
A Leakage-Aware Cache Sharing Technique
for Low-Power Chip Multi-processors (CMPs)

with Private L2 Caches

Hyunhee Kim
School of Computer Science

and Engineering
Seoul National University

Seoul 151-742, Korea
hh0726@davinci.snu.ac.kr

Sungjun Youn
LG Electronics Corporation

Seoul 152-702, Korea
spica81@davinci.snu.ac.kr

Jihong Kim
School of Computer Science

and Engineering
Seoul National University

Seoul 151-742, Korea
jihong@davinci.snu.ac.kr

ABSTRACT
Power dissipation becomes an important issue in modern
microprocessors such as chip multiprocessors (CMPs). Es-
pecially as the process technology advances below 90nm, the
leakage power consumption becomes dominant in the to-
tal power dissipation, thus reducing the leakage power con-
sumption is an important design goal for low-power CMPs.
In particular, since most CMPs employ a large L2 cache,
reducing the leakage power consumption of the L2 cache is
critical in realizing low-power CMPs.

In this paper, we propose a leakage-aware on-chip L2 cache
organization called LACS. The proposed LACS, like the ex-
isting RACS organization, is based on a private L2 cache
organization with an inter-L2 cache sharing support. How-
ever, unlike the RACS organization, which determines a peer
L2 cache block for an inter-L2 cache sharing based on the
reusability of the evicted L2 block and performance impli-
cations of peer L2 cache blocks, the LACS organization con-
siders both the performance and leakage. The LACS or-
ganization reduces the leakage power consumption signifi-
cantly over the leakage-oblivious RACS organization while
achieving a similar performance gain over a private L2 cache
organization. Experimental results show that the proposed
LACS technique reduces the energy consumption by 23.6%
and improves the energy delay product by 18.6% on average
over the existing RACS scheme.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design Styles—Cache memories

General Terms
Design, Management

Keywords

Chip Multiprocessors, Leakage energy, Reusability, L2 cache
management

1. INTRODUCTION
Power dissipation becomes a major concern to design mod-
ern microprocessors such as chip multiprocessors (CMPs).
Especially, as CMOS technology advances below 90nm, the
leakage power becomes the dominant source of power con-
sumption, thus reducing the leakage power consumption is
an important issue in realizing low-power CMPs. These
CMPs generally have several levels of on-chip cache mem-
ories to hide the performance gap between the processors
and the main memory. Since the on-chip cache memories
often determine the performance of CMPs, many CMPs ded-
icate a large portion of their on-chip area for an L2 cache
memory and modify a cache organization to use the on-chip
cache space more efficiently [2, 3, 4, 12, 14, 15]. However,
since a large L2 cache often dominates the on-chip leakage
power consumption among all the on-chip components, re-
ducing the leakage power consumption as well as improving
the performance of the L2 cache for CMPs becomes more
important.

There have been many research investigations on different
on-chip L2 cache organizations that aim to improve the
performance of a shared L2 cache or a private L2 cache
for CMPs. CMP SNUCA [2] scheme applies NUCA [8] to
the CMP architecture, which migrates blocks close to a re-
questor to reduce wire delay. Similarly, Victim Replication
[15] keeps L1 victims in a local L2 cache slice to reduce write
delay in a shared L2 cache organization. CMPNuRAPID [4]
makes copies close to requestors, which allows a fast ac-
cess for read-only sharing. They propose capacity stealing
of neighbor’s cache when its capacity is not large enough
to store private data. CMP CC [3] writes an evicted block
from a local cache to a peer L2 cache1 randomly with a
given probability from 0% to 100%. It allows to redistribute
private L2 cache spaces by sharing their spaces. A cache
sharing technique in a private L2 cache organization is also
proposed in [12]. It selectively writes evicted blocks to peer
L2 caches only when the peer cache has an invalid line or
a shared line. On most existing on-chip L2 cache organiza-
tions, however, which support an inter-L2 cache sharing, the

1In this paper, a peer L2 cache indicates a private L2 cache
of neighboring processor.

Figure 1: A target CMP architecture.

reusability of an evicted block is not considered. Consider-
ing the reusability of an evicted block is important because
writing evicted blocks, which are not reused, generates addi-
tional on-chip shared bus transactions. These transactions
may cause extra conflicts on a shared bus and pollute peer
L2 caches.

RACS [14] is the first cache sharing technique that considers
the reusability of evicted blocks based on a private L2 cache
organization. In this scheme, when a block is evicted from a
local private L2 cache, it is written to a peer L2 cache only
if it is likely to be reused in the near future. This selective
write back allows to reduce the shared bus traffic and avoid
polluting the peer L2 cache. It predicts the reusability of
evicted blocks by observing the Access Time Interval and
Frequency (ATIF) patterns. Although RACS is effective in
reducing the dynamic power consumption caused by writing
evicted blocks to peer caches, however, it does not consider
the leakage power consumption. In this paper, we extend
the RACS scheme to better handle the leakage power con-
sumption in the on-chip L2 cache organization.

To reduce the leakage power consumption of a cache mem-
ory, there have been several efforts such as [6, 7]. These
proposals have reduced the leakage power consumption by
turning off power supply to cache blocks. The cache decay
technique [7] selectively turns off cache blocks which have
not been accessed for a time-out threshold cycles. It, how-
ever, causes extra misses because the turned off cache blocks
do not preserve data. On the other hand, the drowsy cache
[6] preserves data to overcome the drawbacks of the cache
decay technique. In order to avoid extra cache misses, it
supplies the minimum power to keep the data. However,
when these leakage reduction techniques were applied for a
private L2 cache organization with an inter-L2 cache sharing
support (such as CMP CC and RACS), the leakage power
consumption may increase over an organization which does
not use the cache sharing technique. This is because writ-
ing evicted blocks to peer L2 caches may wake up turned
off cache blocks or prevent a cache block from switching to
a sleep state. Furthermore, if the blocks are not reused af-
ter they are written to peer L2 caches, the leakage power
consumption can also increase.

In this paper, we propose a Leakage-Aware Cache Shar-
ing technique called LACS which is based on a private L2
cache organization with an inter-L2 cache sharing. Figure
1 shows an overview of a target CMP architecture. Unlike
the leakage-oblivious RACS technique, the proposed LACS

technique improves both performance and energy consump-
tion by selectively writing evicted blocks to peer caches con-
sidering both the reusability and the leakage energy savings.
When a block is evicted from a local private L2 cache, the
reusability of the block is checked to decide if it should be
written to a peer cache or not in the same fashion as done
in RACS [14]. However, unlike RACS, if it is likely to
be reused in the near future, our scheme finds peer L2 cache
blocks which are not likely to be turned off soon or are likely
to be turned on in a short time. For this selection, we con-
sider the blocks at the bottom of the LRU stacks of the peer
L2 caches. If such blocks are available, LACS checks if there
exists a block with low reusability among them. If the block
has low reusability, it is replaced with the evicted block. Ex-
perimental results show that the proposed LACS technique
reduces the energy consumption by 23.6% and improves the
energy delay product by 18.6% on average over the existing
RACS scheme while achieving a similar performance gain
over a private L2 cache organization.

The rest of this paper organized as follows. In Section 2,
we briefly review of the RACS scheme proposed in [14].
We explain the motivation of our approach and describe the
details of the LACS technique in Section 3. Experimental
results are discussed in Section 4, and we conclude the paper
in Section 5.

2. REUSABILITY-AWARE CACHE SHAR-
ING TECHNIQUE

Several systems based on a private L2 cache organization
transfer evicted blocks to peer L2 caches to use an L2 cache
space efficiently. Since it takes longer to access the off-chip
memory than the on-chip memory, these approaches can im-
prove the performance. In CMP CC [3], the L2 victim block
from a local private L2 cache is written to a random peer
cache with a given probability from 0% to 100%, but they
do not consider the reusability of the evicted block. Speight
et al. [12] propose selective writing between L2 caches, but
they only write evicted blocks to peer L2 caches which have
a shared line or an invalid line. However, it does not also
identify which L2 victims are likely to be reused in the near
future. If blocks are not likely to be needed again soon it is
more desirable that they are not kept on chip because writ-
ing the evicted blocks to peer caches generates additional
on-chip traffic and may evict peer L2 cache blocks that will
be needed shortly. On the other hand, retaining blocks that
will be reused can reduce an access latency by finding them
in the on-chip L2 cache instead of in the off-chip memory.
Therefore, the reusability of blocks should be considered to
keep only the blocks which have high reusability on chip.

To decide the reusability of blocks, RACS classifies blocks by
Access Time Interval and Frequency (ATIF) pattern which
is based on the number of short time intervals and long time
intervals to a block. It monitors the reuse ratio of the blocks
for each pattern and write them to peer L2 caches when the
corresponding pattern has high reuse ratio. Figure 2 shows
what proportion of the blocks written to the peer L2 caches
is reused or not for each ATIF pattern when all the evicted
blocks are written to the peer caches. X-axis represents the
16 ATIF patterns. The first number of each pattern rep-
resents the number of short time intervals and the second
number represents the number of long time intervals. In

Figure 2: Distributions of reused blocks and unused
blocks under different ATIF patterns [15].

most cases, ATIF patterns that correspond to a lot of ac-
cesses with a long time interval, such as [13],[22], [23], and
[33], have the relatively larger number of reused blocks. But
when the first number of the ATIF pattern, corresponding to
the number of accesses after short time intervals, is zero, like
[00], [01], [02], and [03], the blocks do not have a high tem-
poral locality, and many of them are reused regardless of the
second number of the pattern. Consequently, ATIF patterns
used in RACS can identify blocks with a high reusability.

The RACS scheme also compares the memory demand of
caches not to corrupt the L2 cache of processors with a high
memory demand. If blocks with low reusability do not ex-
ist at the bottom of LRU stacks of peer caches, it checks if
there are caches with a smaller memory demand and writes
the evicted blocks to them. RACS predicts that a processor
has a high memory demand as frequent replacements occur
in a private L2 cache. The history of the time interval be-
tween subsequent replacements, Replhistory is used as the
prediction value of a processor’s memory demand. Using
the reusability and memory demand prediction techniques,
the RACS scheme reduces the number of off-chip accesses
by up to 17% over the pure private cache organization.

3. LEAKAGE-AWARE CACHE SHARING
TECHNIQUE

3.1 Motivation
The RACS scheme described in Section 2 only considers the
reusability of evicted L2 blocks and peer L2 cache blocks. It
replaces the peer L2 cache block with the evicted block if the
evicted block has a high reusability and the peer L2 cache
block has a low reusability. However, writing the evicted
block to the peer cache might decrease the leakage energy
savings when the existing cache leakage management tech-
nique, such as cache decay [7], is applied to RACS. In the
cache decay technique, the dead time interval of a cache
block is defined as an interval between the time when the
last hit occurs and the time when the next miss occurs in
that cache block. A cache block could be turned off during
the dead time interval except for initial time-out threshold
cycles to reduce the leakage energy consumption. Therefore,
a cache sharing technique may interfere with opportunities
for leakage energy savings by reducing the length of dead
time intervals. In particular, the following two cases may

Figure 3: Distributions of dead time intervals.

degrade the efficiency of the cache decay technique. First,
if an evicted block is written to the turned off block in a
peer L2 cache, the turned off block should be woken up to
store the evicted block. Second, if an evicted block is writ-
ten to the turned on block in a peer L2 cache which was not
accessed for close to the threshold cycles, this cache block
might lose a chance to be turned off because a time-out
counter should restart from zero. Even though writing an
evicted block improves the performance, RACS loses many
chances for leakage energy savings under the cache decay
scheme by preventing a cache block from entering a sleep
state.

Figure 3 compares how dead time intervals are distributed
between the private L2 scheme and the RACS scheme using
the SPLASH2 benchmarks [13]. The private L2 scheme as-
sumes a private L2 cache organization without an inter-L2
cache sharing support. When the RACS scheme is used, the
number of long dead time intervals decreases over the pri-
vate L2 scheme. For example, in CHOLESKY, about 18.5%
of dead time intervals of the private L2 scheme have an in-
terval length of about 40000K cycles. On the other hand,
this percentage becomes 0% in the RACS scheme. Similarly,
for FMM, the fraction of the dead time intervals longer than
20000K cycles decreases from 26.6% to 7.5%. With the de-
creased number of long dead-time intervals, the cache decay
technique becomes less effective for RACS over the private
L2 scheme. In other words, in the RACS scheme, cache
blocks are turned on for the time more than in the private
scheme when using the cache decay technique, decreasing
the leakage energy savings.

The proposed LACS scheme simultaneously considers the
performance and the leakage power consumption when de-
termining a peer L2 cache to store an evicted block. The
leakage energy savings is achieved by avoiding writing evicted
blocks to peer L2 cache blocks that can be turned off. Com-
bining this approach with the existing RACS scheme, we
can achieve the leakage energy savings as well as the perfor-
mance improvement.

3.2 Leakage-Aware Selection
In LACS, when evicting a block from a local L2 cache, it
is decided where to write the evicted block by simultane-
ously considering the performance and the leakage energy
consumption. The performance is considered in a similar
fashion as in the existing RACS scheme. In order to con-

sider the leakage energy consumption, all the peer L2 caches
decide whether receiving the evicted block will increase their
leakage energy consumption or not. After the evaluation,
each peer L2 cache sends its decision to the requesting L2
cache. In order not to increase the leakage energy consump-
tion when a cache sharing technique is employed, the length
of a dead time interval of a block should be kept as long as
possible. This can be achieved by not waking up a turned off
cache block or not preventing a cache block from switching
to a sleep state. Therefore, in our proposed scheme, peer L2
caches check if they have following two kinds of blocks at
the bottom of LRU stacks: the turned off L2 cache blocks
which are likely to exit from the sleep state soon, referred
as Boff blocks, and the turned on L2 cache blocks which
will not enter a sleep state in a short time, referred as Bon

blocks.

3.2.1 Boff Block Selection
When the bottom block of the L2 LRU stack is a turned
off block, we decide if it is a Boff or not. Boff blocks are
considered as replacement candidates in order not to wake
up cache blocks which can be turned off for a long time. We
decide that the cache blocks should be woken up and store
the evicted block when they meets one of the following two
conditions:

Condition 1. Cremain dead≤ 0

Condition 2. Cremain dead∗Ecache block leak+Ecache dyn

≤Lmem∗(Ecache leak+Emem leak)+Emem dyn

where

Cremain dead: the number of remaining dead cycles

Ecache dyn: dynamic energy consumption per cache access

Ecache block leak: leakage energy consumption of a cache block

per cycle

Ecache leak: leakage energy consumption of a cache per cycle

Emem leak: leakage energy consumption of a memory per cycle

Emem dyn: dynamic energy consumption per memory access

Lmem: the off-chip memory latency

Condition 1 checks if a turned off block is likely to be woken
up in a short time and Condition 2 checks if the benefit
of waking up a turned off block is greater than or equal to
the cost of it in terms of the energy consumption. In both
conditions, we should predict the number of remaining cycles
until a turned off block is likely to be woken up, Cremain dead,
which can be obtained by subtracting the time from the last
hit occurs to the cache block from a predicted dead time,
Dprediction. We predict Dprediction based on the history of
dead time intervals because it is observed that most of the
dead time intervals is in a certain range as can be seen in
Figure 2. For instance, for CHOLESKY, 80% of the cache
blocks have dead time intervals shorter than 10000K cycles
and for FMM and OCEAN, more than 90% of the dead
time intervals are within 10000K cycles. Therefore, we can
predict Dprediction as follows:

Dprediction =
Dprediction + Dinterval

2
,

where Dinterval is the last dead time interval of the replaced
block. This might not predict the dead time interval ex-
actly because it is predicted based on the history of entire
private L2 cache blocks. However, it can predict the dead
time interval of a L2 cache roughly because the dead time
interval depends on the characteristics of a program. Fur-
thermore, even when it has a wrong prediction value, it does
not cause a critical performance loss because it only prevents
an evicted block from being written to a peer cache. It is
shown that employing this prediction technique works well
in experimental results.

In Condition 2, if the benefit of waking up a peer L2 cache
block is greater than or equal to the cost of it, we decide
to turn the block on and store an evicted block. The left
and right side of the Condition 2 equal the cost and the
benefit when an evicted block is written to the turned off
block of a peer L2 cache, respectively. Since writing the
evicted block causes the peer L2 cache block to be turned
on, the cost consists of the leakage energy consumption dur-
ing Cremain dead and the dynamic energy consumption per
cache access, Ecache dyn. However, Ecache dyn can be ignored
because it is very small compared to the leakage energy con-
sumption. On the other hand, if an evicted block is written
to a peer L2 cache and reused, the energy consumption could
be decreased by avoiding an access to the off-chip memory
because it can decrease the leakage energy consumption of
both cache and memory during the access latency of the
off-chip memory and the dynamic energy consumption of a
off-chip access. The right side of the Condition 2 can be con-
stant if we assume that Lmem and Ecache leak always have
the same values even though Lmem varies depending on con-
gestion of a shared bus and Ecache leak varies depending on
the number of turned off blocks. It is reasonable because
Cremain dead on the left side of the equation is usually much
larger than Lmem.

For the LACS scheme to decide a peer L2 cache to store an
evicted block, each cache has Dprediction value and it is up-
dated every time the turned off block is replaced and woken
up. To obtain the last dead time interval of the replaced
block, Dinterval, we modify the cache decay interval coun-
ters in [7]. After a cache block has not been accessed for
a time-out threshold cycles, the cache block enters a sleep
state but the corresponding decay counter keeps increment-
ing until a new block is brought. However, to distinguish
the turned off cache block, we add a 1-bit per each cache
block, on off bit. Therefore, when the turned off block is
replaced with the new block, the value of the decay counter
indicates Dinterval and Dprediction is updated using the new
Dinterval. Only when the decay counter of a turned on block
gets saturated to a time-out threshold, it enters a sleep state.
For turned off cache blocks, even when the decay counter
reaches the time-out threshold, the state of cache blocks is
not changed.

3.2.2 Bon Block Selection
When the bottom block of the L2 LRU stack is a turned on
block, we decide if it is a Bon or not. Bon blocks are decided
as replacement candidates because they are not likely to
switching to a sleep state soon. The decision is made based

No

Shared State?

Block � is evicted from
private L2 cache A

Do not write block �
to peer L2 cache

Yes

No

No

Yes

No

Yes

No

Written from other
L2 cache and not used?

Low Reusability?

Exists Boff or Bon block
in peer L2 cache?

Exists any block with
a low reusability?

Exists any block
whose memory demand

smaller A?
No

Write block �
to the selected cache

Write block �
to the selected cache

Yes

Yes

Yes

Figure 4: Process of leakage-aware cache sharing
technique.

on the condition as follows:

Cfrom last hit < τ/2

Cfrom last hit is elapsed cycles from the last hit occurs and
τ is a time-out threshold value to enter a sleep state. We
decide that if Cfrom last hit is less than half of the τ , the
corresponding block is not likely to be turned off in a short
time. If the above condition meets, our approach prefers to
replace the peer L2 cache block with the evicted block.

3.3 Process of Leakage-Aware Cache Sharing
Technique

Figure 4 summarizes the LACS steps in processing an evicted
L2 cache block α. When a block α is evicted from a private
L2 cache, LACS decides that it should not be written to any
peer L2 cache in following cases: if the state of that block
is shared, because it means that the same block is present
in another L2 cache; if the block was transferred from a
peer L2 cache but was not reused while residing in the peer
cache, because such blocks have already had a chance to be
reused; if the reusability of the evicted block is low, which is
determined by corresponding ATIF pattern counter. If the
block is not in above cases, we check if there exist peer L2
caches replying that they have Boff or Bon blocks. If peer
L2 caches have such blocks, we look for a peer L2 cache
block with low reusability. When there are more than one
peer cache block with the low reusability, LACS randomly
chooses one of them. If, however, peer L2 caches do not
have the block with low reusability, LACS decides whether

the evicted block will remain on-chip from the memory de-
mand prediction. Otherwise our approach evicts the blocks
out of the on-chip space.

The process of deciding where to write evicted blocks re-
quires peer-to-peer communication lines. If an evicted block
has a high reusability, its cache sends the set number of the
evicted block, Replhistory to all the peer L2 caches. Then
the peer L2 caches send three bits of information on reply:
one bit indicates whether the cache has a block with low
reusability at the bottom of its LRU stack; and another bit
indicates whether the value of Replhistory for that cache is
larger than the broadcast value of Replhistory. The other bit
indicates that they have either a Boff block or a Bon block.
Using these information, our proposed approach decides a
peer L2 cache where an evicted block is written according
to the process explained above. Writing to a peer L2 cache
does not cause a subsequent write to the other peer L2 cache
to avoid a ripple effect.

3.4 LACS Technique for Coherent Caches
Our proposed scheme is based on a private L2 cache orga-
nization which uses inclusion property between lower levels,
such as L2 or L3, and higher level caches, such as L1. Inclu-
sion property, proposed in [1], is usually used in multi-level
caches to implement a cache coherence efficiently. In an
inclusive cache, the cache block which is present in higher
level caches should be present in lower level caches. Then,
by keeping the states of the blocks of the higher level cache
in the lower level cache, only the tags and the states kept in
the lower level cache are checked when cache coherence pro-
tocol messages are received. Otherwise, both of the higher
and the lower level caches might receive a large number of
queries from a snooping bus, which causes a significant per-
formance degradation to the higher lever cache.

We employ a MESI protocol to maintain cache coherence
between processors. To apply the cache decay technique in
an inclusive private L2 cache, we keep the tags and the states
of a turned off block active in L2 caches for correctness. This
could keep L1 caches from snooping traffic as in a private
L2 cache organization which does not use the cache decay
technique. Even though the LACS scheme does not turn
off the tags and the states, it could reduce leakage energy
significantly because the energy consumption of the tags and
the states is relatively smaller than that of data blocks.

3.5 Hardware Overhead
The previous RACS scheme has hardware overhead com-
pared to a pure private L2 cache organization because it re-
quires additional counters for the three prediction schemes,
reusability, memory demand, and leakage energy saving, and
peer-to-peer communication lines between the L2 caches.
Predicting reusability involves a 4-bit counter and a 2-bit
counter at each block, to record the number of accesses with
long and short time intervals, respectively. Additional 2
bits are required for each set to distinguish between long
and short time interval accesses. These bits record the most
recently accessed block of each set. In addition, each block
needs 2 bits to indicate which processor writes it and a fur-
ther bit indicates whether the block has been reused or not.
For each private L2 cache, we also need 16 10-bit pattern
counters. To predict the memory demand, a 8-bit counter

Table 1: Processor/Cache/Memory Configuration

Processor
4 Processors
in-order

L1 D-Cache
32KB, 1-way
32B block, 1 cycle latency

L1 I-Cache
32KB, 1-way
32B block, 1 cycle latency

L2 Private Cache
512KB, 4-way
128B block, 8 cycle latency

Shared Bus 4bytes bus width, pipelined
Off-Chip Memory 300 cycle access latency

is used to record the time from the last replacement and
another 8-bit counter records the replacement history. This
comes to a total of 9 bits per block, 2 bits per set, and about
22 bytes per cache.

We use also several additional registers for LACS. Each
cache has the three registers which store 16-bit Dprediction,
4-bit Ecache block leak, and 10-bit constant value for the ben-
efit of writing the evicted block. We take a logarithm of
the Ecache block leak with base 2 to use a shifter instead of
a multiplier. We add a 1-bit per each block, which distin-
guishes whether the block is turned on or not. The overall
hardware overhead of the LACS scheme is about 1% of the
area of a private L2 cache, which is effectively negligible. We
note that the decision whether to write an evicted blocks to
a peer L2 cache is not on a critical path because it can be
made after the block is evicted from its original cache and
placed in a write queue.

In addition, there is an area overhead to implement the cache
decay mechanism that our approach is based on. We use
two levels of counters to keep track of the cycles elapsed
since each block was last accessed because decay intervals
are usually tens of thousands of cycles as in [7]. It uses
a single global cycle counter that is used to provide a tick
for smaller local counter which exists per cache block. In
our experiments, the global counter sends a tick to the local
counters every 1000 cycles and 16-bit counters are used for
the local counters per each block. We observed empirically
that a 16-bit local counter is enough to record Cfrom last hit

and Dinterval. In the experiment, we use 4 million cycles for
τ , which is used for the L2 cache in [7]. This causes the 3%
area increase [11] of the cache cells due to the logic required
to turn off a cache block.

4. EXPERIMENTAL RESULTS
4.1 Simulation Environment
We modified the CATS [9] multiprocessor simulator to eval-
uate our technique. Cache-to-cache transfer of the cache
block among private L2 caches is applied in all schemes and
a MESI protocol is used for cache coherency. Table 1 shows
the processor, cache, and memory configuration we used for
experiments while Table 2 summarize the key power param-
eters for L2 cache and main memory. These parameters were
estimated from CACTI 4.1 [5] using 70nm CMOS technol-
ogy and SDRAM power estimation tool provided by Micron
[10].

We evaluated 5 schemes as shown in Table 3. Privateno decay

Table 2: L2 Cache and Memory Energy Parameters

Private L2
Cache

Dynamic read 0.11 nJ
Dynamic write 0.01 nJ
Leakage power 1802 mW

Off-Chip
Memory

Dynamic read/write 2 nJ
Standby Power 50 mW

Table 3: Evaluated Schemes

Privateno decay
a cache decay policy is not used
a cache sharing technique is not used

RACSno decay
a cache decay policy is not used
a cache sharing technique is used
considering reusability

Privatedecay
a cache decay policy is used
a cache sharing technique is not used

RACSdecay

a cache decay policy is used
a cache sharing technique is used
considering reusability

LACS

a cache decay policy is used
a cache sharing technique is used
considering reusability & leakage
energy

and RACSno decay are the schemes which do not use the
cache decay technique. while Privatedecay and RACSdecay

are the schemes which use the cache decay technique. We
evaluated our scheme with 5 benchmarks, CHOLESKY, FMM,
FFT, RADIX and OCEAN in SPLASH2 [13].

4.2 Experimental Results
Figure 5 shows the normalized energy consumption. The
energy consumption of each scheme is normalized to the
Privateno decay scheme. We considered both the dynamic
and the leakage energy consumption of the L2 cache and
the memory. The dynamic energy consumption includes the
energy due to cache accesses, the extra L1 misses caused by
turning off the block too early, and the overhead due to ad-
ditional structures for LACS. The dynamic energy consump-
tion due to the additional counters is obtained by multiply-
ing the number of bits of the counters by the dynamic energy
consumption of a bit of the cache which is also calculated by
CACTI 4.1. The leakage energy consumption is also consid-
ered. It consists of the leakage energy of cache and memory,
the extra leakage overhead due to the Gated−Vdd technique

� ��� ��� ��� ��� �����
��	
��

 ��� ��� ����� 	���� �������� ��� !" #$%& '$�()

*�+��,�-./0-1�2�3 ����-./0-1�2�3 *�+��,�-.-1�2�3 ����-.-1�2�3
���*�+��,�456789:; ����456789:; *�+��,�789:; ����789:;

Figure 5: Normalized energy consumption.

�����������������������	��
������
� ��� ��� ��� ��� ���� �
�� ��� ���� �� ��� �

�� ����� �����
�
��� !"#� $%&''()*)+�,-

./01 234 5678 9678
�����������������������	��
������

� ��� ��� ��� ��� ���� �
�� ��� ���� �� ��� �
�� ����� �����
�

��� !"#� $%&''()*)+�,-

./01 234 5678 9678
�����������������������	��
������

� ��� ��� ��� ��� ���� �
�� ��� ���� �� ��� �
�� ����� �����
�

��� !"#� $%&''()*)+�,-
./01 234 5678 9678

�����������������������	��
������
� ��� ��� ��� ��� ���� �
�� ��� ���� �� ��� �

�� ����� �����
�
��� !"#� $%&''()*)+�,-

./01 234 5678 9678
�����������������������	��
������

� ��� ��� ��� ��� ���� �
�� ��� ���� �� ��� �
�� ����� �����
�

��� !"#� $%&''()*)+�,-

./01 23 4 5678 9678

Figure 6: Cumulative distributions of dead times.

[11] used to turn off a cache block, and the overhead due to
additional counters. We calculated the energy of the addi-
tional counters by assuming that each bit of them, described
in Section 3.5, has the same leakage consumption as a bit
in the L2 cache.

As can be seen in Figure 5, the energy consumption of
RACSdecay is bigger than Privatedecay, even though the
performance of RACSdecay is higher than that of Privatedecay.
The reason why the RACSdecay has a larger energy con-
sumption is because dead time intervals of cache blocks get
shorter as explained Section 3.1. However, LACS reduces
the energy consumption by 13.4% and 23.6% on average
over the Privatedecay and RACSdecay, respectively, while
keeping the performance almost same as RACSno decay. It
is achieved by writing evicted blocks to peer L2 caches in
the way that the dead time intervals of cache blocks are
kept similar to the RACSdecay scheme, thus reducing the
leakage energy consumption. Figure 6 shows this analysis
using the cumulative distributions of dead times of each
scheme. In most cases, the cumulative distribution of the
LACS scheme is placed between the cumulative distribu-
tion of the RACSdecay scheme and that of the RACSdecay

scheme. This means that the fraction of short dead time
intervals decreases and that of long time intervals increases
over the RACSdecay and also shows that our proposed dead
time prediction technique works well. Even though writ-
ing evicted blocks selectively with consideration of the leak-
age energy decreases the total number of blocks written
to peer caches and degrades the performance improvement
compared over the RACSno decay scheme, it can reduce the
energy consumption significantly with a small performance
loss.

Figure 7 shows the execution time of the benchmarks nor-
malized to the Privateno decay scheme. RACSno decay re-
duces the execution time by 9.6% on average compared to
Privateno decay. Especially in CHOELSY and FMM, the
performance improvement is up to 8% and 13.6%, respec-

������������������
��	
��

 ��� ��� ����� 	���� �������� ��� !" #$%& '$()*" �

+," �$ -�.��/�0123�4�5 ����267123�4�5 -�.��/�2623�4�5 ����2623�4�5
���-�.��/�89:;<=>? ����89:;<=>? -�.��/�;<=>? ����;<=>?

Figure 7: Normalized execution times.

tively, because many blocks are reused after the eviction. In
Privatedecay and RACSdecay, the performance degradation
due to the extra misses is less than 1% over Privateno decay

and RACSno decay except for RADIX and OCEAN. For RADIX,
the performance degradation of Privatedecay over Privateno decay

is about 3% while the performance of RACSdecay is al-
most same as RACSno decay. This is because many of the
blocks cannot be turned off in RACSdecay compared to the
Privatedecay. Writing evicted blocks to peer L2 caches pre-
vents cache blocks from entering a sleep state. In LACS,
the performance improvement is a little smaller than the
RACSno decay scheme, especially for FMM. This is because
the number of blocks which are written to peer caches is
reduced when the LACS scheme is applied. However, the
performance loss over the RACSno decay scheme is small be-
cause the LACS scheme can write an evicted block to one
of the peer caches in most cases.

Figure 8 shows the normalized energy delay product of
each scheme. Our proposed scheme reduces the energy delay
product by 26.4% and 18.6% on average over Privatedecay

and RACSdecay, respectively. Consequently, LACS shows
the best result because it can reduce the energy consump-

������������������
��	
��

 ��� ��� ����� 	���� �������� ��� !" #$%& '$�()

* $!)+ ��% ,-. /�0��1�234526�7�8 ����234526�7�8 /�0��1�2326�7�8 ����2326�7�8
���/�0��1�9:;<=>?@ ����9:;<=>?@ /�0��1�<=>?@ ����<=>?@

Figure 8: Normalized energy delay product.

tion but the performance loss of it is relatively small.

5. CONCLUSIONS
We proposed a Leakage-Aware Cache Sharing technique called
LACS which is based on a private L2 cache organization
for CMPs. When a cache sharing technique is applied to a
private L2 cache organization without leakage energy con-
sideration, the dead time intervals of cache blocks decrease
because writing evicted blocks to peer L2 caches might wake
up turned off blocks or prevent cache blocks from entering a
sleep state. Therefore, our proposed scheme checks if there
exist following two kind of blocks among the blocks at the
bottom of LRU stacks of peer L2 caches: the blocks which
are likely to exit from the sleep state and the blocks which
will not enter a sleep state in a short time. Among these
blocks, then, the LACS scheme selects a peer L2 cache block
with low reusability in the same way the previous RACS
scheme proposed. By writing the evicted blocks only when
such conditions are met, LACS reduced the energy consump-
tion as well as improved the performance.

Experimental results show that the LACS scheme is effi-
cient, improving the performance by 23.3% compared to the
Privateno decay scheme while reducing the energy consump-
tion by 13.4% and 23.6% on average over Privatedecay and
RACSdecay, respectively. Our LACS scheme also reduced
the energy delay product by 26.4% and 18.6% on average
over the Privatedecay and RACSdecay, respectively.

6. ACKNOWLEDGMENTS
This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) through the National Re-
search Lab. This work was also supported in part by the
Brain Korea 21 Project in 2008. Program funded by the
Ministry of Education, Science and Technology (No.R0A-
2007-000-20116-0). The ICT at Seoul National University
provides research facilities for this study.

7. REFERENCES
[1] J. Baer and W.H.Wang. On the inclusion properties

for multi-level cache hierarchies. In International
Symposium on Computer Architecture, June 1998.

[2] B. M. Beckmann and D. A. Wood. Managing wire
delay in large chip-multiprocessor caches. In
International Symposium on Microarchitecture,
December 2004.

[3] J. Chang and G. S. Soh. Cooperative caching for chip
multiprocessors. In International Symposium on
Computer Architecture, July 2006.

[4] Z. Chishti, M. D. Powell, and T. N. Vijaykumar.
Optimizing replication, communication, and capacity
allocation in cmps. In International Symposium on
Computer Architecture, June 2005.

[5] T. David, T. Shyamkumar, and J. Norman. Cacti 4.1.
In http://www.hpl.hp.com/personal/Norman
Jouppi/cacti4.html. HP, 2006.

[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: simple techniques for
reducing leakage power. In International Symposium
on Computer Architecture, May 2002.

[7] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache
leakage power. In International Symposium on
Computer Architecture, May 2001.

[8] C. Kim, D. Burger, and S. W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In Architectural Support for
Programming Languages and Operating Systems, 2002.

[9] D. Kim, S. Ha, and R. Gupta. Cats: cycle accurate
-driven simulation with multiple processor simulators.
In Design, Automation and Test in Europe, March
2007.

[10] Micron. Calculating memory system power for ddr. In
Technical report, 2005.

[11] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. Gated-vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. In
International Symposium on Low Power Electronics
and Design, May 2000.

[12] E. Speight, H. Shafi, L. Zhang, and R. Rajamony.
Adaptive mechanisms and policies for managing cache
hierarchies in chip multiprocessors. In International
Symposium on Computer Architecture, June 2005.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: characterization
and methodological considerati. In International
Symposium on Computer Architecture, June 1995.

[14] S. Youn, H. Kim, and J. Kim. A reusability-aware
cache memory sharing technique for high-performance
low-power cmps with private l2 caches. In
International Symposium on Low Power Electronics
and Design, August 2007.

[15] M. Zhang and K. Asanovic. Victim replication:
maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In International Symposium on
Computer Architecture, June 2005.

