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ABSTRACT
Dynamic voltage scaling (DVS) is a well-known low-power
design technique for embedded real-time systems. Because
of its effectiveness on energy reduction, several variable volt-
age processors have been developed and many DVS algo-
rithms targeting these processors have been proposed. How-
ever, most existing DVS algorithms focus on reducing the
energy consumption of CPU only, ignoring their negative
impacts on task scheduling and system wide energy con-
sumption. In this paper, we address one of such side effects,
an increase in task preemptions due to DVS. We present two
preemption control techniques which can reduce the num-
ber of task preemptions of DVS algorithms. Experimental
results show that the delayed-preemption technique is effec-
tive in reducing the number of preemptions incurred by DVS
algorithms while achieving a high energy efficiency.

Categories and Subject Descriptors: D.4.9 [Operating
Systems]: Systems Programs and Utilities

General Terms: Algorithms.

Keywords: Dynamic voltage scaling, low-power systems,
real-time systems.

1. INTRODUCTION
Dynamic voltage scaling (DVS), which adjusts the sup-

ply voltage and clock frequency dynamically, is an effective
low-power design technique for embedded real-time systems.
Since the energy consumption E of CMOS circuits has a
quadratic dependency on the supply voltage, lowering the
supply voltage is one of the most effective ways of reducing
the energy consumption.
With a recent growth in the portable and mobile embed-

ded device market, where a low-power consumption is an
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important design requirement, several commercial variable-
voltage microprocessors were developed. Targeting these
microprocessors, many DVS algorithms have been proposed
or developed, especially for hard real-time systems [1, 2].
Since lowering the supply voltage also decreases the maxi-
mum achievable clock speed [3], various DVS algorithms for
hard real-time systems have the goal of reducing supply volt-
age dynamically to the lowest possible level while satisfying
the tasks’ timing constraints.
Each DVS algorithm is known to be quite effective in re-

ducing the energy/power consumption of a target system [2].
However, the existing DVS algorithms mainly focus on re-
ducing energy consumption of CPU only, ignoring their neg-
ative impacts on system-wide energy consumption. For ex-
ample, when the tasks’ execution times are increased due
to a lowered clock speed, the patterns of device usage and
memory traffic may be changed, potentially increasing the
energy consumption in system buses, I/O devices and mem-
ory chips. In particular, when a lower-priority task’s exe-
cution time is extended with a lowered clock speed, it may
be preempted more often by higher-priority tasks. Accord-
ing to the experiments reported in [4], the number of task
preemptions can grow up to 500% under dynamic voltage
scaling over non-DVS executions.
The increase in the number of task preemptions can neg-

atively impact on the system energy consumption in several
ways. First, the preemption overhead may increase the en-
ergy consumption in memory subsystems. In multi-tasking
real-time systems, when a task is preempted by a higher pri-
ority task, the memory blocks used by the preempted task
are displaced from the cache by the memory blocks used by
the preempting higher priority task. Later, when the pre-
empted task resumes its execution, a considerable amount
of time is consumed to reload the previously displaced mem-
ory blocks into the cache. When preemptions are frequent
due to the lengthened task execution time, cache-related
preemption costs can take a significant portion of processor
time and energy consumption in memory subsystems [5].
In addition, since the voltage scaling is performed usually
at each context switching point, such frequent preemptions
may degrade not only the system energy efficiency but also
the system utilization when the voltage scaling overhead is
not negligible as shown in [6].
Second, the lengthened task lifetime may increase the en-

ergy consumption in system devices. Since the execution
of a preempted task should be delayed while a preempting
task is running, its lifetime - the time interval between its
activation and completion - is lengthened. If we assume
that the system devices are active (i.e., powered up) dur-
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ing the lifetime of the task (that use the system devices),
the increased lifetime of the task may also increase the en-
ergy consumption in the system devices. Furthermore, as
the number of simultaneously activated tasks increases, the
number of active system devices is likely to increase, con-
suming more energy. In addition, since the code and data
sections of the activated tasks should be kept in memory,
the amount of active memory may increase, thus increasing
the leakage power in memory subsystems.
Since the overhead of task preemptions has been an im-

portant issue in conventional real-time systems as well [7,
8, 5], there has been several research efforts to reduce
the negative side effects of task preemptions. Y. Wand
and M. Saksena proposed the preemption-threshold mech-
anism for Rate Monotonic (RM) scheduling in [7, 8]. In
the preemption-threshold mechanism, each task has its own
preemption-threshold. The currently running task is pre-
empted only by a task whose priority is higher than the
preemption-threshold of the current task. Although not im-
possible, it is very difficult to devise a DVS algorithm for
this mechanism because the slack estimation is not straight-
forward. In [5], S. Lee et al. described limited preemp-
tion scheduling which minimizes the cache-related preemp-
tion delay of tasks so as to improve the system through-
put. In this limited preemption scheduling, each task has
non-preemptable code sections, which are expected to cause
significant cache-related preemption delays when the task
is preempted while executing these code sections. By pro-
hibiting preemptions for these code sections, the system can
reduce the cache-related preemption delay and can improve
the system throughput. However, when the execution time
of a non-preemptable code section is lengthened due to a
lowered clock speed, the schedulability of given tasks is
changing, making it very difficult to apply this technique
to DVS algorithms in hard real-time systems.
In this paper, we address the problem of the increased task

preemptions due to DVS algorithms. In order to control the
number of preemptions, we propose two preemption con-
trol methods, accelerated-completion based technique and
delayed-preemption based technique, which can reduce the
negative impacts on energy consumption incurred by DVS
algorithms. The accelerated-completion based technique
tries to avoid preemptions by adjusting the voltage/clock
speed higher than the lowest possible values computed using
a given DVS algorithm, based on the task execution profile
and the periodicity of tasks. On the other hand, the delayed-
preemption based technique tries to postpone preemption
points by delaying the activation of a higher-priority task
as late as possible while guaranteeing the feasible schedule
of tasks. By the delayed activation of higher-priority task,
the scheduled task may avoid the preemption by complet-
ing its execution before the higher-priority task is activated.
The experimental results show that the delayed-preemption
technique can decrease a significant number of preemptions
under dynamic voltage scheduling, avoiding potential neg-
ative side effects of DVS algorithms on system energy con-
sumption.
The rest of this paper is organized as follows. In Section

2, we explain the motivation of this work. The proposed
preemption control methods are described in Section 3. We
present experimental results in Section 4 and conclude with
a summary in Section 5.

2. MOTIVATION

2.1 System Model
We consider a preemptive hard real-time system in which

periodic real-time tasks are scheduled under RM scheduling
policy (that is, the shorter the task period is, the higher the
task priority is.) 1. The target variable voltage processor
can scale its supply voltage and clock speed continuously
within its operational ranges, [vmin, vmax] and [fmin, fmax].
A set T of n periodic tasks is denoted as T = {τ1, τ2, · · · , τn}
where tasks are assumed to be mutually independent. In the
task set T , tasks are sorted based on their period length in
a nondecreasing order, i.e., the priority of τi is higher than
that of τi+1. Each task τi has its own period pi and worst
case execution time (WCET) wi

2. The relative deadline
di of τi is assumed to be equal to its period pi. Each task
releases its instance periodically, and the j-th instance of τi

is denoted by τi,j . A task instance is denoted by a single
subscript such as τα when no confusion arises. Each task
instance τα has its own arrival time rα and absolute deadline
dα. We denote α < β if i < k where α ≡ i, j and β ≡ k, l.

2.2 Motivational Example
Since a DVS algorithm generally lowers the task execu-

tion speed, the execution time of a task will be increased
under a DVS-enabled environment. Although the lowered
execution speed is desirable for reducing the processor en-
ergy consumption, it may introduce negative side effects on
the energy consumption of other system components. As we
mentioned in the previous section, as the task execution time
increases, the frequency of preemptions between tasks may
increase. More frequent task preemptions, in turn, may in-
cur considerable overhead due to increased memory accesses.
Furthermore, the lengthened task lifetime may increase the
energy consumption of the system devices which are used
by the associated tasks.
Consider a periodic task set T shown in Table 1. In ad-

dition to periods and WCETs, we assume that the average-
case execution time (ACET) of each task is 0.7, 0.7, and
1.4 as shown in Table 1, respectively. Figure 1(a) shows the
execution schedule of three tasks when DVS is not used. In
this example, we assume that the actual execution time of
each task is equal to its ACET. As shown in Figure 1(a),
there are nine jobs in the hyper-period3 , and the schedul-
ing decision is made 10 times. That is, there is only one
preemption in this case. However, when a DVS algorithm is
used, the task schedule can be changed as Figure 1(c). Fig-
ure 1(c) shows the execution schedule of tasks when lpWDA
algorithm [2] is used to schedule the processor voltage and
clock speed. Unlike in Figure 1(a), the execution times of
tasks are lengthened with lowered clock speeds and volt-
ages. Especially, in the case of τ3,1, τ3,2, and τ2,3, due to
their lengthened execution times, they cannot complete their
executions before the arrival times of higher-priority tasks,
thus being preempted by the corresponding higher-priority
tasks. In Figure 1(c), there are four preemptions. Compared
with Figure 1(a), there are three more preemptions.

1
The proposed algorithm can be generalized to different preemptive
priority-based scheduling policies such as EDF with minor modifica-
tions. In this paper, for the description purpose, we focus on the RM
policy.
2
We assume that tasks’ execution times are based on fmax.

3
Since the hyper-period is computed as LCM of tasks’ periods, the
task schedule will be similar in each hyper-period.
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Table 1: An example real-time task set T .
period (pi) WCET (wi) ACET (ai)

task 1 (τ1) 3 1 0.7
task 2 (τ2) 4 1 0.7
task 3 (τ3) 6 2 1.4

(a)
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Figure 1: Voltage scheduling examples.

Assuming that the power consumption is proportional to
the square of voltage (and clock speed is proportional to
voltage), the schedule in Figure 1(c) consumes about 33%
less processor energy than the schedule in Figure 1(a). How-
ever, when we consider the system-wide energy consumption
including the system devices (which, we assume, are pow-
ered off when no associated tasks are running), the overall
energy efficiency can be quite different, because the task life-
times can be changed due to the DVS algorithm. Figures
1(b) and 1(d) illustrate the lifetime of three tasks under two
different schedules of Figures 1(a) and 1(c), respectively. As
shown in the figures, due to the lengthened task executions
and the frequent preemptions, the sum of task lifetimes in
Figure 1(d) is about 73% longer than that in Figure 1(b).
Assuming that the energy consumption of each device is pro-
portional to the lifetime of a task that uses the device and
each task requires the same type of devices with the same
power consumption during its lifetime, the schedule in Fig-
ure 1(c) consumes about 73% more energy from the system
devices than the schedule in Figure 1(a). Furthermore, if we
consider the increased memory accesses and memory leak-
age energy due to more frequent preemptions, the negative
side effects on the system energy consumption become more
significant.
One simple method to reduce the number of preemptions

is to assign a higher voltage to the scheduled task which is
expected to be preempted by higher priority tasks. However,
such a technique is too conservative and may over-degrade
the energy efficiency of a given DVS algorithm. in the fol-
lowing section, we present preemption control techniques
which can reduce negative side effects of a given DVS algo-
rithm by reducing the task preemptions in a schedule with
a negligible degradation in the energy efficiency.

3. PREEMPTION CONTROL METHODS
The task preemption occurs when a lower-priority task

could not complete its execution before the activation of a
higher-priority task. Thus, we can approach the preemption
control problem from two directions. The first approach is to
shorten the completion time of a lower-priority task before
the arrival time of a higher-priority task, by accelerating its
execution. The second one is to delay the activation point
of a higher-priority task so that a scheduled lower-priority
task can complete its execution without the preemption. In
this section, we propose two preemption control methods
based on these two approaches for minimizing the number
of context switchings.
Before describing the proposed techniques, we define the

following notations.

• slack(τi,j , t) : the amount of slack time that τi,j has
at time t.

• wrem
i,j (t) : the remaining worst case execution time of

τi,j at time t.

• fdvs(t) : the clock speed computed by a given DVS
algorithm at scheduling time t.

We assume that a real-time scheduler has two queues:
waitQueue and readyQueue. The waitQueue and the
readyQueue contain the completed tasks and the currently
arrived tasks, respectively. All the tasks are initially queued
in waitQueue. When a task arrives, the task is moved from
waitQueue to readyQueue, and the remaining WCET of τα

is set to wα, i.e., wrem
α (t) = wα. A task is said to arrive

when the task releases its instance, while a task is said to be
activated when the task starts its execution. As τα executes,
wrem

α (t) decreases and consumes its available execution time.
When τα completes execution, its wrem

α (t) is reset to 0.

3.1 Accelerated-Completion based Preemp-
tion Control Technique

A simple method to avoid the preemption is to accelerate
the task execution so that the scheduled task can complete
its execution before the next arrival time of a higher-priority
task. The basic idea of this technique is similar to that of
Stretching-to-NTA method used in [9]. The main differ-
ence is that the clock speed is adjusted based on the worst
case execution time of the scheduled task and the next ar-
rival time of a task (regardless of its priority) in [9], while
the accelerated-completion technique adjusts the clock speed
based on the execution time distribution of the scheduled
task and the next arrival time of a higher-priority task.
When a task is scheduled at time t, the clock speed for

the scheduled task can be adjusted within the range of
[fdvs(t), fmax]. As the adjusted f(t) is close to fdvs(t) (or
fmax), the probability Ppreempt of the scheduled task be-
ing preempted gets increased (or decreased). During online
scheduling, Ppreempt largely depends on the task’s execution
time distribution, task’s priority and the scheduling time t.
In our method, we determine the clock speed based on

Ppreempt as follows. Let the cumulative density function of
the execution time distribution 4 of τα be cdf(α, x), i.e., the
probability that the execution time of τα is less than or equal
to x is computed by cdf(α, x), and the earliest arrival time
of the higher-priority tasks be nhtaα(t), i.e., nhtaα(t) =

4
In order to compute a cumulative density function, we may use a well
known distribution function or construct it during online execution
(e.g., as done in [10]). In this paper, we use the Gaussian distribution
function.
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Figure 2: Voltage scheduling examples with the pre-
emption control techniques.

MIN{ntai(t)|ntai(t) = � t
pi
	 · pi , 0 < i < α}. If θ(α, p) is

the inverse function of cdf(α, x), we adjust the clock speed

to fnew(t) =
θ(α,p)−(wα−wrem

α )

nhtaα(t)−t
· fmax. With the clock speed

set to fnew , τα will complete its execution by nhtaα(t) with
the probability of p. That is, if we want the scheduled task
to avoid the preemption with the probability of p, the clock
speed can be adjusted as

f(t) = MAX(fdvs(t),MIN(fmax, fnew(t))). (1)

In this equation, as p is close to 1.0, the clock speed is ad-
justed to a higher speed in a pessimistic way, and the prob-
ability of preemption decreases while the processor energy
consumption increases. That is, we can trade the number
of preemptions in a hyper-period with the processor energy
consumption. For example, in the situation that the por-
tion of preemption-related energy consumption is relatively
larger than that of the processor energy consumption, we
may choose a higher value as p.
Consider the example shown in Figure 1 again. When

we set θ(α, p) value as ACET of τα, the task schedule can
be changed as Figure 2(a) using the accelerated-completion
technique. In order to avoid the preemption, the clock
speeds for τ3,1 and τ3,2 are set to higher values than in Fig-
ure 1(c), i.e., 1.0. As a result, the number of task preemp-
tions is reduced from four to two as shown in Figure 2(a),
and the sum of task lifetimes is reduced by about 10% as
shown in Figure 2(b), compared to that of Figure 1(d). Also,
the processor energy consumption is reduced by 3.3%.
When the clock speed is set by using Eq. 1, the deter-

mined clock speed is usually higher than fdvs(t). Thus, it
is clear that this method may reduce the number of context
switchings. However, since most tasks are scheduled with
higher clock speeds and voltages than in the original DVS
schedule, the energy consumption in the processor core may
increase. On the contrary, when a task is completed be-
fore the preemption, its unused time, which is uncertain
before the task completion, can be utilized much earlier by
the following higher-priority tasks than in the original DVS
schedule. In this case, the increased energy consumption
(from early completions of tasks) may be compensated by
the more accurate slack estimation.

Algorithm : Compute non-preemptable section

1. τα : currently running active task
2. tcur : current time

3. When τβ is arrived at tcur

4. IF ( pβ < pα ) THEN

5. IF τβ ’s priority is highest among tasks in readyQ, THEN

6. compute slack(τβ , tcur)

7. IF ( slack(τβ , tcur) > 0 ) THEN

8. set [tcur, slack(τβ , t)] as non-preemptable section

9. ELSE allow τβ preempt τα

10. (i.e., put τα into readyQ and schedule τβ )

11. ENDIF

12. ELSE put τβ into readyQ

13. ENDIF

14. ELSE put τβ into readyQ

15. ENDIF

Figure 3: Delayed-preemption based preemption
control algorithm.

3.2 Delayed-Preemption based Preemption
Control Technique

The basic idea of the delayed-preemption method is to
postpone the schedule of higher-priority tasks as late as pos-
sible so that the lower-priority task has more chance to be
completed before the preemption. In order to compute the
lowest possible clock speed which guarantees the feasible
schedule of tasks, every DVS algorithm estimates slack times
using its own manner. If a DVS algorithm determines the
lowest possible clock speed as fdvs(t) for the scheduled task
τα, the task can be said to have the slack time slack(τα, t)
given by

slack(τα, t) =
wrem

α (t)(fmax − fdvs(t))

fdvs(t)
. (2)

When tasks have slack times, even if their execution is de-
layed by the amount of slack, the schedulability of tasks is
not affected. That is, when a higher-priority task τβ arrives
at t during the execution of a lower-priority task τα, the
execution of τβ can be safely delayed by slack(τβ, t). If τα

completes by t+slack(τβ, t), the overall task schedule is still
feasible5.
In this method, when a task τβ arrives, τβ is sched-

uled with fdvs(t) if the system is idle. If not idle and τβ

has the highest-priority among all the arrived tasks and
the running task τα, we compute fdvs(t) and slack(τβ , t).
Then, we set the time interval [t, t + slack(τβ, t)] as a non-
preemptable section, and make τα to keep running with the
current clock speed which was computed at the previous
scheduling point. Of course, if another higher-priority task
τγ (whose priority is higher than τβ) arrives during these
non-preemptable section, the non-preemptable section is re-
computed and can be changed. However, if the arrived task’s
priority is higher than τα but is not the highest among the
tasks in readyQueue, the non-preemptable section is not af-
fected. If the non-preemptable section is changed in this
case, the tasks in readyQueue may violate their deadline in
the future. When a task could not complete its execution
until the end of the non-preemptable section, we can extend
the non-preemptable section based on the slack time of the
highest-priority task in readyQueue. The algorithm of the
delayed-preemption method is summarized in Figure 3.
In the accelerated-completion based preemption control

5
We assume that, even though the higher-priority tasks are delayed,
if they do not miss their deadline, the system is still feasible.
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technique, the resulting clock speed at each scheduling point
is usually higher than the lowest possible clock speed. How-
ever, the delayed-preemption method changes preemption
points only without modifying the speed computed by the
DVS algorithm, thus the energy dissipation in processor
core is not affected significantly. Furthermore, as in the
accelerated-completion based preemption control technique,
tasks complete their execution earlier than in normal cases,
thus the unused times of tasks can be utilized earlier by the
following tasks for energy saving.
Figures 2(c) and 2(d) show the task schedule using the

delayed-preemption technique. When τ1,2 arrives at t = 3,
τ3,1 is still running. In normal cases, τ1,2 will preempt τ3,1

at t = 3. However, since τ1,2 has 0.16 time units of the slack
time, the activation of τ1,2 can be delayed to t = 3.16. At
t = 3.16, since τ1,2 has 0.14 time units of additional slack
time due to the reduced remaining execution time of τ3,1, the
execution of the non-preemptable section can be extended
to t = 3.3 and τ3,1 completes its execution at t = 3.27 with-
out the preemption. The remaining tasks can be scheduled
in a similar way, and the resulting schedule is shown in Fig-
ure 2(c). In this case, there is no preemption in the schedule
as shown in the figure, and the sum of task lifetimes is re-
duced by about 20% as shown in Figure 2(d) compared to
that of Figure 1(d). Also, the schedule in Figure 2(c) con-
sumes 8% less energy than the schedule in Figure 1(c).

4. EXPERIMENTAL RESULTS
To evaluate the efficiency of the proposed preemption-

control techniques, several experiments were performed for
three cases: (1) when a DVS algorithm is used only
(lppsRM [9], ccRM [11], and lpWDA [2], respectively), (2) when
the accelerated-completion based preemption control tech-
nique was applied to lpWDA (denoted by lpWDA-AC), and
(3) when the delayed-preemption technique was applied to
lpWDA (denoted by lpWDA-DP). In this experiments, the prob-
ability value p of lpWDA-AC was chosen as 0.5. Experiments
were performed using SimDVS, an integrated DVS simula-
tion environment [12, 13]. The energy simulator in SimDVS
is based on the ARM8 microprocessor core. The clock speed
is scaled in the range of [8, 100] MHz with a step size of 1
MHz and the supply voltage is scaled in the range of [1.1, 3.3]
V. It is assumed that the system enters into a power-down
mode when the system is idle. (The power consumption in
the power-down mode is assumed to be zero.) In the exper-
iments, the voltage scaling overhead is assumed negligible
both in the time delay and power consumption.
We performed extensive experiments using synthesized

application sets by varying the number of tasks in a task
set and by varying the processor utilizations of sets. For a
given number of tasks, 100 random task sets6 were gener-
ated, whose utilization is 0.1∼0.9. In each experiment, the
execution time of each task instance was randomly drawn
from a Gaussian distribution7 in the range of [0, WCET].
The results are given in Figure 4.
First, we estimated the energy efficiency of each algorithm

for 8-task sets, and the results are given in Figure 4(a). In
this figure, the x-axis represents the worst case processor
utilization, and the y-axis represents the normalized energy

6
The period and WCET of each task were randomly generated using
the uniform distribution within the ranges of [10, 100] ms and [1,
period) ms.
7
With the mean m = WCET

2 and the standard deviation σ =
WCET

6 .

consumption ratio to the energy consumption of non-DVS
case. As shown, an aggressive DVS algorithm lpWDA saves
the processor energy significantly. However, when the pre-
emption control techniques are applied, the energy efficien-
cies are somewhat different. In the case of lpWDA-AC, its en-
ergy efficiency is about 5% worse than that of lpWDA, while
the energy efficiency of lpWDA-DP is about 3% better than
that of lpWDA. These difference can be explained as follows.
In lpWDA-AC, in order to avoid the preemption, each task
is scheduled with higher clock speeds and voltages than in
the schedule of lpWDA while lpWDA-DP does not raise up the
clock speeds and voltages. As a result, lpWDA-AC consumes
more energy than lpWDA. However, in lpWDA-DP, since the
lower-priority tasks are usually complete its execution before
the preemptions, the unused time of the lower-priority tasks
can be utilized by higher-priority tasks, so that the higher-
priority tasks can be scheduled with lower clock speeds than
in lpWDA.
Then, we estimated the changes in task scheduling due to

DVS algorithms. Figure 4(b) shows the normalized number
of context switchings of each algorithm to that of non-DVS
case. However, in lpWDA-DP, we can see the number of con-
text switchings was reduced to the same level of the non-
DVS case. The effect of lpWDA-AC was rather disappointing.
In order to see the impact of the low-speed execution and

preemption on the task lifetime, we estimated the changed
task lifetimes, and the results are given in Figure 4(c). The
y-axis of Figure 4(c) represents the normalized task lifetime
ratio to that of non-DVS case. The figure shows, as the pro-
cessor utilization of the given task set decreases, the lifetime
of tasks increases. Furthermore, as the energy efficiency of
an algorithm is better, the lifetime of tasks also increases.
However, in the case of lpWDA-DP, its energy efficiency is
similar to or better than that of lpWDA, but the task lifetime
does not increase; It actually decreased by about 35%. That
means, using delayed-preemption technique, we can reduce
the leakage power consumption of other devices in a system
by reducing task lifetimes.
Finally, in order to understand the impact of task lifetime

increases on the system energy consumption, we estimated
the system energy consumption with the following simplify-
ing assumptions: (1) Each device has three power states, ac-
tive (high-power mode), idle (low-power mode), and standby
(power-off mode). A device enters into the idle mode when
the associated tasks are activated, and consumes the active
mode power only when it is accessed. In other words, when
a task execution time is lengthened due to a lowered clock
speed, associated devices consume more energy in their idle
mode but the energy consumption in their active mode is
not changed. (2) When a task is idle (i.e., not activated),
its associated devices enter into the standby mode and do
not consume energy. (3) Each task does not share its devices
with other tasks.
Usually, the power consumption of a device in its idle

mode is much lower than in its active mode, and widely
varies device by device (e.g., in the idle mode, WLAN
card [14] and CT802 (Audio Chip) [15] consume 3% and
15% of active power, respectively). We define Ridle as the
ratio of the idle mode power consumption to the active
mode power consumption of a device (i.e., Poweridle =
Ridle · Poweractive), and experiments were performed by
varying Ridle. Figure 4(d) shows the evaluation results of
algorithms for 8-task sets whose worst case processor utiliza-
tion is 0.5. In this evaluation, we assume the CPU energy
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(a) Processor energy
consumption for 8-task sets
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(b) Context switchings for
8-task sets
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(c) Lifetime for 8-task sets
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(d) System energy
consumption for 8-task sets

Figure 4: Experimental results.

consumption takes 50% portion of the system energy con-
sumption in the non-DVS case8. In this figure, the x-axis
represents Ridle, and the y-axis represents the normalized
system energy saving ratio to that of the non-DVS case. As
shown in Figure 4(d), as Ridle increases, the system energy
saving benefit of each algorithm decreases. In particular,
in the case of lpWDA and lpWDA-AC which increase task life-
times significantly, the energy saving ratio decreases much
faster than others as Ridle increases. lpWDA and lpWDA-AC
consume more energy than the non-DVS case even when
the idle mode energy consumption is relatively small (i.e.,
Ridle < 0.085 and Ridle < 0.072, respectively). However, in
the case of lpWDA-DP which suppresses the task lifetime in-
crease by avoiding unnecessary preemptions between tasks,
its energy efficiency is higher than that of the non-DVS case
for even larger Ridle values (up to 0.15).

5. CONCLUSIONS
We have discussed the possible side effects of a DVS al-

gorithm on the system energy consumption, and presented
the techniques that reduce the number of task preemptions
while keeping the energy efficiencies of the existing DVS al-
gorithms. For this, we proposed two preemption control
methods, i.e., the accelerated-completion based technique
and the delayed-preemption based technique. Our experi-
mental results show that the delayed-preemption based tech-
nique can reduce the preemption-related system overhead,
thus reducing the negative impacts of the DVS algorithms
on the system level power consumption.
The work described in this paper can be extended in sev-

eral directions. In this paper, we focused on lpWDA, but the
proposed preemption control technique can be applied to
other existing DVS algorithms (such as ccEDF and laEDF in
[11]) as well. A similar study can be also performed using
actual applications on a hardware DVS platform. Such a
study will be useful to better understand the preemption
effects on the energy consumption in the real system.
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