thrashing. For Tiobench, Desktop1, Desktop2, Proxy1, and Msnfs, SUPERBLOCK is also

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:31

Table V. A List of the Average Association Degrees
During Full Merges

Trace BAST FAST SUPERBLOCK LAST++

Desktop1 1 2.6 2.6 2.5
Desktop2 1 3.7 1.8 2.4
Laptop 1 1.4 2.2 1.2

Postmark 1 1.1 2.0 1.0
Iozone 1 1.0 2.2 0.8

Tiobench 1 4.0 3.2 5.1
Bonnie++ 1 1.2 2.1 0.3

Financial1 1 0.2 1.8 0.1
Proxy1 1 1.7 1.0 0.02
Msnfs 1 4.1 3.3 3.6

Average 1 1.5 2.1 0.76

Fig. 20. The number of block merges according to their types.

affected by the block thrashing problem, incurring a larger number of block merges
than FAST and LAST++. For Laptop, Postmark, Iozone, Bonnie++, and Financial1,
SUPERBLOCK shows a smaller or similar number of block merges compared with
LAST++. However, it cannot outperform LAST++ except for Postmark, as depicted

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:32 S. Lee et al.

Fig. 21. The number of block erasures.

in Figure 15. This is because LAST++ performs more switch merges and dead-block
merges with smaller full merges. Compared with FAST, LAST++ requires much smaller
full merges. LAST++ generates a larger number of dead blocks than FAST by separating
hot and cold pages in random log blocks. By sending only sequential writes to sequential
log blocks, furthermore, the ratio of switch merges to total block merges is much higher
than FAST.

Figure 21 shows the number of block erasures performed while running 10 I/O traces.
The number of block erasures is closely related to the number of I/O operations depicted
in Figure 15. LAST++ reduces the number of block erasures by 282%, 40%, and 51%
over BAST, FAST, SUPERBLOCK, respectively. This means that LAST++ improves
the lifetime of the SSD by the same amount.

We evaluate the effect of the number of log blocks on write performance. As shown in
Figure 22, as the number of log blocks increases, the number of page writes decreases.
With a larger number of log blocks, the FTL keeps more data in log blocks, which
increases the probability that valid pages become invalid until they are evicted from
log blocks. In particular, the performance of BAST and SUPERBLOCK greatly improves
because the block thrashing problem disappears with a larger number of log blocks.
However, regardless of the number of log blocks, LAST++ exhibits the best performance.
Note that once the capacity of log blocks becomes larger than the working-set size of the
benchmark (i.e., the amount of data written by the benchmark), all the FTL schemes
exhibit similar performance because block merges rarely occur and normal I/O requests
(sent from the host) become a dominant part of total I/O operations.

5.3. Experimental Results with DFTL

Unlike the hybrid FTL, DFTL could cause serious data integrity problems because it
keeps logical-to-physical mapping information in DRAM all the time. Therefore, it is not
practical to use DFTL directly without any methods that ensure data integrity. For this
reason, we evaluate DFTL with four different data integrity methods, NOFLUSH, PAGE,
TIMEOUT, and REQ. NOFLUSH is the same as the original DFTL scheme proposed in Gupta
et al. [2009]; it does not write any mapping information to NAND flash until the DRAM
cache becomes full and some mapping entries have to be evicted to NAND flash. PAGE
writes a corresponding mapping entry to NAND flash after writing a single page. PAGE
shows the strongest data integrity, but it incurs lots of extra writes to NAND flash. If K
pages are newly written, additional K pages containing their mapping entries have to
be written because the eviction of one mapping entry in DRAM requires one flash page
write. TIMEOUT periodically writes dirty mapping entries to NAND flash. The timeout
threshold is set to 30 seconds, similar to a policy used in the Linux kernel. TIMEOUT

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:33

Fig. 22. The number of I/O operations with various log blocks.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:34 S. Lee et al.

Fig. 23. A comparison of LAST++ with four different versions of DFTL: NOFLUSH, PAGE, TIMEOUT, and REQ.
All results are normalized to LAST++.

is more durable than NOFLUSH, requiring smaller extra I/Os than PAGE, but it loses
important mapping information if a power failure occurs between two flush periods.
REQ writes mapping entries based on the unit of a write request. If a write request is
composed of 512 pages, it writes all the pages to NAND flash, updating corresponding
mapping entries in DRAM. Then, it writes the updated mapping entries to NAND
flash. REQ not only guarantees the atomicity of a write request, but also reduces many
extra writes over PAGE because it writes a bunch of updated mapping entries at once.

Figure 23 compares the performance of LAST++ with four different versions of DFTL.
Experimental results are normalized to LAST++. All the experimental settings, such as
the number of channels, are the same as those used in experiments with the hybrid FTL.
As expected, NOFLUSH shows better performance than LAST++. However, when a sudden
power failure occurs, NOFLUSHhas to scan the entire NAND flash to reconstruct the page-
level mapping table. PAGE shows the worst performance among all the FTLs because
of lots of extra write traffic to NAND flash. TIMEOUT shows better performance than
LAST++, except for Laptop. Compared with REQ, LAST++ exhibits better performance
for all the benchmarks. According to our experimental results, REQ may be a feasible
solution for DFTL because it exhibits relatively high performance with good data
integrity. Considering that LAST++ outperforms REQ, offering the same level of data
integrity as PAGE, LAST++ would be a better FTL solution in environments where high
data integrity and quick recovery are required. Finally, our experiment results show
that, even though DFTL is receiving lots of attention from academia because of its
superb performance, it could be impractical or could perform more poorly than hybrid
FTLs without a proper data integrity method. The development of a data integrity
model suitable for DFTL is highly desirable.

Figure 24 shows the number of page read operations for DFTL and LAST++. For our
evaluation, we choose six real-world traces—Desktop1, Desktop2, Laptop, Financial1,
Proxy1, and Msnfs—because the I/O traces collected from micro-benchmarks do not
contain read requests. LAST++ requires 2.34MB DRAM for the mapping table. For
Desktop1, Desktop2, Laptop, and Financial1, we use the same size of cache (i.e.,
2.34 MB) because they have relatively small read working-set sizes. However, this
DRAM cache size is too small for Proxy1 and Msnfs, considering their large read
working-set sizes. To prevent performance distortion by such a small cache size, we
use a larger DRAM cache for Proxy1 and Msnfs, which is 32 MB. We roughly decide
the cache size so that about the top 30% unique hot-mapping-entries could be kept
in the DRAM; that is, mapping entries for frequently accessed data could stay in the
DRAM cache. We employ the REQ method for DFTL.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:35

Fig. 24. The number of page read operations for DFTL and LAST++.

Fig. 25. The number of page copies during partial and full merges with various threshold values.

Unlike LAST++, that keeps the entire mapping entries in DRAM, DFTL holds only
popular entries in DRAM. For this reason, DFTL often incurs extra page read op-
erations to fetch mapping entries from NAND flash. The number of extra reads is
different depending on the read access patterns of benchmarks, but it accounts for a
relatively large proportion of the total read operations: 18–35%, except for Financial1
and Proxy1. This inevitably increases overall read latencies that highly affect overall
user-perceived I/O performance. As expected, LAST++ does not require any extra page
reads. In the cases of Financial1 and Proxy1, only a few reads for on-flash mapping
entries are observed because of their high read localities.

5.4. Detailed Experiments with Various Design Parameters

We evaluate the performance of LAST++ in detail while changing several design param-
eters. We first evaluate the impact of a threshold value for sequentiality detection on
performance. As depicted in Figure 25, when the threshold value is 16 pages, LAST++
shows the best performance. When the threshold value is small (e.g., 1–8 pages), a
lot of random writes are sent to sequential log blocks. This incurs the block thrashing

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:36 S. Lee et al.

Fig. 26. The number of page copies with a single partition or two partitions.

Table VI. The Number of Memory References Per Hash Lookup

Desktop1 Desktop2 Laptop Postmark Iozone Tiobench Bonnie++ Average

6.8 5.4 6.6 6.8 6.5 3.9 2.8 5.5

problem and requires many partial merges. On the other hand, if the threshold value
is large (e.g., 32–64 pages), many sequential writes are sent to random log blocks. This
reduces the chance of switch merges while increasing full merge costs.

We evaluate the effect of the hot/cold separation in random log blocks by comparing
the number of page copies of LAST++ with two partitions and with a single partition.
As shown in Figure 26, LAST++ with two partitions reduces 25% of live page copies
during full merges over LAST++ with a single partition. The effect of the hot/cold
separation is quite effective for the I/O traces having high temporal locality (e.g.,
Desktop1, Desktop2, and Bonnie++. However, for I/O traces with low temporal locality,
like Tiobench, its effect is very limited.

Reducing the searching cost of the mapping tables is also one of the important issues
in designing LAST++. We measure how many memory references are required when
LAST++ searches the physical location of a logical page. Table VI shows the number
of memory references per hash lookup. As shown in this table, LAST++ requires 5.5
memory accesses per hash lookup, on average. This is very small compared to FAST
FTL, which requires 65,536 accesses with a simple linear search.

To understand how the reduced merge table affects performance, we compare the
performance of LAST++ with the reduced merge table and with the full-length merge
table. Whereas the reduced merge table maintains only 32 entries for associated data
blocks, the full-length merge table keeps 128 entries for data blocks. Figure 27 shows
our experimental results. Even though the maximum number of data blocks in the
merge table is limited to 32, the actual number of associated data blocks is much
smaller than 32. For this reason, using the reduced merge table does not badly affect
overall performance, incurring only 7% extra overheads for full merge operations.

We evaluate the effect of the background merge policy on the performance and life-
time of the SSD. Figure 28 shows our experimental results. We carried out a series of
experiments with three different policies of LAST++: FG, BG(AGGR), and BG(CONS). FG
is the LAST++ scheme with foreground merges. LAST++ with BG(AGGR) uses aggres-
sive background merges that trigger full merges whenever idle times are available.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

Exploiting Localities to Improve SSD Performance 15:37

Fig. 27. A comparison of full merge costs with the full-length merge table and the reduced merge table.

Fig. 28. A comparison of the foreground merge policy and the background merge policy.

LAST++ with BG(CONS) conservatively performs background merges only when there
are log blocks whose merge costs would not be changed in the near future. As illus-
trated in Figure 28(a), BG(AGGR) shows 15% shorter elapsed time because it maximally
exploits available idle times to hide overheads caused by foreground block merges.
Since BG(AGGR) often selects a victim block whose pages are likely to be invalid soon,
however, it performs 21% more block erasures than FG. Unlike BG(AGGR), BG(CONS)
carefully selects a victim log block holding many cold pages that will not be obsolete
before being evicted to data blocks. For this reason, the increase in the number of block
erasures is limited to 3.2%, but it improves overall I/O elapsed time by 12%, on aver-
age. Our background merge policy is less effective for Postmark, Iozone, Tiobench, and
Bonnie++. Those traces are collected from micro-benchmarks that intensively issue a
lot of reads and writes to the SSD. Due to very short idle times, background merges
are infrequently triggered.

Finally, we assess the effect of summary pages on performance. As mentioned in
Section 4.7, LAST++ keeps mapping information in reserved pages of log blocks (one
page per log block). This enables quick recovery, but reduces the effective capacity of
log blocks. Since summary pages account for a trivial proportion of the total log-blocks
space (i.e., 1/128), its effect on performance is negligible, as depicted in Figure 29.

6. CONCLUSION

In this article, we proposed a new locality-aware FTL scheme called LAST++, which
greatly improved the performance and lifetime of flash-based SSDs with small memory
requirements. By exploiting the sequential and temporal localities of I/O references
that were typically observed in general-purpose computing systems, LAST++ resolved

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

15:38 S. Lee et al.

Fig. 29. A comparison of two versions of LAST++ with or without summary pages.

the low channel utilization and high garbage collection problems of the hybrid
FTL scheme, improving overall SSD performance. This work also showed that the
well-designed hybrid FTL could outperform DFTL in terms of performance and data
integrity. Our experimental results showed that LAST++ exhibited 27% higher write
performance and 7% better read performance, on average, than DFTL while ensuring
higher data integrity against system crashes and/or sudden power failures. LAST++
also improved write performance and storage lifetime by 39% and 40%, respectively,
over the FAST FTL.

REFERENCES

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigrahy.
2008. Design tradeoffs for SSD performance. In USENIX 2008 Annual Technical Conference on Annual
Technical Conference (ATC’08). USENIX Association, Berkeley, CA, 57–70.

Amir Ban. 1995. Flash file system. (April 4 1995). US Patent 5,404,485.
Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. 2007. A design for high-performance

flash disks. SIGOPS Operating Systems Review 41, 2 (April 2007), 88–93. DOI:http://dx.doi.
org/10.1145/1243418.1243429

Li-Pin Chang. 2007. On efficient wear leveling for large-scale flash-memory storage systems. In Proceedings
of the 2007 ACM Symposium on Applied Computing. ACM, 1126–1130.

Li-Pin Chang. 2010. A hybrid approach to NAND-flash-based solid-state disks. IEEE Transactions on Com-
puters 59, 10 (Oct 2010), 1337–1349. DOI:http://dx.doi.org/10.1109/TC.2010.14

M.-L. Chiang and R.-C. Chang. 1999. Cleaning policies in mobile computers using flash memory. Journal of
Systems and Software 48, 3 (Nov. 1999), 213–231. DOI:http://dx.doi.org/10.1016/S0164-1212(99)00059-X

Hyunjin Cho, Dongkun Shin, and Young Ik Eom. 2009. KAST: K-associative sector translation for NAND
flash memory in real-time systems. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’09). European Design and Automation Association, Leuven, Belgium, 507–512.

Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
XIV). ACM, New York, NY, 229–240. DOI:http://dx.doi.org/10.1145/1508244.1508271

Gregory L. Heileman and Wenbin Luo. 2005. How caching affects hashing. In Proceedings of the Workshop
on Algorithm Engineering and Experiments. 141–154.

S. Jiang, Lei Zhang, XinHao Yuan, Hao Hu, and Yu Chen. 2011. S-FTL: An efficient address translation for
flash memory by exploiting spatial locality. In Proceedings of the IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST 2011). 1–12. DOI:http://dx.doi.org/10.1109/MSST.2011.5937215

Theodore Johnson and Dennis Shasha. 1994. 2Q: A low overhead high performance buffer management
replacement algorithm. In Proceedings of 20th International Conference on Very Large Data Bases
(VLDB’94), September 12–15, 1994, Santiago de Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo
(Eds.). Morgan Kaufmann, 439–450.

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

http://dx.doi.org/10.1145/1243418.1243429
http://dx.doi.org/10.1145/1243418.1243429
http://dx.doi.org/10.1109/TC.2010.14
http://dx.doi.org/10.1016/S0164-1212(99)00059-X
http://dx.doi.org/10.1145/1508244.1508271
http://dx.doi.org/10.1109/MSST.2011.5937215

Exploiting Localities to Improve SSD Performance 15:39

Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. 2006. A superblock-based flash transla-
tion layer for NAND flash memory. In Proceedings of the 6th ACM & IEEE International Conference
on Embedded Software (EMSOFT’06). ACM, New York, NY, 161–170. DOI:http://dx.doi.org/10.1145/
1176887.1176911

Han-joon Kim and Sang-goo Lee. 1999. A new flash memory management for flash storage system. In
Proceedings of the 23rd International Computer Software and Applications Conference (COMPSAC’99).
IEEE Computer Society, Washington, DC, 284.

Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min, and Yookun Cho. 2002. A space-efficient flash
translation layer for compactflash systems. IEEE Transactions on Consumer Electronics 48, 2 (May
2002), 366–375. DOI:http://dx.doi.org/10.1109/TCE.2002.1010143

George Lawton. 2006. Improved flash memory grows in popularity. Computer 39, 1 (2006), 16–18.
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim. 2009. FlexFS: A flexible flash

file system for MLC NAND flash memory. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (USENIX’09). USENIX Association, Berkeley, CA, 9–9.

Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. 2008. LAST: Locality-aware sector translation
for NAND flash memory-based storage systems. SIGOPS Operating Systems Review 42, 6 (Oct. 2008),
36–42. DOI:http://dx.doi.org/10.1145/1453775.1453783

Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. 2007. A
log buffer-based flash translation layer using fully-associative sector translation. ACM Transactions on
Embedded Computer Systems 6, 3, Article 18 (July 2007). DOI:http://dx.doi.org/10.1145/1275986.1275990

B. Leibowitz, R. Palmer, J. Poulton, Y. Frans, S. Li, J. Wilson, M. Bucher, A. M. Fuller, J. Eyles, M. Aleksic,
T. Greer, and N. M. Nguyen. 2010. A 4.3 GB/s mobile memory interface with power-efficient band-
width scaling. IEEE Journal of Solid-State Circuits 45, 4 (April 2010), 889–898. DOI:http://dx.doi.
org/10.1109/JSSC.2010.2040230

Sang-Phil Lim, Sang-Won Lee, and B. Moon. 2010. FASTer FTL for enterprise-class flash memory SSDs.
In Proceedings of the 2010 International Workshop on Storage Network Architecture and Parallel I/Os
(SNAPI). 3–12. DOI:http://dx.doi.org/10.1109/SNAPI.2010.9

Micron Technology Inc. 2012. MT29F16G08 MLC NAND Flash Memory Data Sheet.
Sungup Moon, Sang-Phil Lim, Dong-Joo Park, and Sang-Won Lee. 2010. Crash recovery in FAST FTL. In

Proceedings of the 8th IFIP WG 10.2 International Conference on Software Technologies for Embedded
and Ubiquitous Systems (SEUS’10). Springer-Verlag, Berlin, 13–22.

Robert Morris. 1968. Scatter storage techniques. Communications of the ACM 11, 1 (Jan. 1968), 38–44.
DOI:http://dx.doi.org/10.1145/362851.362882

Dongchul Park, Biplob Debnath, and David Du. 2010. CFTL: A convertible flash translation layer adap-
tive to data access patterns. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’10). ACM, New York, NY, 365–366.
DOI:http://dx.doi.org/10.1145/1811039.1811089

Sang-Hoon Park, Dong gun Kim, Kwanhu Bang, Hyuk-Jun Lee, Sungjoo Yoo, and Eui-Young Chung. 2014.
An adaptive idle-time exploiting method for low latency NAND flash-based storage devices. IEEE Trans-
actions on Computers 63, 5 (May 2014), 1085–1096. DOI:http://dx.doi.org/10.1109/TC.2012.281

Sang-Hoon Park, Seung-Hwan Ha, Kwanhu Bang, and Eui-Young Chung. 2009. Design and analysis of
flash translation layers for multi-channel NAND flash-based storage devices. IEEE Transactions on
Consumer Electronics 55, 3 (August 2009), 1392–1400. DOI:http://dx.doi.org/10.1109/TCE.2009.5278005

Gyudong Shim, Sung Kyu Park, and Kyu Ho Park. 2012. MNK: Configurable hybrid flash translation layer
for multi-channel SSD. In Proceedings of the IEEE 15th International Conference on Computational
Science and Engineering (CSE’12). 445–452. DOI:http://dx.doi.org/10.1109/ICCSE.2012.68

SNIA. 2015. Storage Networking Industry Association. Retrieved from http://www.snia.org/.
P. Thontirawong, M. Ekpanyapong, and P. Chongstitvatana. 2014. SCFTL: An efficient caching strategy

for page-level flash translation layer. In Proceedings of the 2014 International Computer Science and
Engineering Conference (ICSEC). 421–426. DOI:http://dx.doi.org/10.1109/ICSEC.2014.6978234

Zhiyong Xu, Ruixuan Li, and Cheng zhong Xu. 2012. CAST: A page-level FTL with compact address mapping
and parallel data blocks. In Proceedings of the 2012 IEEE 31st International Performance Computing
and Communications Conference (IPCCC), 142–151. DOI:http://dx.doi.org/10.1109/PCCC.2012.6407747

Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. 2013. Understanding the robustness of SSDS
under power fault. In Proceedings of the 11th USENIX Conference on File and Storage Technologies
(FAST’13). USENIX Association, Berkeley, CA, 271–284.

Received October 2014; revised July 2015; accepted November 2015

ACM Transactions on Storage, Vol. 12, No. 3, Article 15, Publication date: May 2016.

http://dx.doi.org/10.1145/1176887.1176911
http://dx.doi.org/10.1145/1176887.1176911
http://dx.doi.org/10.1109/TCE.2002.1010143
http://dx.doi.org/10.1145/1453775.1453783
http://dx.doi.org/10.1145/1275986.1275990
http://dx.doi.org/10.1109/JSSC.2010.2040230
http://dx.doi.org/10.1109/JSSC.2010.2040230
http://dx.doi.org/10.1109/SNAPI.2010.9
http://dx.doi.org/10.1145/362851.362882
http://dx.doi.org/10.1145/1811039.1811089
http://dx.doi.org/10.1109/TC.2012.281
http://dx.doi.org/10.1109/TCE.2009.5278005
http://dx.doi.org/10.1109/ICCSE.2012.68
http://www.snia.org/
http://dx.doi.org/10.1109/ICSEC.2014.6978234
http://dx.doi.org/10.1109/PCCC.2012.6407747

