
Reducing Energy Consumption of Smartphones Using
User-Perceived Response Time Analysis

Wook Song, Nosub Sung, Byung-Gon Chun†, and Jihong Kim
Department of Computer Science and Engineering

Seoul National University, Korea
{wooksong,nssung,jihong}@davinci.snu.ac.kr

†{bgchun}@snu.ac.kr

ABSTRACT
We propose a novel power optimization framework based
on user-perceived response time analysis. Unlike most ex-
isting power optimization approaches, our framework takes
explicit account of the quality of user experience into apply-
ing low-power techniques. We divide an execution of a given
user-interactive session into two intervals, one where the sys-
tem response time directly affects user experience and the
other where the system response time does not affect user
experience. For the user-oblivious response time interval,
our framework allows more aggressive applications of low-
power techniques for a higher energy efficiency. In order
to identify the user-perceived response time of smartphone
applications during run time, we developed an on-line user-
perceived response time analyzer (ura) for Android-based
smartphones. Based on the analysis result of ura, our pro-
posed power optimization framework employs more aggres-
sive low-power techniques in the user-oblivious interval. Our
experimental results on a smartphone development board
show that the proposed technique can reduce the CPU en-
ergy consumption by up to 65.6% over the Android’s default
ondemand cpufreq governor.

1. INTRODUCTION
Smartphones are highly interaction-oriented devices be-

cause most of the usage scenarios on smartphones involve
frequent user interactions with smartphones. Moreover, in
most cases, a user tends to focus on one app1 at a time
although multi-tasking support is commonly available for
modern smartphones [1]. For example, when reading new
incoming emails, the user first launches an email app. Once
the email app is launched, the user opens an email and reads
it for a while. In this example, the user’s whole attention is
directed to a single interactive session at a time. Therefore,
the quality of user experience with smartphones largely de-
pends on how smoothly and quickly smartphones react to
the user’s various interactions. In the case of an email app,
the quality of user experience is significantly affected by the

1In this paper, we call an application by a (more popular)
shorthand, app.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’14, February 26–27, 2014, Santa Barbara, CA, USA.
Copyright 2014 ACM 978-1-4503-2742-8 ...$15.00.

launching time (which can be regarded as the response time
of an app launching interaction) and the response time of
loading a selected email. Since the response time of an in-
teractive session has a large impact on the quality of user
experience, understanding and analyzing the response time
of an interactive session in smartphones are important re-
quirements for improving user experience.

In conventional computing systems, the response time of
a task is defined as the length of the time interval between
the start and the end of a task execution. However, for
smartphones, most users have a tendency to interact with
the smartphones in a hurried fashion so that they subjec-
tively decide that the smartphones are ready for the next
interaction even though the task execution has not been
fully completed. For this reason, the existing definition of
the response time, which we call computation-centric, is not
appropriate for accurately representing the user-perceived
effective response time in smartphones [2]. For example, in
the case of launching an email app, a user may consider that
the launching has been completed when the visible user in-
terface for the next interaction appeared on the display as its
final form even though several display-insensitive computa-
tions may be still executing. In this case, the user-perceived
response time is a lot shorter than the computation-centric
response time. Therefore, in order to accurately represent
the user-perceived response time in smartphones, we need a
different definition of the response time from the smartphone
user’s perspective.

In this paper, we propose such a definition of the response
time, which we call the display-centric response time, which
is known to be a critical metric for the quality of user expe-
rience of the smartphone. The display-centric response time
is defined as the period from the beginning of a user interac-
tion (e.g., touch) to the time when all of the visible interface
for the next interaction is drawn, which indicates the effec-
tive response time felt by users. (In this paper, we use terms
the display-centric response time and the user-perceived re-
sponse time, interchangeably.) The display-centric response
time distinguishes the task execution in two parts, one af-
fecting the visible portion of the display (called a display-
sensitive part) and the other not affecting the visible por-
tion of the display (called a display-insensitive part). For
example, in the case of an email app, tasks such as loading
cached emails from the storage and fetching new emails from
the servers are examples of the former. Background tasks
such as downloading attached files and embedded images are
examples of the latter.

If we can identify the end of the display-sensitive part of
a task execution (that is, the display-centric response time)
during run time, more intelligent system optimizations can
be applied to smartphones. For example, if an OS knew that
the current execution does not affect the user visible display

(a) The case when Si is divided into IpercSi
and IoblvSi

.

(b) The case when Si consists of IpercSi
only without any

think time.

Figure 1: Two cases on how Si is divided into IpercSi
and IoblvSi

.

for the next interaction, an OS power management scheme
may lower the CPU clock frequency more aggressively for a
higher energy efficiency without any negative effect on user
experience. Existing mobile OS power management schemes
(such as the cpufreq governors of the Linux kernel), however,
cannot make such aggressive decisions because the CPU fre-
quency is mostly decided by the recent CPU utilization his-
tory which cannot quickly react to changing contributions of
the current computation on the quality of user experience.

In this paper, we propose a novel CPU power manage-
ment framework based on on-line user-perceived response
time analysis. In order to identify the display-centric re-
sponse time of smartphone apps during run time, we de-
veloped ura, a user-perceived response time analyzer for
Android-based smartphones. Based on ura’s on-line iden-
tification of the display-centric response time, our proposed
framework enables more aggressive low-power techniques to
be employed while executing display-insensitive parts of task
executions (which do not affect the user-perceived response
time). As a concrete example of low-power techniques, we
use dynamic voltage scaling (DVS) to demonstrate our pro-
posed framework.

In order to evaluate our proposed technique, we imple-
mented ura and a ura-based CPU power management gov-
ernor in the Android platform, version 4.0.4 (ICS) running
on the Samsung Exynos 4x12-based SMDK smartphone de-
velopment board. Our SMDK board is a specialized de-
velopment board for Galaxy S3 smartphones with on-board
component-level power measurement support. Experimen-
tal results show that the proposed technique can reduce the
CPU energy consumption by up to 63.8% over the Android’s
default ondemand policy without degrading the quality of
user experience.

The rest of this paper is organized as follows. We explain
the key idea behind our proposed framework in Sec. 2. In
Sec. 3, we describe an overview of ura and illustrate how the
ura-based CPU power management technique can improve
the CPU energy efficiency. We report experimental results
in Sec. 4. Sec. 5 presents related work and Sec. 6 concludes
with a summary and future work.

2. BASIC IDEA
As a truly interaction-oriented device, most usage scenar-

ios of a smartphone are composed of a sequence of interactive
sessions, S1, ..., SN . Each interactive session Si is defined
as an interval between two consecutive user inputs. We can
further divide the execution of an interactive session Si into
two subintervals, IpercSi

and IoblvSi
, a user-perceived response

Figure 2: Changes in the CPU power consumption during the
app launching session.

time interval and a user-oblivious response time interval, re-
spectively. IpercSi

represents the period from the beginning
of the interactive session Si initiated by a certain user input
to the time when all of the user-visible interface for the next
user interaction are displayed. (In other words, the length
of IpercSi

is the display-centric response time of Si.) IoblvSi
, on

the other hand, corresponds to the user’s think time before
the next user interaction. (The length of IoblvSi

is determined
by the time when the next user input is entered for the next
interaction.) Figure 1 illustrates how the interactive ses-
sion Si may be further divided into IpercSi

and IoblvSi
. In the

case of the example in Figure 1(a), after all the user-visible
contents are drawn for the user input #1, Si+1 is initiated
after some think time (i.e., after IoblvSi

) by the user input #2.
On the other hand, the user may input the user input #2
right after IpercSi

without any think time.2 Figure 1(b) shows

such an example. The length of IoblvSi
is almost zero in this

case and the new interactive session Si+1 begins without any
think time. Since the system performance level in IoblvS is
less likely to affect the quality of user experience, we may
take a more aggressive approach in optimizing power/energy
consumption while executing in IoblvS without degrading the
quality of user experience.

In order to better motivate our proposed optimization
framework, we illustrate how the energy consumption of an
app launching interactive session SL can be improved using
an example. Figure 2 shows how the CPU power consump-
tion changes during the first 15 seconds after the Android
web browser is launched. In order to emphasize differences
between IpercSL

and IoblvSL
, we chose the mobile start page of

Yahoo (which included a fair amount of background com-
putations in IoblvSL

). The X-axis, the Y-axis on the left side,
and the Y-axis on the right side represent the elapsed time,
CPU frequency, and CPU power consumption, respectively.
In this example, at t = 0.4, the web browser app is launched.
After the required resources are downloaded from the Yahoo
website, all the user-visible contents are drawn at t = 5.6.
That is, IpercSL

=[0.4, 5.6]. As shown in Figure 2, although
there are additional computations related to the launching
session, the user perceives that the launching of web browser
was completed at t = 5.6. (We will describe how to identify
the end of IpercSL

in Sec. 3.1.) Even when executing in IoblvSL
,

we observe that the CPU frequency is frequently increased
to the maximum frequency of 1,400 MHz. Furthermore, the

2There is the third case when the user input #2 is initi-
ated within IpercSi

. Since our proposed technique does not

change the execution behavior in IpercSi
, it is considered as

the beginning of the new interactive session Si+1.

Figure 3: CPU energy consumption breakdowns between Iperc

and Ioblv over varying durations of the think time.

number of active cores remains three3 until t = 8.6. Since
the execution in IoblvSL

does not affect the quality of user ex-

perience, if we knew that the current execution were in IoblvSL
,

we could have lowered the CPU frequency to the minimum
frequency of 200 MHz.4 In this case, the energy consump-
tion in IoblvSL

=[5.6, 8.6] could be reduced by 47.0% over the
Android’s default CPU DVS policy, assuming that the next
user input event occurred after the think time of 3 seconds.

In order to evaluate the applicability and effectiveness of
our proposed framework over different apps, we measured
the energy consumed in both Iperc and Ioblv, varying du-
ration of the think time in our SMDK measurement board.
Figure 3 summarizes breakdowns of the CPU energy con-
sumption between Iperc and Ioblv for five apps over different
durations of the think time. We measured the CPU energy
consumption during the launching sessions of the five apps.
Our measurements show that up to 78.7% of the total CPU
energy is consumed in Ioblv. For example, in the case of web
browser, when the think time is set to 6 seconds, 45.7% of
the total CPU energy is consumed in Ioblv. When the think
time is set to 3 seconds, 46.6% of the total CPU energy con-
sumption is from Ioblv on average. Since we can lower the
CPU frequency more aggressively in Ioblv, our measurement
result strongly indicates that our proposed framework can
significantly reduce the energy consumption of smartphones.

3. URA-BASED POWER OPTIMIZATION

3.1 User-Perceived Response Time Analyzer
Our ura-based power optimization framework requires

the user-perceived response time of each interactive session
Si to be computed on-line. In the proposed framework, ura
is responsible for the identification of the end of IpercSi

during
run time from the execution of Si. Our proposed aggres-
sive optimization technique, therefore, can be immediately
applied from the first IoblvSi

execution. In this section, we
describe the design and implementation of our ura-based
power optimization framework for the Android platform.

In Android, only one UI thread per app is allowed to up-
date all the user-visible contents of an app. Furthermore,
when a display-update request is issued by the UI thread,
the Android platform does not immediately redraw the vis-
ible user interface. Instead, it is first posted to the event
queue of the UI thread of the app and then, the UI thread
subsequently dequeues the request and handles it. Exploit-
ing Android’s display update mechanism, ura can identify

3The SMDK board has a quad-core ARM cortex-A9 as a
main CPU.
4In Figure 2, web browser executes tasks such as storing the
downloaded resources in the web cache, capturing a snapshot
of the current web page, and updating the browser history
(as shown in the area A.) In addition, in the area B, web
browser regularly renders Javascript code in the web page
even though the web page does not dynamically change the
displayed contents [3].

the end of IpercSi
by tracking all the display-update requests

related to the user interaction in a given interactive session
Si and detecting when the last display-update request of Si

is processed. Although the UI interaction with the user is
the main source of generating display-update requests, it is
not the only source. For example, in order to refresh user vis-
ible contents such as advertisement banners, display-update
requests can be also generated. In this case, ura can auto-
matically distinguish such requests from the display-update
requests related to the user interaction because ura only
tracks the display-update requests issued by the user input.

In order to detect the end of IpercSi
for a given Si, ura

works as follows:

Step 1. Catch an interactive user input which indicates
the beginning of Si.

Step 2. Keep track of all the spawned threads from
the user input (if any).

Step 3. Detect display-update requests related to serv-
ing the user input.

Step 4. Check whether all the display-update requests
were processed so that the end of IpercSi

can be decided.

(In the case of when the next user interaction occurs
before all the display-update requests are processed,
the end of IpercSi

can be also decided at this moment.)

Figure 4 shows an architectural overview of ura and the
ura-based cpufreq governor within the Android platform.
ura consists of two main modules, the modified method call
interpreter, modInterpreter, and the end of user-perceived re-
sponse time identifier, endIdentifier. As an additional mod-
ule to the Dalvik VM, modInterpreter is responsible for steps
1, 2, and 3. For step 4, endIdentifier determines the user-
perceived response time. By taking advantage of the user-
perceived response time, the ura-based governor adjusts the
CPU frequency to achieve a higher CPU energy efficiency.
In the current implementation, the Davik VM interpreter is
modified to instrument the method invocation and method
return during run time. For this reason, ura cannot trace
the native method invocations, which are included in na-
tive libraries such as the native OpenGL 5. However, the
OpenGL ES API, which is based on the Java language and
provided by the Android SDK, are fully supported by ura.

ModInterpreter consists of three submodules, the input
event detector, the spawned thread tracker, and the UI up-
date detector. The main function of the input event detec-
tor is to capture events related to a particular user input.
The spawned thread tracker is responsible for tracing newly
spawned threads while processing the user input. All the
message exchanges between the main thread and spawned
threads are also traced by the spawned thread tracker. Be-
sides, if the main thread sends messages to the other threads
(which are already spawned before the user input), such
threads are tracked as well. The UI update detector keeps
track of display-update requests created for serving the user
input.

Figure 5 illustrates how ura identifies the user-perceived
response time using an example. When a user interacts with
Android UI components such as widget and view packages,
a callback method in the event listener interface is invoked
to handle a particular interaction. (In order to support dif-
ferent types of user interactions, the Android SDK provides
various callback methods. For example, user interactions
such as a touch, a click, and a long-click are handled by

5Although there are important apps (such as game apps)
that use the native OpenGL, most Android apps are written
in JAVA only.

Figure 4: An architectural overview of ura.

onTouch(), onClick(), and onLongClick() methods, respec-
tively.) In the example in Figure 5, the callback method,
onClick(), is called because the user clicks the user interface
resource such as the Button widget. As the first step of
identifying the user-perceived response time, the input event
detector traces all the method invocations related to the call-
backs for the user input, so as to identify the start ts of the
current interactive session Si. In the case of the example
in Figure 5, the input event detector catches the onClick()
invocation. For steps 2 and 3, the input event detector also
provides both the spawned thread tracker and the UI update
detector with information about all the method invocations
during the execution of onClick().

When an app is launched, a special thread, called main
thread, is created by the Android system. While only main
thread can update the user-visible contents, compute-intensive
work is performed by separate threads, called worker threads,
for better responsiveness. If a worker thread requires updat-
ing the user interface, such requests are delegated to main
thread. In order to support inter-process communication
(IPC) between main thread and worker thread, various APIs
are supported by the Android SDK, for interchanging Mes-
sage and Runnable objects between the main thread and the
worker thread. By exploiting the information (which is pro-
vided by the input event detector) on the method invoca-
tions during the execution of the callbacks for the user input,
the spawned thread tracker traces newly spawned worker
threads and all the invocations among such IPC APIs. For
example, as shown in step 2 of Figure 5, when main thread
wants to perform compute-intensive work via worker thread,
main thread invokes sendMessage() while the worker thread
invokes dispatchMessage(). In this case, the spawned thread
tracker catches the sendMessage() and dispatchMessage()
invocations. And then, in order to detect UI update requests
created by worker thread, information about all the method
invocations during the execution of dispatchMessage() is fed
to the UI update detector.

To recognize the changes in the user-visible contents, ura
traces UI update requests issued by the user input and cap-
tures the moment at which the last request is handled. For
example, at step 3 in Figure 5, the invalidate() methods are
invoked twice during the execution of both onClick() and
dispatchMessage(). At these points, the UI update requests
are posted to the event queue of main thread. In order to
track the UI update requests, the UI update detector thus
catches the invalidate() invocations and watches the event
queue for the UI update requests. Subsequently, when main
thread dequeues the last update request from the event queue
and invokes draw() to handle it (at te in step 4 of Figure 5),
endIdentifier determines te as the end of Iperc. In this exam-
ple, the user-perceived response time is estimated as (te-ts).

3.2 URA-based CPU Frequency Governor
Taking advantage of ura’s on-line identification of Ioblv

for a given interactive session, we developed a new cpufreq
governor, the oninterval cpufreq governor, for Linux CPU

Figure 5: An example of identifying the user-perceived response
time.

power management. Algorithm 1 describes how the onin-
terval cpufreq governor decides the CPU frequency. As
with other Linux cpufreq governors, the CPU frequency is
updated at each sampling period (e.g., 20 ms). The onin-
terval governor relies on endIdentifier of ura for keeping
track of whether the current execution is in Iperc or Ioblv,
as described on line 2 in Algorithm 1. Whenever the new
interactive session Si is started, the current execution in-
terval type is set to Iperc. When endIdentifier detects the
end of Iperc, it is changed to Ioblv. Based on this infor-
mation, the oninterval governor employs the lowest CPU
frequency while executing Ioblv. Furthermore, the number
of active cores is also restricted to one for further power
reduction in Ioblv. Otherwise, decisions by the ondemand
cpufreq governor [4], which is the default governor in most
kernels for the Android Open Source Project, are applied
in adjusting the CPU frequency. When the CPU utilization
exceeds the predefined upper threshold (e.g., 95, Uhigh in Al-
gorithm 1), for higher responsiveness, the ondemand cpufreq
governor quickly switches to the maximum CPU frequency.
On the other hand, if the CPU is less loaded (e.g., when
the CPU utilization falls below 20, Ulow in Algorithm 1),
the governor gradually decreases the frequency. Therefore,
when the new user input is initiated, the oninterval cpufreq
governor can rapidly adapt to changing CPU utilizations.

4. EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of our proposed frame-

work, we have implemented ura and ura-based CPU power
management technique on the Samsung Exynos 4x12-based
SMDK board running Android 4.0.4 (Ice Cream Sandwich).
We modified the Dalvik VM interpreter for tracking all the
method calls related to the identification of the end of the
user-perceived response time. ModInterpreter and endIdenti-
fier (which were described in Sec. 3.1) were implemented in
the Dalvik VM and the Android Framework, respectively.
We also modified the Linux kernel’s sysfs interface slightly
to support the ura-based CPU frequency governor. The
oninterval cpufreq governor was also added to the Linux
kernel, version 3.0.15. In our evaluations, we have experi-
mented with 7 apps under different usage scenarios. Each
app usage scenario consists of two consecutive interactive
sessions. Table 1 summarizes selected apps and their us-
age scenarios. An in-house scenario replay tool, which was
implemented using the MonkeyRunner tool [5], is used to
automatically execute the usage scenarios.

Prior to evaluating the efficiency of the proposed ura-
based CPU power management framework, we first vali-
dated if ura can accurately estimate the user-perceived re-

Algorithm 1 Pseudo code for the oninterval algorithm.

1: begin
2: curExecIntervalType := getCurExecIntervalType();
3: nextFreq := computeNextFreq OnInterval(

curExecIntervalType);
4: setCpuFreq(nextFreq);
5: end

6: function CpuFreq computeNextFreq OnInterval(
curExecIntervalType)

7: begin
8: if curExecIntervalType = Iperc then
9: curFreq := getCurFreq();

10: return computeNextFreq OnDemand(curFreq);
11: else if curExecIntervalType = Ioblv then
12: //fmin is the minimum CPU frequency.
13: return fmin;
14: endIf
15: end

16: function CpuFreq computeNextFreq OnDemand(
curFreq)

17: begin //The ondemand algorithm starts from this point.
18: curUtil := getCpuUtilzation()
19: if curUtil >Uhigh then
20: //fmax is the maximum CPU frequency.
21: return fmax;
22: else if curUtil <Ulow then
23: nextFreq := curFreq × 0.8;
24: return nextFreq;
25: else
26: return curFreq;
27: end

Figure 6: User-perceived response time differences between ura
and manual measurements.

sponse time. In order to evaluate the accuracy of the es-
timated response time from ura, we have manually mea-
sured display-centric response times of our benchmark apps.
For the manual measurement, we recorded the screen of the
SMDK smartphone development board during the execution
of each usage scenario with a digital video camera, which
supports 30 fps frame rate. The recorded video was then
analyzed frame by frame so that we can manually quantify
the response time of the interactive sessions. Figure 6 com-
pares user-perceived response times from manual measure-
ment and ura. The X-axis and the Y-axis denote various
Android apps and their user-perceived response times, re-
spectively. As shown in Figure 6, ura accurately estimates
the user-perceived response times with an average error of
5.2% over manually measured times, thus achieving a suf-
ficient accuracy for ura-based power/energy optimizations.
Moreover, in our implementation on the smartphone devel-
opment board, ura incurs additional computation overhead
by up to only 1.2% of the user-perceived response time when-
ever the user-perceived response time is estimated.

Table 1: Scenario descriptions of 7 benchmark apps.

Figure 7 shows the impact of the proposed oninterval
governor on energy savings over varying durations of the
think time for 14 interactive sessions. The result shows that
the oninterval governor can save the CPU energy on aver-
age by 27.0% over the ondemand governor when the duration
of the think time is 3 seconds. For S12 (gReader), the max-
imum energy saving of 65.6% is achieved with 5 seconds of
the think time. For 9 out of 14 scenarios, the energy saving
ratios increase as the duration of the think time grows. For
S7, S9, S11, S13, and S14, on the other hand, the percentage
of energy savings decrease as the duration of the think time
grows after those intensive computation periods. This is be-
cause most background computations are completed within
a couple of seconds (2, 1, 1, 3, and 1, respectively) after
the end of the user-perceived response time. As shown in
Figure 7, although the maximum energy savings were ob-
served when the duration of the think time is 6 seconds,
the oninterval governor can be useful even under shorter
think times. When the think time is decreased to 1 and
2 seconds, our proposed oninterval governor can save the
energy consumption, on average, by 21.7% and 25.7%, re-
spectively over ondemand. Since the CPU power can account
for up to 40% of the total power consumption in the latest
smartphones [6], the oninterval governor can reduce the
total power consumption by up to 10.3% when the duration
of the think time is 2 seconds.

In order to understand the impact of an aggressive DVS
decision on the quality of user experience in the following
interactive session, we compared, for each app usage sce-
nario in Table 1, how the user-perceived response time of
the second interactive session changes under the oninter-
val governor while varying the duration of the think time of
the first interactive session. Table 2 shows normalized user-
perceived response times of seven second interactive sessions,
where user-perceived response times of seven second interac-
tive sessions under the ondemand governor are used as base-
lines. We ran each scenario 100 times and the average of
measured times was used for a comparison. For 5 out of
7 scenarios, normalized user-perceived response times range
from 0.99 to 1.01. For S10 and S14, the oninterval gov-
ernor increases the normalized user-perceived response time
by up to 3% over the ondemand governor. Since our app
usage scenarios all access remote servers through the wire-
less network (whose latency often fluctuates), we conclude
that there is no significant difference in the user-perceived
response time of the second interactive sessions between the
ondemand governor and oninterval governor.

5. RELATED WORK
Recent investigations such as AppInsight [7] have also fo-

cused on analyzing the performance of smartphone apps
from the user’s perspective. For example, by providing app
developers with code-level information on the critical path

Figure 7: Changes in the average energy saving of 14 interactive
sessions over varying durations of the think time.

Table 2: A comparison of normalized user-perceived response
times of seven second interactive sessions over varying durations
of the think time in the first interactive sessions.

for every user interaction, AppInsight can help the devel-
opers diagnose performance bottlenecks of their apps from
the user’s perspective. While AppInsight is effective in guid-
ing the developer to improve user experience, our approach
is different from AppInsight in that we focus on transpar-
ent system-level optimizations using such high-level infor-
mation, instead of requiring the developer to modify the
app.

Several groups have also proposed CPU frequency-scaling
techniques by taking account of the quality of user experi-
ence. In particular, SmartCap [8] has shown that the neural
network-based inference model can be useful to decide the
minimal acceptable frequency without degrading user expe-
rience. The technique proposed in AURA [9] is also similar
to our approach. In their approach, AURA can effectively
decide the CPU frequency for each interactive session by ex-
ploiting an app classification scheme based on the user inter-
action intensity. They propose CPU frequency setting algo-
rithms based on the Markov Decision Process using the app
classification scheme. However, our work is fundamentally
different from existing CPU frequency scaling techniques in
that we take advantage of the user-perceived response time
as a main hint for adjusting the CPU frequency.

Our proposed technique can be viewed as a simplified ver-
sion of vertically-integrated OS-directed power management
techniques such as Application Modes [10]. In Application
Modes, for example, an app provides several working modes
with different data fidelity while consuming different amount
of power. Using a narrow interface between the OS and apps,
during run time, the OS informs the app of mode transi-
tions by which the limited battery capacity can be better
managed. The OS makes such a transition taking account
of vertically-collected information such as user preference,
available application modes and the remaining battery ca-
pacity. By interpreting as a mode transition event the detec-
tion of the end of Iperc in the Dalvik VM, which signifies an
important fidelity change point from the user’s perspective,
our approach can be viewed as a simplified version of Ap-
plication Modes. However, our proposed approach does not

require any effort from app developers, which we believe the
main advantage of our approach over Application Modes.

6. CONCLUSIONS
We have presented ura, a user-perceived response time

analyzer for Android-based smartphones, and a new CPU
power management framework based on ura. By taking
advantage of the on-line identification of the user-perceived
response time from ura, our proposed CPU power man-
agement framework allows more aggressive low-power tech-
niques to be applied to smartphones. In order to demon-
strate the effectiveness of our proposed framework, we have
developed the oninterval cpufreq governor. Based on un-
derstanding and analyzing the user-perceived response time,
our proposed oninterval governor could make aggressive
DVS decisions without any negative effect on user experi-
ence. Our experimental results show that the oninterval
governor can save the CPU power consumption by up to
65.6% over the Linux default ondemand governor. Our cur-
rent ura-based power optimization framework can be fur-
ther extended to manage the energy consumption of different
system components such as memory subsystem and network
interfaces by exploiting the user-perceived response time.

ACKNOWLEDGMENTS We would like to thank Eyal de
Lara, our shepherd, and anonymous reviewers for valuable feed-
back that greatly contributed to improving the final version of this
paper. This research was supported by Next-Generation Informa-
tion Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Sci-
ence, ICT and Future Planning (MSIP) (No. 2010-0020724) and
was also supported by Basic Science Research Program through
NRF funded by MSIP (NRF-2013R1A2A2A01068260). The ICT
at Seoul National University and IDEC provided research facili-
ties for this study.

7. REFERENCES
[1] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R.

Govindan, and D. Estrin. Diversity in smartphone usage. In
Proceedings of the ACM International Conference on Mob-
ile Systems, 2010.

[2] X. Bao, M. Gowda, R. Mahajan, and R. R. Choudhury. T-
he case for psychological computing. In Proceedings of the
International Workshop on Mobile Computing Systems and
Applications, 2013.

[3] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J.
P. Singh. Who killed my battery?: Analyzing mobile brows-
er energy consumption. In Proceedings of the ACM Intern-
ational Conference on World Wide Web, 2012.

[4] V. Pallipadi, and A. Starikovskiy. The ondemand governor.
In Proceedings of the Linux Symposium, vol. 2, 2004.

[5] Android Open Source Project. Monkeyrunner. http://dev-
eloper.android.com/tools/help/monkeyrunner_concepts.
html, 2013.

[6] X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes. How is
energy consumed in smartphone display applications? In P-
roceedings of the International Workshop on Mobile Comp-
uting Systems and Applications, 2013.

[7] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. O-
bermiller, and S. Shayandeh. AppInsight: Mobile app perf-
ormance monitoring in the wild. In Proceedings of the USE-
NIX Conference on Operating Systems Design and Implem-
enation, 2012.

[8] X. Li, G. Yan, Y. Han, and X. Li. SmartCap: User experie-
nce-oriented power adaptation for smartphone’s application
processor. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe, 2013.

[9] B. K. Donohoo, C. Ohlsen, and S. Pasricha. Aura: An app-
lication and user interaction aware middleware framework
for energy optimization in mobile devices. In Proceedings of
the IEEE International Conference on Computer Design,
2011.

[10] M. Martins, and R. Fonseca. Application modes: A narrow
interface for end-user power management in mobile devices.
In Proceedings of the International Workshop on Mobile C-
omputing Systems and Applications, 2013.

