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Abstract—Mobile devices, such as smartphones, have become a necessity in our daily life. However, users may notice that after being
used for a long time, mobile devices begin to exhibit sluggish response. Based on an empirical study on a collection of aged
smartphones, this work identified that file fragmentation is among the key factors that contribute to the progressive degradation of
response time. This study takes a three-step approach: First, this study designed a set of reproducible file-system aging processes
based on User-Interface (UI) script replay. Through the aging processes, it confirmed that file fragmentation quickly emerged, and
SQLite files were among the most severely fragmented files. Second, based on the workloads of a selection of popular mobile
applications, this study observed that file fragmentation did impact on user-perceived latencies. Specifically, the launching time of
Chrome on an aged file system was 79% slower than it was on a pristine file system. Third, this study evaluated existing treatments of
file fragmentation, including space preallocation, persistent journal, and file defragmentation to understand their efficacies and
limitations. This study also evaluated a state-of-the-art copyless defragmenter, janusd, to show its advantage over the existing
methods.

Index Terms—Measurements, flash memory, file fragmentation, I/O performance.
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1 INTRODUCTION

Mobile devices, including smartphones, tablets and wear-
able devices, have gained increasing popularity among
people. Users of mobile devices are highly sensitive to
system responsiveness. Towards better user experience on
mobile devices, research efforts have been made in various
aspects, e.g., reducing energy consumption [3], enhancing
mobile network performance [4], and optimizing I/O per-
formance [5], [6], [7]. As reported in recent studies, I/O
efficiency is among the key factors that affect the over-
all responsiveness of mobile devices [5], especially when
mobile applications involve frequent transactions through
the database middleware [6]. Many of the prior studies at-
tribute the poor system response time to the highly random,

This paper is an extended version of [1] and partially involves our prior work
janusd [2].
C. Ji, R. Pan and C. Xue are with the Department of Computer Science, City
University of Hong Kong, Hong Kong. (e-mail: chengji4-c@my.cityu.edu.hk;
riweipan@cityu.edu.hk; jasonxue@cityu.edu.hk).
L. Chang is with the Department of Computer Science, College of
Computer Science, National Chiao Tung University, Taiwan. (e-mail:
lpchang@cs.nctu.edu.tw).
S.S. Hahn and J. Kim are with the Department of Computer Sci-
ence and Engineering, Seoul National University, Korea. (e-mail: shane-
hahn@davinci.snu.ac.kr; jihong@davinci.snu.ac.kr).
S. Lee is with the Daegu Gyeongbuk Institute of Science and Technology
(DGIST), Korea.(e-mail: sungjin.lee@dgist.ac.kr).
L. Shi is with the College of Computer Science, Chongqing University, China.
(e-mail: shiliang@cqu.edu.cn) (corresponding author).
This work is partially supported by NSFC (61772092 and 61572411), Min-
istry of Science and Technology of Taiwan (MOST 104-2221-E-009-011-
MY3 and 107-2628-E-009-002-MY3). Jihong Kim was supported by the
National Research Foundation of Korea (NRF) grant funded by the Korea
government (Ministry of Science and ICT) (NRF-2015M3C4A7065645 and
NRF-2018R1A2B6006878). Sungjin Lee was supported by the NRF grant
funded by the Korea government (Ministry of Science and ICT) (NRF-
2017R1E1A1A01077410) and the DGIST R&D Program of the Ministry of
Science and ICT (18-EE-01).

synchronous I/O operations produced by the redundant
journal mechanisms in the file system and database mid-
dleware [7]. However, a common perception among users
is that the responsiveness of mobile devices progressively
degrades over time. While a factory-reset on a mobile device
would usually restore the original system performance, the
sluggish system response time recurs again in a short period
of time, usually a couple of weeks.

In this study, we identified that the progressive response
time degradation in mobile devices is highly related to file
fragmentation. After a file system undergoes sufficiently
many file creation and deletion operations, it may have
to store a new file in non-contiguous storage spaces. As a
mainstream file system for mobile devices, Ext4 employs
extent-based, delayed allocation strategies for fragmentation
avoidance. However, the highly random, synchronous write
behaviors of Android applications neutralize the efficacy of
the anti-fragmentation mechanisms of Ext4. The goals of
this study are to understand how bad file fragmentation
in Android devices is and how fragmentation is produced
(the measurement part), how fragmentation impacts on
user-perceived latencies (the evaluation part), and the ef-
ficacy and limitation of existing methods of fragmentation
management (the treatment part). These three parts are
explained as follows:

Fragmentation Measurement. First, we attempted to un-
derstand how bad file fragmentation is in real smartphones.
We picked up a selection of aged smartphones, each of
which had undergone at least six months of daily use. By ex-
amining the file system snapshots of these smartphones, we
observed severe file fragmentation. For example, on a one-
year-old Google Nexus 5, the file newsfeed_db-journal
of the Facebook app was fragmented into 7 pieces of 7 KB
on average, and these fragments were randomly dispersed
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Fig. 1: Android I/O System Overview.

over a range of 1.5 GB storage space. We also identified
that database files are among the most severely fragmented
files. To understand how file fragmentation was developed
in these devices, we designed a tool, AutoAge, which sys-
tematically ages a file system in a reproducible manner.
We found that, even if the file system in a smartphone is
initialized by a factory reset on the smartphone, with the
aging process, file fragmentation emerged within a short
period of use (in about two weeks). We also identified that
the production of file fragmentation is closely related to the
file access behaviors of the database middleware and the
I/O behaviors of the Ext4 file system. They collaboratively
produced highly random, synchronous block write requests,
which defeated the anti-fragmentation mechanisms in Ext4.

Evaluation of Performance Impact. In the second part,
we evaluated how fragmentation impacts on user-perceived
latencies of mobile apps, including application launching
time, application installing time, and SQLite query process-
ing time. We found that the Chrome browser took 79% more
time to launch on an aged file system of a Samsung S6 than
it did on a pristine file system. While the common belief is
that flash storage is free from the disk seek penalty and its
performance is invulnerable to file fragmentation, we ob-
served that accessing fragmented files resulted in frequent
block I/Os, which accumulated a large time overhead on the
I/O path. In addition, flash management inside of mobile
storage devices is subject to a limited amount of embedded
RAM, logical-to-physical address translation for flash em-
ploys a demand-based mapping cache. We observed that
accessing fragmented files created a highly random I/O
pattern, which diminished the locality of I/O requests and
amplified the management overhead of the mapping cache
inside mobile storage devices.

Fragmentation Treatment. In the third part, we assessed
the efficacy and limitation of existing methods for fragmen-
tation treatment, including space preallocation, persistent
journal, and file defragmentation. We observed that their
usefulness highly depends on file types and file system
space utilization. For example, because Android apps cre-
ated multiple threads that appended new records to differ-
ent database files in parallel, space preallocation proactively
prevented database files from being fragmented. Persistent
journal prevented frequent creation and deletion of small
journal files from creating free space fragmentation and thus
alleviated file fragmentation. File defragmentation restored
the space continuity of write-once files, such as executable

files, because once these files were installed they never grew.
However, when the file system space utilization was high,
preallocation and defragmentation could not find contigu-
ous free space and thus their efficacy became limited. On
the other hand, when a large number of threads wrote
different database files concurrently, the persistent journal
did not prevent extents of different database files from being
interleaved with one another.

Conventional file defragmentation is based on data
copying, and frequent defragmentation is harmful to mobile
storage because they employ high-density, low-endurance
flash memory [8]. A state-of-the-art copyless defragmenter
for mobile storage, janusd, exploits the existing logical-to-
physical mapping mechanism to restore file continuity in the
logical storage space without copying data in flash memory.
We showed that, compared to e4defrag, the existing defrag-
mentation tool of Ext4, janusd achieved the same result of
fragmentation reduction but significantly reduced the total
amount of data written to flash memory.

In summary, the contributions of this paper are as fol-
lows:

1) We measured that file fragmentation is a serious
problem in real smartphones;

2) Through a reproducible file system aging process,
we identified how file fragmentation is produced
in smartphones and evaluated how it negatively
impacts user-perceived latencies;

3) We assessed the efficacy and limitation of exist-
ing methods for fragmentation treatment and com-
pared them against a state-of-the-art copyless de-
fragmenter.

The remainder of this paper is organized as follows.
Section 2 presents the background and related work. Sec-
tion 3 investigates the degree that files are fragmented
on real smartphones. Section 4 verifies that fragmentation
is a common problem under realistic mobile usage sce-
narios. Section 5 evaluates the fragmentation impacts on
application performance. Section 6 assesses the efficacy of
existing treatments in mitigating fragmentation. Section 7
summaries the insights of fragmentation study for mobile
device users. Finally, Section 8 concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Mobile Device I/O System Overview
There have been several highly successful operating systems
for mobile devices, including Android, iPhone OS (iOS), and
Windows Phone (WP). Android is an open-source approach
among these popular operating systems. Fig. 1 illustrates
an overview view of the Android I/O system architecture,
which involves not only multiple software layers in the host
but also the firmware and flash memory inside of mobile
storage. These components are explained in a top-down
order, as follows:

SQLite: SQLite is a popular embedded database library
and has been the default relational database engine for An-
droid. The SQLite library is part of the application program,
and it stores database files in the local file system. SQLite
supports two typical journal modes, roll-back mode, and
write-ahead-logging mode, for transactional management of
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application data. In the roll-back mode, before modifying
pages in a database file, SQLite copies these pages to a
journal file with a .db-journal extension, updates the
database file, and then discards the journal file. In the write-
ahead-logging mode, SQLite logs changes to a database file
in a journal file with a .db-wal extension and then reports
completion. The changes are later applied to the database
file at proper timing. These journaling mechanisms prevent
unexpected system crashes or power fails from corrupting
application databases.

Ext4 File System: Starting from the release of Android
4.0.4, Ext4 became the default file system for internal stor-
age. Ext4 employs extent-based space allocation to support
large volume size and to mitigate file fragmentation. An
extent represents a set of contiguous disk blocks. It is also
equipped with a journaling mechanism to protect itself from
crash-induced metadata inconsistencies.

Mobile Storage Device: Mobile devices employ flash-
based storage devices for low-power, non-volatile secondary
data storage. Mobile storage devices are highly sensitive
to hardware costs, and typically they are equipped with a
small number of flash chips and very limited amount of
embedded RAM. Embedded MultiMedia Card (eMMC) [9]
and Universal Flash Storage (UFS) [10] are two representa-
tive interface designs for mobile storage. This study involves
both eMMC-based and UFS-based mobile storage devices.

Flash Translation Layer: Flash storage devices employ
an internal firmware layer, called Flash Translation Layer
(FTL), to provide block storage emulation on top of NAND
flash. The basic functions of FTL include logical-to-physical
address mapping, garbage collection, and wear leveling.
Based on the mapping scheme, FTLs can be classified into
block mapping, hybrid mapping, and page mapping [11],
[12].

Mapping Cache: Due to the stringent hardware budget,
mobile storage devices are equipped with a very limited
amount of embedded RAM for write buffering and ad-
dress mapping. A page-mapping FTL delivers good random
write performance, but it requires a large mapping table.
Map caching methods [12], [13] have been introduced to
reduce the RAM space requirement of page-level mapping
by caching a small active portion of the mapping table.

Flash Memory: Flash memory has several advantages,
such as low random access latency and shock resistance.
However, due to the erase-before-write constraint, page
updates are serviced in an out-of-place manner, and garbage
collection is necessary to timely reclaim the flash space
occupied by outdated data.

2.2 Fragmentation in File Systems

File systems, such as Ext4, FAT and even the log-structured
F2FS [14], all suffer from fragmentation. A file is fragmented
if its contents are not entirely stored in a piece of contiguous
space. We say that a file system is aging if file fragmentation
is developing in it. File fragmentation is closely related to
file deletion, which leaves non-contiguous free space in the
file system and the file system cannot find contiguous free
spaces for new files [15]. File fragmentation amplifies the
disk seek frequency and largely degrades the performance
of hard-drive-based storage systems [16]. Smith and Seltzer

characterized the production of file fragmentation over time
based on the daily file-system snapshots of five servers [15].
They also proposed a file system aging process that can
reproduce file fragmentation based on several key factors
of realistic file usages in server workloads. Conway et al.
[17] observed that read performance of data servers could
severely degrade due to poor file layouts on hard disks
or Solid State Drives (SSDs). It is a common belief that
file defragmentation has little effect on SSDs and is even
considered harmful to SSD lifespan [18]. However, in this
study, we found that file fragmentation is a serious problem
in real smartphones, and we also demonstrated that file
fragmentation could significantly amplify user-perceived
latencies.

2.3 File Defragmentation
There have been a series of studies on file fragmentation
management, mostly on file defragmentation. DFS is a file
system that automatically re-clusters data blocks of small,
fragmented files in sequential free space [19]. On many file
systems, users can manually invoke the defragmentation
process on selected files. For example, e4defrag [20] is a
file defragmentation tool for Ext4 file system. To defrag-
ment a file, e4defrag creates a large, sequential donor
file, copies data from the fragmented file to the donor file,
and then re-direct original file pointers to the donor file.
However, the defragmentation process is based on data
copying. Our prior study reported that frequent file de-
fragmentation could shorten the lifespan of TLC-flash-based
mobile storage by 10% or more [2]. Exploiting the existing
logical-to-physical address mapping inside of mobile flash
storage, we proposed janusd, which implements file de-
fragmentation by re-mapping a file from fragmented logical
addresses to sequential ones. This way, file defragmentation
only modifies the mapping inside of flash storage but does
not massive data copy in flash memory. In addition to
file defragmentation, other system software layer can also
employ anti-fragmentation methods. For example, SQLite
can preallocate free space for files or use persistent jour-
nal. However, there is little work toward understanding
the efficacy and limitation of these existing methods for
fragmentation treatment.

3 AN EMPIRICAL STUDY OF REAL SMARTPHONES

Our first step is to empirically investigate whether file frag-
mentation is a real problem in real Android smartphones
and, if so, how severe is file fragmentation in these devices.

3.1 Study Setup
We collected five Android smartphones for our empirical
study, and the specifications of these devices are listed in
Table 1. These smartphones include Google Nexus 5 (N5),
Google Nexus 6 (N6), Samsung Galaxy S3 (S3), Huawei
Ascend P7 (P7), and Samsung Galaxy S6 (S6). These smart-
phones were selected based on different manufacturers
(Google, Samsung, and Huawei) and different storage spec-
ifications (eMMC and UFS). These smartphones had under-
gone at least six months of daily use, which involved a
set of popular Android apps, including Facebook, Twitter,
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TABLE 1: A summary of specifications of the Android smartphones and iOS devices under inspection.

Nexus 5 Nexus 6 Galaxy S3 Ascend P7 Galaxy S6 iOS Device 1† iOS Device 2†

Usage Duration 12 months 6 months 24 months 12 months 16 months
iOS Version Before 10.3 Since 10.3

Release Date 2013 2014 2012 2014 2015

Linux Kernel 3.4.0 3.10.40 3.0.8 3.0.8 3.10.61
XNU Version 2782.70.3 4570.41.2

Android Version 5.0.1 5.1.1 4.3 4.4.2 5.0.2

Storage Standard eMMC eMMC eMMC eMMC UFS
Darwin Version 14.5.0 17.4.0

Data Partition 26.8 GB 26 GB 11.6 GB 11.8 GB 25.6 GB

Utilization 93% 57% 63% 51% 92% File System HFS+ APFS

† Because iOS prohibits installing unauthorized applications and modified kernels, we used a MacBook Pro with two different software
configurations to simulate two iOS devices.

TABLE 2: Fragmentation Size Levels

Fragmentation

Size Level

Size of fragmented file

piece x (unit: KB)

Level 1 0<x≤16

Level 2 16<x≤32

Level 3 32<x≤64

Level 4 64<x≤128

Level 5 128<x≤256

Level 6 256<x≤512

Level 7 512<x

Chrome, Gmail, Camera, and Google Earth. We inspected
file fragmentation in the data partition of every smart-
phone only, because it is the main read-write partition which
occupied 73% and 84% of the entire storage capacity. By the
time of inspection, the space utilization of the data partition
in each smartphone was between 51% and 93%.

Degree of Fragmentation (DoF ): We used the degree of
fragmentation (DoF) of a file as a major evaluation metric for
our study. The DoF value of a file is defined as the ratio of
the number of extents allocated to the file x to the ideal (i.e.,
smallest) number of extents necessary for the file x. A single
extent can cover up to 128 MB in Ext4 [21]. For example,
ideally, a file of 1 GB has at least 8 extents (1024/128=8). If
the file had 24 extents, then its DoF would be 3 (i.e., 24/8=3).
The larger the DoF of a file is, the more severely the file is
fragmented.

Fragmentation Size (FS): While DoF shows how
severely a file is fragmented, it does not indicate the sizes
of fragments. A large file and a small file may have the
same DoF, but the small one would have smaller fragments.
Because file fragments must be accessed through separate
I/O operations, file fragmentation has a larger performance
impact on small fragments than it does on large fragments.
For this reason, we employ Fragmentation Size (FS),
which represents fragment sizes in seven levels, as shown
in Table 2. For example, a level-1 fragment is not larger than
16 KB.

3.2 File System Snapshot Analysis
We developed an Android application FragCheck, which is
based on a cross-compiled version of e4defrag, for our anal-

ysis of DoF and FS values in the smartphones 1. FragCheck
collects file fragmentation information in the data partition,
including size and file type of each fragment. We took file
system snapshots of the five smartphones and analyzed
16,440 files in total. Notice that, as reported in [22], real
smartphones contain applications which are barely used
after installation. We excluded files from our analysis if they
were not accessed in last 30 days because they do not affect
user experience.

Fig. 2(a) shows cumulative distributions of DoF values
on the five smartphones 2. Interestingly, in each smartphone,
a noticeable portion of its files, between 14% and 27%, were
fragmented (i.e., their DoF values were larger than 1). For
example, 27% of the files in N5 were fragmented (717 out of
2,704 files), and 66% of these fragmented files even had DoF
values larger than 2.

We are interested in which system parameters could be
highly correlated with file fragmentation. We observed that
the higher the file system space utilization was, the more
files were fragmented. For example, N5 had the highest
space utilization ratio (93%) and the largest portion of
fragmented files. We also observed that files in older (i.e.,
used longer) smartphones tend to be more fragmented. For
example, S3, which had been used for two years, had more
of its files fragmented than N6 and P7, which were used
no more than one year. The ratio of fragmented files in
S3 was 27% while that of N6 and P7 was 15% and 14%,
respectively. Note that S3, N6, and P7 had similar file system
space utilization. Although the number of inspected smart-
phones was rather small, our observation indicates that file
fragmentation is correlated with both file system space uti-
lization and age of a smartphone. Since these factors would
get worse as smartphones get older, file fragmentation is
expected to be more severe as smartphones get older.

Fig. 2(b) shows a breakdown of fragment size levels of
fragmented files of DoF > 1 in the five smartphones. We
found that in every smartphone, the level 1 (smallest) frag-
ment size contributed to the largest fraction of the fragment
size distribution, ranging from 45% to 60%. In other words, a
fragmented file was very likely to be fragmented into small

1. FragChecker is available at https://github.com/cityu-mobile/
2. All the inspected files have integer DoF values. If a file is smaller

than 128 MB, its DoF is always an integer. Only one among the
inspected files was larger than 128 MB and the file had an integer DoF
value
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Fig. 2: (a) Cumulative distributions of DoF values. (b) A breakdown of files with different Fragmented Levels of fragmented
file pieces.
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Fig. 3: A breakdown of SQLite files and non-SQLite files
among fragmented files with DoF > 1.

pieces.

We further investigated whether fragmentation is cor-
related with file types. Fig. 3 shows a breakdown of
SQLite files and non-SQLite files among fragmented files
of DoF > 1. We observed that many of the fragmented
files were SQLite files (with extensions .db, .db-journal,
and .db-wal). On average, 45% of the fragmented files
were SQLite files. The average DoF and file length of the
fragmented SQLite files were 3.8 and 270 KB, respectively.
This is rather counter-intuitive because these SQLite files
were small, and small files should be less prone to fragmen-
tation. Another observation from Fig. 3 is that non-SQLite
files, including executable files and multimedia files, also
significantly contributed to file fragmentation, accounting
for about 55% of the total number of fragmented files.
Their average DoF and file length were 6 and 3,579 KB,
respectively. It was not surprising that non-SQLite files were
fragmented in aged file systems because non-SQLite files
were more than ten times bigger than SQLite files and the
aged file systems cannot allocate enough contiguous free
space for them.

In summary, our empirical study demonstrates that file
fragmentation is a real problem in aged smartphones and
most of the fragmented file pieces are of small sizes. Al-
though Android-specific SQLite files are one of the key con-
tributors to file fragmentation, our empirical study confirms
that non-SQLite files also suffer from severe fragmentation.
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Fig. 4: (a) An overview of AutoAge framework. (b) Flow
diagram of the daily usage by AutoAge.

4 FILE FRAGMENTATION REPRODUCTION

Our empirical study revealed that aged smartphones are
prone to file fragmentation. The next question is how file
fragmentation is produced in smartphones. In this section,
we will systematically reproduce file fragmentation and
investigate the correlations between system parameters and
fragmentation production. Our fragmentation reproduction
and analysis were conducted on both Android devices and
iOS devices. iOS devices were involved in selected tests only
because iOS prohibits installing unauthorized applications
and modified kernels.

4.1 Scenario-Driven Application Replay

4.1.1 Workloads and Procedure
To produce file fragmentation in a controlled, reproducible
manner, we developed a UI testing tool AutoAge3 based on
the UIAutomator framework [23]. As plotted in Fig. 4(a), the
smartphone under test is connected to a remote desktop
computer. The remote computer stores a collection of UI
scripts, each of which consists of a series of UI events
such as button clicks, dialogue inputs, and screen gestures.
The UI scripts are downloaded to the UIAutomator on the
smartphone, one at a time, for UI Action Replay to execute
on the smartphone. A UI script simulates a user scenario of

3. The source code is available at https://github.com/cityu-
mobile/autoage
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TABLE 3: Application scenarios

Application Type Scenarios

Facebook Social networking
Posting 1 image;

Viewing news feeds for 5 minutes.

Twitter Social networking
Posting 1 image;

Viewing news feeds for 5 minutes.

Instagram Social networking
Posting 1 image;

Viewing news feeds for 5 minutes.

Chrome Web browser Surfing 10 webpages.

Messenger
Instant

messaging

Typing in 10 characters

and 1 picture;

Repeating previous step for 10 times;

Deleting some chatting history.

WeChat
Instant

messaging

Typing in 10 characters

and 1 picture;

Repeating previous step for 10 times;

Deleting some chatting history.

Earth Map
Viewing online satellite maps

for 5 minutes.

Gmail Email

Sending an email with

10 characters;

Repeating previous step for 10 times;

Deleting 1 email.

Gallery Multimedia Viewing and deleting pictures.

Camera Multimedia Taking 30 pictures.

Youtube Multimedia
Viewing online videos

for 10 minutes.

an Android application. Table 3 is a summary of the user
scenarios we used.

Fig. 4(b) shows the AutoAge execution flow of the
application scenarios. These application scenarios involve
applications installing, updating, and running. In our ex-
periments, the application scenarios were repeated for 3.7
hours a day, which is the average daily smartphone using
time reported in [24], 30 days in total. We performed the ex-
periment on a Nexus 6 (N6). Before the experiment started,
we filled the file system of the N6 using a large file until 70%
full, which is the average file system utilization ratio of the
five smartphones we inspected in the prior section. Because
the large file was sequentially written as a whole, it entirely
occupied a number of Ext4 block groups, each of which is
128MB, and did not introduce “holes” in the remaining free
space. File system space utilization increased gradually as
the aging procedure proceeded. When the file system was
full, we deleted 300 MB of randomly selected image files,
from the file system for the aging procedure to proceed
further. We believe that Android phones and tablets, espe-
cially those models with moderate or small storage capacity,
can easily experience a high file system fullness because
of frequent application installing, temporarily file caching,
and multimedia-content producing [25]. This issue would
become more serious when such devices are used to store
more digital assets [26].

4.1.2 Reproduction Results
Fig. 5(a) shows the DoF values of files with different types
over 30 days. Notably, the space fullness was not high (about
70%) on the first day, but the DoF value of SQLite files was
already as high as 3. On the eleventh day and onward, the
fragmentation of SQLite files progressively developed as the
file system aged. This is because every time when SQLite
committed a new transaction to a database file, it appended
a small record to the database file through synchronous
block write requests. The highly synchronous write behav-
ior defeated the fragmentation avoidance strategies of Ext4
such as delayed allocation. As a result, the small extents
of SQLite files were interleaved with extents from other
files. Regarding Multimedia and Executable files, their
DoF values noticeably increased on the eleventh day and
onward. This is because the file system was nearly full
(almost 98% full) since the eleventh day. In this case, free
space was severely fragmented and the file system could
hardly allocate new files in contiguous free spaces.

Fig. 5(b) shows the fragment counts of different FS levels
over 30 days. The number of fragments of the smallest
FS level (fragment size between 0 and 16 KB) was the
highest at all times, and the number significantly increased
on the eleventh day. This is because when the file system
was nearly full, free space was severely fragmented into
small holes and new files were stored in these small holes.
When files are fragmented into many small pieces, file
access would involve frequent block I/O operations and
an amplified total I/O overhead. On the other hand, the
fragment count of the highest FS level 7 barely changed
over time except on the eleventh day. The count suddenly
increased on the eleventh day because some very large free
spaces were fragmented into multiple holes not smaller than
512 KB, and these holes were quickly filled up by new files.

4.2 Multi-threaded SQLite Operations
4.2.1 Workloads and Procedure
So far we have confirmed that file fragmentation is a real
problem in Android devices. In this experiment, we in-
spected file fragmentation in another type of mobile devices,
the iOS devices. Because iOS prohibits installing unautho-
rized applications and modified kernels, it is difficult to
inspect file fragmentation directly in iOS devices. Alterna-
tively, we chose to inspect file fragmentation in a MacBook
Pro, which runs macOS and the kernel Darwin-XNU [27]
is similar to that of iOS devices. The file system for iOS
version 10.3 or later is APFS (Apple File System), while
that for earlier iOS versions is based on HFS+. Both APFS
and HFS+ are supported by the Darwin-XNU kernel on
the MacBook Pro. We formatted two disk partitions, one
in APFS and the other in HFS+, and conducted experiments
on these partitions. Because iOS also uses SQLite [28], we
employed Mobibench [29] to generate I/O workloads on top
of the two partitions. Mobibench was configured to perform
multi-threaded, concurrent insertion operations to different
SQLite databases. The same test was also performed on an
Ext4 partition for comparison.

4.2.2 Reproduction Results
Fig. 6 is a visualization of the final distributions of file
fragments under APFS, HFS+, and Ext4. The fragments of
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Fig. 5: (a) DoF values of different file types over 30 days. (b) Fragment counts of different FS levels over 30 days.

the same file are shown in the same color. The total number
of threads was 1, 2, or 5. Overall, no matter what the file
system was, when the total number of concurrent threads
was large, small fragments from different files were severely
interleaved with one another. When the total number of
threads was 5, the average DoF values of SQLite files were
10, 15, and 5 under APFS, HFS+, and Ext4, respectively. In
other words, file fragmentation is also a severe problem in
iOS file systems, at least the problem is not lighter than it is
in Ext4. The root cause of the problem pertains to the highly
synchronous, multi-threaded writing behaviors of mobile
applications (through SQLite).

4.3 Causes of Fragmentation

Write behaviors and file system space utilization are the
two key factors in producing fragmentation as previously
analyzed. To understand how these factors produced frag-
mentation, we performed a case-study under different file
space utilization and then measured the DoF values of files.
The results of SQLite and non-SQLite files are separately
presented because they have different causes for fragmenta-
tion productions.

Analysis with Case-Study: The case-study was con-
ducted using Facebook and Google Earth as represen-
tatives of applications because these two applications ex-
hibited different file usage patterns in terms of fragmen-
tation production. We employed another file system aging
procedure based on that described in [30]: This procedure
began with a pristine file system. We alternatively created
large files (≥ 10 MB) and small files (≤ 500 KB) until
the file system space utilization reaches a predefined high
value. Once this predefined value was reached, small files
were randomly deleted until the file system space utiliza-
tion dropped down to a target value. We considered four
different target values: Low (the pristine state), Moderate
(the space utilization was less than 80%) , High (between
80% and 95%) and Full (higher than 95%) 4.

Impact of High Space Utilizations: Fig. 7(a) and 7(b)
show the DoF values of the Facebook and Google Earth
scenarios, respectively. The results of non-SQLite files are

4. Random deletions of small files created holes in the file system,
also known as free space fragmentation. To verify that free
space was fragmented by the aging procedure, with the Full space
utilization, we created a single large file to completely fill up the file
system space. We found that the file was fragmented into 3,098 pieces
and the average fragment size was 88 KB.

highly consistent with those in Fig. 5(a): When the file
system utilization reaches Full, free space was fragmented
into small holes and thus many non-SQLite files were stored
in a large number of extents. For example, we found that
21 out of the executable files of Facebook (with the dex
extension) were fragmented into 278 pieces in total, and
the average size of these fragments was 243 KB. As the file
system utilization increases, DoF values of SQLite files in
the Google Earth scenario also increased noticeably. This
is because the SQLite files of Google Earth were much
larger (8,958 KB on average) than those of Facebook (64
KB on average). Compared to small files, large files would
have a large DoF value when they are fragmented.

Impact of Write Behaviors: Even when the space utiliza-
tion was Low, the DoF values of SQLite files were as high as
3 and 7 under Facebook and Google Earth, respectively.
This result is closely related to frequent deletion of journal
files and concurrent writing to multiple database files. The
two applications operated most of their database files in
DELETE mode. In this mode, a rollback journal is created at
the beginning of a transaction and deleted on the completion
of the transaction. Frequent deletion of the journal files left
many small holes in the file system. On the other hand,
in the Facebook scenario, 18 concurrent threads wrote to
their database files. Because writes to SQLite files are highly
synchronous [5], under frequent transaction commits, file
system allocated small extents to different SQLite files, and
these extents were interleaved with each other.

Impact of Storage Capacity: We have shown that a
high space utilization in file systems has a direct impact
on file fragmentation. It is then a question whether file
fragmentation can be completely avoided by using a large
storage device or decreasing the space utilization. To find
this out, we replayed the application scenarios in Table 3
on a new 64GB Nexus 6P and the previous 32GB one. The
space utilization of the 32GB model and the 64GB model
were 0.5% and 0.2%, respectively, before the replays started.

Fig. 8 shows that, no matter how large the storage device
was (32GB or 64 GB), the SQLite files were still badly
fragmented. The DoF values of SQLite files were about 3
in most of the application scenarios, and the DoF values
were not lower than 6 under Google Earth (whose database
files were relatively large). This is because the mobile ap-
plications employed multiple threads to write SQLite files,
creating interleaved fragments from different SQLite files
regardless how large the free space was. By contrast, we
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observed that the average DoF values of non-SQLite files
were as low as 1.1. This is because when there were plenty
of free spaces in a file system, the free spaces were less prone
to fragmentation and therefore new files can be stored in
sequential storage space.

As previously shown in Fig. 5(a), when the file system
utilization became very high (nearly 98% on the eleventh
day), both SQLite files and non-SQLite files suffered from
severe fragmentation. Therefore, we conclude that using
a large storage device or decreasing the file system space
utilization effectively avoids fragmentation of non-SQLite
files, but it has no effect on SQLite files. This is because
the fragmentation of non-SQLite is subject to free space
fragmentation, while the fragmentation of SQLite files is
mainly caused by the highly synchronous, parallel file-
writing behaviors.

In summary, both SQLite and non-SQLite files suffer
from severe fragmentation in an aged file system, but the
reasons why they are fragmented are different. The DoF
values of non-SQLite files are subject to free space fragmen-
tation, which is highly correlated to the file system fullness.
On the other hand, SQLite files suffer from severe frag-
mentation regardless of the file system space utilization or
how long the file system has been used. This phenomenon
is attributed to frequent deletion of small journal files and
concurrent writing to multiple database files.
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5 PERFORMANCE IMPACT

In this section, we first introduced a performance model to
reveal how I/O performance changed with different degrees
of fragmentation. Next, we evaluated whether file frag-
mentation creates user-perceived latencies in three typical
operations on smartphones, including application launch-
ing, application installing, and SQLite query processing.
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Fig. 11: Application installing times under different degrees of file system aging.

Finally, we investigated how I/O performance of mobile
flash storage is affected by file fragmentation. The tests
in this section were performed on both Android and iOS
devices. Due to the same reason previously mentioned in
Section 4, iOS devices were involved in selected tests only.

5.1 A Basic Performance Model

In this section, we attempt to characterize the correlation
between the time overhead of accessing a file and the DoF
value of the file. Because each I/O request is associated with
an overhead on the I/O path, the more severely a file is
fragmented, the longer time it requires to entirely access the
file. To find out the correlation, we first created a 100 MB
file without any fragmentation. The file was sequentially
scanned using the cat utility [31], and we measured the
total elapsed time of the scan. Next, we artificially increased
the DoF value of the file by appending data to multiple files
in parallel until the DoF value of the file reached a desired
value, and then the file was scanned again to measure the
elapsed time. This procedure repeated until the DoF value
of the file reached 25,000.

The solid line in Figure 9 depicts the measured elapsed
times (latencies) of different DoF values. Overall, the latency
linearly increased with the DoF value. The relation between
the latency t and the DoF value can be closely approximated
by a linear function

t = 0.17×DoF + 990,

which is depicted by the dotted line. In particular, the
latency of the worst fragmentation (DoF=25,000, each frag-
ment was 4 KB) was 3.5 times larger than that without
fragmentation (DoF=1, no fragmentation). Interestingly, the
latency slightly dropped when the DoF increased from 1
to 400. We surmise that the performance fluctuation was
related to the internal data placement of the eMMC device,
i.e., the slightly increased I/O overhead was compensated
by the performance gain of parallel accesses among flash

chips. However, when the DoF value was larger than 400,
the time overhead due to an increased I/O frequency started
to dominate the latency. We must point out that this basic
performance model is not intended for a general solution.
Instead, it shows that the negative impact of file fragmenta-
tion on the file access overhead is evident, and the impact
can be characterized by a linear relation.

5.2 User-Perceived Latencies

The experiment of user-perceived latencies employed the
file system aging procedure previously described in Sec-
tion 4.3. The file system fullness was set to High. We slightly
modified the aging procedure to produce different degrees
of file system aging: No, Moderate and Severe. The state
No means that there were no small files for deletion. In this
state, the file system was not aged at all because there were
no small holes in the file system. To produce the Moderate
state and Severe state, the average sizes of small files (which
were deleted in the aging procedure) were 64KB and 8KB,
respectively, and the total size of deleted small files was 500
MB. The smaller the deleted files, the more severe free space
fragmentation was.

5.2.1 Application Launching
In this experiment, we installed five applications, including
Facebook, Twitter, Chrome, Earth and Game (Angry Birds)
on N6, S6, and P7. We measured the launching times of these
applications under different degrees of file system aging. To
measure the launching time of an application on a smart-
phone, we called the activity manager (am) from a remote
PC using the adb command. The application launching time
reported by the adb command is the time interval between
the issue of the command and the time when all processes
and Activities associated with the application have been
started 5.

5. Activities are Android application objects responsible for user
interaction.
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Fig. 10(a), (b) and (c) shows the launching times of the
five applications on the three phones. Let us first focus on
the results of S6 in Fig. 10(b). We found that the launching
times increased as the degree of file system aging became
worse. In particular, the launching time of Chrome under
the Severe state was 0.6 seconds longer (79% slower) than
that under the No state. For the Severe state, we observed
that the highest DoF value of the executable files of Chrome
was as high as 968, and the average fragment size of
these executable files was only 15 KB. The trends in the
launching time slowdowns of the five applications appear
highly consistent on N6, S6, and P7. Because users have to
wait on application launching, our results clearly show that
file fragmentation contributes to user-perceived latencies.

5.2.2 Application Installing

As mobile applications offer sophisticated functionalities,
their installation packages (*.apk files) are increasingly
large. Even though existing applications can be updated in
the background, users usually wait when installing new ap-
plications. In this experiment, we evaluated the application
installing times (latencies) under the three fragmentation
states. To install an application, we called the packet man-
ager (pm) from a remote PC using the adb command. The
application installing time reported by the adb command
is the time interval between the time when the install com-
mand is issued and the time when the installation finishes.

Fig. 10(a), (b) and (c) show the installing times (latencies)
of five applications on N6, S6, and P7, respectively. The
results appear highly consistent with those of application
launching, showing that file fragmentation noticeably de-
graded the installing times. In particular, the installing time
of Facebook on S6 in the Severe state was 25 seconds,
while that in the No state was 12 seconds only. It is worth
noting that while the application installing times on S6
and P7 were significantly affected by fragmentation states,
those on N6 were less sensitive to fragmentation states.
This phenomenon is also true in the experiment of appli-
cation launching. We believe that the slowdown is closely
related to design parameters of mobile storage, such as
mapping cache size. While application installing is write-
centric, application launching is read-intensive. Our results
show that the latencies of write-oriented operations are
more susceptible to file fragmentation.

5.2.3 SQLite Query Processing

In this experiment, we employed Google Earth to examine
how file fragmentation affects SQLite query performance.
Google Earth stores map tiles in database files. The per-
formance of SQLite query affects the display of map tiles,
and poor query performance introduces user-perceived la-
tencies. Before this experiment, we prepared database file
and SQLite queries using the following steps: We installed
Google Earth on N6 and browsed online maps for 5 min-
utes. After this, we extracted the main database file of
Google Earth, mirth cache.db, whose size is 201MB, from
the phone. Next, we switched the phone to the airplane
mode and browsed the off-line maps for 30 seconds. During
the off-line browsing, we collected the SQL queries on the
main database file using the adb logcat command. We
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Fig. 12: Normalized total execution times of SQLite queries
under different file system fragmentation states in Android
and iOS devices. The absolute time value (in seconds) is
labeled on top of each bar.

observed that all the collected SQLite queries are read-only,
and most of them are table scans.

We conducted this experiment on N6, S6, and P7, and the
two simulated iOS devices (iOS-HFS+ and iOS-APFS, see
Table 1). For each run of the experiment, we pre-conditioned
the fragmentation state of the file system using the same
aging procedure described in the prior section, and then
copied the main database file into the phone. We then
replayed the collected SQL queries on the main database file
using the sqlite3 utility [32]. As Fig. 12 shows, the total
execution time of the SQLite queries increased noticeably
as the file system fragmentation state degraded. The query
performance degradation caused by file fragmentation ap-
peared highly consistent between Android devices and iOS
devices. In other words, file fragmentation negatively im-
pacts user-perceivable latencies in different types of mobile
devices. With slow SQLite queries, users would have to wait
until all high-resolution map tiles gradually pop up.

5.3 Causes of Performance Impact

5.3.1 Increased Block I/O Frequency

Accessing fragmented files would result in an increased I/O
frequency. In this experiment, we attempt to investigate the
correlation among file fragmentation, block I/O frequency,
and file access latency.

This experiment was conducted on N6. We prepared a
severely fragmented file by writing multiple files in parallel
until the total size of these files reached 100 MB. One of
these files, whose DoF value was 12,365, was selected, and
the file was sequentially read once using the cat utility.
While the file was being read, we used blktrace [33] to
collect the I/O traces. We repeated the same procedure on
a pristine file system, but this time only one single file of
the same size was written to the file system to prevent
fragmentation. We observed that the block I/O count with
file fragmentation was significantly higher than that without
fragmentation (47,560, vs. 812). This amplified block I/O
frequency increased the total time of file reading by 1.6
seconds (2.9 seconds vs. 1.3 seconds). These results confirm
that file fragmentation significantly amplifies I/O frequency
and degrades file accessing performance.
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5.3.2 Dispersed I/O pattern
Since database files contributed to the majority of all block
writes [5] and are among the most severely fragmented files,
these files produced a large number of dispersed I/O over
the entire storage [1]. We are interested in whether dispersed
I/O patterns affect the I/O performance. We performed an
experiment on the phones listed in Table 1 using the follow-
ing procedure: We first prepared a large 1 GB file in the file
system. To ensure that the file was as sequential as possi-
ble in the storage space, it was defragmented beforehand.
We performed 10,000 synchronous file write operations on
random offsets within the first 1 MB of the large file and
measured the total file writing time. We repeated the same
amount of file write operations on regions of the first 10
MB, 100 MB, 1 GB, and 2 GB of the large file. The larger the
write region was, the more dispersed the write operations
were in the storage space. Fig. 13(a) shows that the total
write times on P7 and S3 with the largest write region were
69% and 113% slower than those with the smallest write
region, respectively. On N5 and N6, the total write times of
were less sensitive to the write region size, and a noticeable
degradation appeared only when the write region was as
large as 2GB.

We performed the same test again on the same phones,
but this time we replaced file write operations with read
operations. Interestingly, Fig. 13(b) also indicates that dis-
persed I/O patterns were unfavorable to the total read time.
It had been reported in [34] that writes to random storage
locations can seriously degrade the efficiency of garbage col-
lection and increase write latency. However, as flash reads
do not require garbage collection, the results in Fig. 13(b)
appear counter-intuitive and need further investigation.

5.3.3 Pattern-Induced I/O Overhead
We surmise that the pattern-induced I/O overhead is closely
related to the logical-to-physical map caching mechanism
inside of mobile flash storage. Due to the stringent hard-
ware budget, mobile flash storage is equipped with a small
amount of embedded RAM. Instead of storing the entire
page-level mapping table in RAM, mobile flash storage
devices only cache active portions of the mapping table [35],
[36]. This map caching design exploits temporal and spatial
localities in I/O patterns [12], [13]. However, if an I/O
pattern exhibits high randomness, the mapping cache could
suffer from frequent cache misses, whose management sig-
nificantly amplifies I/O latencies.

To verify our theory, we conducted an experiment on
Flashsim [37], which provides a simulation environment of
flash storage with map caching. We collected block read
and write I/O traces of the procedure used in the prior
Section 5.3.2 on the same phone N5. Flashsim employed
the following simulation parameters: each mapping entry
was 4 bytes, and the flash page size was 4 KB. A page
stores the mapping entries of 1,024 sequential logical pages
if it is a mapping page. Otherwise, it stores user data.
Based on the design of [13], the mapping cache fetches
and replaces mapping entries in terms of mapping pages,
and the cache replacement policy was Least-Recently-Used
(LRU). We evaluated a large cache size (128 KB) and a small
cache size (16 KB). These parameters were based on the most
common features of eMMC devices that we learned from
our industry partners.

Fig. 13(c) shows our simulation results. We found that as
the I/O region was enlarged, both the total read time and
write time increased accordingly. The trends in the results
of Fig. 13(c) appeared highly consistent with the results of
P7 and S3 in Fig. 13(a) and Fig. 13(b). On the other hand, a
large mapping cache, e.g., 128 KB, mitigated the extra I/O
overhead due to mapping cache management under I/O
region sizes not larger than 100 MB. We further noticed that,
in the presence of garbage collection activities, the effect
of the I/O pattern-induced performance degradation was
even more significant. This is because garbage collection
further amplified the overhead of cache miss management.
In summary, our simulation results in general agree with
the real measurements in Fig. 13(a) and Fig. 13(b) and thus
confirmed the cause of the pattern-induced I/O overhead.

6 FRAGMENTATION TREATMENT

In this section, we evaluate the efficacy of the existing
methods for fragmentation treatment.

6.1 Fragmentation Avoidance

Frequent changes to file system structures, such as file
growth and file deletion, quickly age file systems and intro-
duce severe file fragmentation. In this section, we evaluate
two fragmentation avoidance methods, including space pre-
allocation and persistent journal, and observe their efficacy
and limitations.
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Fig. 14: DoF values of files with space preallocation (b) at Low space utilization and (c) at High space utilization.
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Fig. 15: DoF values of DB journals, DB files, and all SQLite files.

6.1.1 Space Preallocation

DoF Observation. Preallocating free space for files pro-
actively mitigates file fragmentation because preallocation
could obtain large, contiguous free space from the file
system and file growth within the preallocated space does
not require new extents. As previously discussed in Section
4.1.2, SQLite files were badly fragmented because multiple
SQLite files grew concurrently in small size increments. We
design a benchmark to assess whether space preallocation
can prevent such concurrent, small file growth from frag-
menting files into many pieces. The benchmark creates a set
of threads, each of which writes its own file. Among these
threads, each thread appends 4 KB records to its own file
through synchronous writes until the file size reaches 512
KB. A thread calls posix fallocate() to preallocate more free
space for its file when the file is about to grow beyond its
preallocated space. We repeated this test under the follow-
ing parameters: the total number of threads was between 1
and 10, the preallocation size was between 0 (no prealloca-
tion) and 512 KB, and the file space utilization was either
High or Low (see Section 4.3 for their definitions). Fig. 14(a)
and (b) show the DoF values of files with space preallocation
under Low and High space utilization, respectively.

Fig. 14(a) shows that under Low space utilization, us-
ing large preallocation sizes greatly helped eliminate file
fragmentation, especially when the number of threads was
large. When the number of threads was large (>=5) at
the Low space utilization level, file fragmentation was com-
pletely eliminated (DoF value=1) using space preallocation
with units of 512 KB, whereas the DoF without space preal-
location was as high as 14.5. However, space preallocation
for small files could waste storage space due to internal
fragmentation. As shown in Fig. 14(a), the file DoF values
with space preallocation units of 128 KB are reasonably
low compared to those with larger preallocation units. It is
worth noting that when there was only one thread, the file

DoF values with 128 KB preallocation were slightly larger
than those without preallocation. This is because the new
extent allocated through posix fallocate() is not necessarily
adjacent to the last existing extent.

The results in Fig. 14(b) show that file DoF values under
High space utilization were noticeably higher than those
under Low space utilization. However, space preallocation
still effectively reduced file DoF values. When there were
10 concurrently writing threads, compared to the baseline
results without preallocation, space preallocation with units
of 256 KB significantly reduced the DoF value from 19.3 to
5.9. However, the file DoF value was 9.8 with preallocation
units of 512 KB, and this value was slightly higher than
those with smaller preallocation units. This is because in-
ternal fragmentation in large preallocated units reduced the
amount of limited free space in file system, exaggerating the
fragmentation of free space and ultimately worsening file
fragmentation.

Empirical Preallocation Size. The decision of the preal-
location size for SQLite files is subject to a trade-off between
file fragmentation and free space utilization. A sufficiently
large preallocation space allows an SQLite file to grow
without being fragmented, while an excessively large one
creates unused free space. Here, we attempt to find a proper
preallocation size for SQLite files of real mobile applications.

We empirically evaluated the effects of different preal-
location sizes on SQLite files under the Facebook, Twitter,
Chrome, and Messenger application scenarios in Section 4.3.
We replayed each of the application scenarios for one hour
to gather sufficiently many file operations for our analysis.
Fig. 16 shows the percentages of un-fragmented SQLite
files and the total amounts of unused (wasted) free space
within the preallocated spaces under different preallocation
sizes, which were between 16 KB and 512 KB. Ideally, space
preallocation prevents files from being fragmented while a
minimal total amount of unused free space. The results of
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Fig. 16: Total amounts of unused preallocated space and
the percentages of un-fragmented SQLite files under four
application scenarios with different preallocation sizes. The
X-axis depicts the pre-defined pre-allocation sizes.

different application scenarios appeared highly consistent:
When the preallocation size was 128 KB, at least 83% percent
of SQLite files were not fragmented (DoF value=1), and the
marginal gain became very small beyond this preallocation
size. On the other hand, the total amounts of unused preallo-
cated file spaces appeared proportional to the preallocation
size. This is because most of the SQLite files were very small,
usually tens or hundreds of kilobytes, as previously shown
in Section 3.2. Based on these empirical observations, we
recommend 128KB as a preallocation size for SQLite files.

6.1.2 Persistent Journal
In DELETE mode and TRUNCATE mode, SQLite deletes
and truncates the rollback journal every time it has com-
mitted a transaction, receptively. The default journal mode
of SQLite is DELETE mode. Frequent deletion of small
journal files quickly ages the files system through free space
fragmentation. By contrast, in PERSIST mode and WAL
mode, SQLite preserves the journal file after committing a
transaction. Because applications can override the default
journal mode, a question is whether or not using persistent
journal can relieve SQLite files of fragmentation. We em-
ployed Mobibench [29] to perform the “insert operation”
benchmark on a pristine file system. The benchmark used
multiple threads to write different databases concurrently.
We selected the number of threads among 1, 2, 5, and 10.

Fig. 15(a) shows the DoF values of database files and
journal files in PERSIST mode. Fig. 15(b) shows the corre-
sponding results in WAL mode. Results show that persistent
journal helped reduce file fragmentation, but particular
types of files were still badly fragmented, especially when
the number of concurrently writing threads was large. In
PERSIST mode, journal (.db-journal) files were lightly
fragmented because they were written as a whole and
barely grew. However, database files were badly fragmented
because of the concurrent, frequent growth of multiple
database (.db) files. In WAL mode, journal (.db-wal) files
were badly fragmented because of the same reason above,
but database files were lightly fragmented. This is because,
in WAL mode, SQLite wrote multiple transactions to the
database file in a large batch. Therefore, the growth of
database files was relatively large and infrequent.

6.2 File Defragmentation

We have shown that fragmentation avoidance strategies
have limitations in certain cases. Because file fragmentation
is invertible, file defragmentation is useful to restore file con-
tinuity in aged file systems. Here, we evaluate the efficacy
of file defragmentation under various system parameters.

6.2.1 Conventional Defragmentation
We considered e4defrag as the representative of conven-
tional defragmentation approaches because the conven-
tional defragmentation [14], [19], [38] are copy-based and
essentially they are the same as the e4defrag utility. To
defragment a file, e4defrag attempts to find as large extents
as possible and re-locate the fragments of the file to the
large extents. Ideally, a file would have the ideal DoF (i.e., 1)
after defragmentation. Notice that e4defrag does not handle
free space fragmentation. In addition, it is possible that a
fragmented file still has a DoF value larger than 1 after
defragmentation with e4defrag, because e4defrag cannot
find a sufficiently large extent to store the fragments of the
file. In this experiment, we performed the same benchmark
previously described in Section 6.1 on a pristine file system,
whose initial space utilization was either High or Low (see
Section 4.3 for definition). After this, we used e4defrag to
defragment all files and collected the file DoF values.

Fig. 17 shows the average DoF values of files before
(before_defrag) and after (e4defrag) defragmentation
using e4defrag. Results show that, when the file system
space utilization was Low, e4defrag successfully eliminated
all file fragmentation, achieving the best average DoF value
of files (i.e., 1). By contrast, when the file system space
utilization was High, e4defrag largely reduced but not
eliminated file fragmentation, especially when the number
of concurrently writing threads was large. For example,
e4defrag decreased the average DoF only by about one half
compared to no defragmentation at all when the number of
threads was 10. In this case, free space was severely frag-
mented in this case, and e4defrag could not find sufficiently
large free extents for defragmentation.

6.2.2 Copyless Defragmentation
Our prior study reports that file fragmentation in smart-
phones is a recurring problem [2]. This is mainly because
popular applications are updated on a regular basis, typ-
ically once every 10 days [39], and the regular updates
quickly age the file system and lead to severe file frag-
mentation. Our prior study recommends weekly file defrag-
mentation to prevent file fragmentation from creating user-
perceived latencies. However, conventional defragmenta-
tion approaches are based on data copying to relocate data
from fragmented files to contiguous free space. The data
copying introduces extra write stress to mobile storage.
Because high-density flash memory such as TLC and 3D
flash endure limited program-erase (P/E) cycles [40], our
prior study also reports that weekly defragmentation could
reduce the lifespan of mobile storage by at least 10%.

In this experiment, we evaluated the state-of-the-art
technique, janusd [2], for defragmenting files on flash-based
mobile storage. The basic idea behind janusd is to exploit the
existing logical-to-physical mapping in the firmware layer



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2869737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXX 20XX 14

0

5

10

15

20

Low High Low High Low High Low High

1 2 5 10

D
eg

re
e 

o
f 

Fr
ag

m
en

ta
ti

o
n

 

Number of Threads 

before_defrag e4defrag janusd

(a)

16100 17328 

0

2000

4000

6000

8000

Low High Low High Low High Low High

1 2 5 10

Fl
as

h
 W

ri
te

 A
m

o
u

n
t 

(u
n

it
: K

B
) 

Number of Threads 

e4defrag janusd

(b)

Fig. 17: (a) DoF values of files before defragmentation (before defrag), after defragmentation with e4defrag and with
janusd. (b) Flash write amount for defragmentation with e4defrag and janusd.

inside of mobile storage. To defragment a file, janusd sends
individual commands to mobile storage to remap existing
data in flash memory from fragmented logical addresses
to continuous ones. This way, janusd eliminates the need
for data copying during file defragmentation but modifies
only the mapping information inside of mobile storage. We
conducted the experiment described in the prior section
again, but this time we replaced e4defrag with janusd.

Fig. 15(a) shows that janusd achieved the same average
DoF values as e4defrag did. This is because janusd is based
on the same defragmentation logic as that of e4defrag,
but the difference is that janusd issues remap commands
to mobile storage instead of copying data. Since the main
advantage of janusd is write stress reduction, Fig. 15(b)
presents the total amount of data physically written to
flash memory by e4defrag and janusd. Results show that,
on average janusd produced 98% fewer flash writes than
e4defrag did. In other words, frequent defragmentation
with janusd will not be harmful to mobile storage lifespan.
The small amounts of flash write of janusd were produced
by writing file system metadata such as inodes and updat-
ing logical-to-physical mapping information inside of the
storage firmware.

7 DISCUSSION AND INSIGHT

This work attempts to characterize the file fragmentation
problem in mobile storage through a series of quantitative
analyses, systemic reproduction, and comparative evalua-
tion. We showed that file fragmentation is a real, recur-
ring problem that could noticeably degrade user-perceivable
latencies and identified the root causes of the recurring
file fragmentation. Furthermore, we showed that existing
defragmentation tools and a state-of-the-art copyless defrag-
menter both have their merits and limitations. We believe
that this study provides useful insights into the design and
implementation of file management algorithms for various
layers in the I/O stack, including the SQLite library, file
system, and performance maintenance tools. This section
summarizes a few lessons learned from this study.

7.1 Causes of File Fragmentation
Through our experimental results, we identify two key
factors responsible for the production of file fragmentation
in smartphones:

High Space Utilization: High space utilization signifi-
cantly impacts on all types of files concerning fragmentation
production. Not only those write-once files, such as exe-
cutables and multimedia files but also the read-write SQLite
files are severely fragmented. This is because when the file
system space is highly utilized, deletion of files can easily
leave discontinuous free spaces (i.e., holes) in the file system.
As a result, the file system cannot find sufficiently large free
extents for new files to write or for existing files to grow.

Multi-threaded, Synchronous Writing: As mentioned
previously, the Facebook application created 18 concurrent
threads that wrote different SQLite files in parallel. In Ext4,
files belonging to the same directory are preferably assigned
to nearby spaces. Because writes of SQLite files are highly
synchronous, when multiple database files grow concur-
rently in small size increments, small extents from different
database files are interleaved with one another. This way, no
matter what the file system space utilization is, it is nearly
impossible for a database file to be allocated in a single,
large extent.

7.2 Fragmentation Treatment: Efficacy and Limitation

Space Preallocation: Space preallocation proactively pre-
vents file growth from creating new file fragments at the cost
of wasting some storage space. Provided that applications
frequently append data to files, especially those SQLite files
with frequent, small size increments, space preallocation
effectively reduces file fragmentation of such type of files.
The preallocation unit size should be judiciously selected to
minimize the amount of wasted storage space, preferably
128 KB for SQLite files. However, the efficacy of space
preallocation is limited when the file system utilization is
exceptionally high, because the newly allocated space for a
file may not be adjacent to the last extent of the file.

Persistent Journal: Using persistent journal avoids fre-
quent deletion of journal files and thus alleviates free space
fragmentation. Between the two modes that use the persis-
tent journal, i.e., WAL and PERSIST, we recommend WAL
mode because in this mode, SQLite writes multiple transac-
tions in the journal file and then flushes a relatively large
batch of updates to the database file. This way, database
files grow in large size increments and thus they are less
prone to fragmentation. However, when the number of
concurrently writing threads is large, multiple database files
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grow in parallel, and their extents are still interleaved with
one another.

File Defragmentation: The fragmentation avoidance
strategies mentioned above cannot eliminate file fragmen-
tation, and therefore file defragmentation is still necessary.
The efficacy of defragmentation is subject to not only file
type but also space utilization. When space utilization is low,
defragmentation can completely eliminate fragmentation of
write-once files, e.g., executable and multimedia files.
However, defragmentation is not recommended for SQLite
journal files operated in DELETE mode and TRUNCATE
mode, because these files are deleted or truncated upon
the conclusion of transactions. When space utilization is
extremely high, defragmentation can reduce but not elim-
inate fragmentation of files. This is because the current
implementation of e4defrag may not find a sufficiently large
free extent to store a fragmented file. We also showed that
a state-of-the-art file defragmenter for mobile flash storage,
janusd, achieves the same result as e4defrag but requires a
much less amount of flash writes. Since janusd is free from
data copy in flash memory, we plan to enhance it with free
space defragmentation.

8 CONCLUSION

In this study, we examined how severe file fragmentation is
in real mobile devices. Through systematic file system aging
procedures, we confirmed file fragmentation emerges very
quickly under daily use of smartphones, and the production
of file fragmentation is highly correlated to the frequent
deletion of SQLite files, the highly synchronous SQLite
writing behavior, and a high file system space utilization.
We also evaluated how fragmentation negatively impacted
user-perceived latencies, and identified the increased block
I/O frequency and the degraded device mapping cache
efficiency were the roots of the poor user experiences with
fragmentation. Finally, we evaluated existing methods for
fragmentation treatment to understand their efficacy and
limitations. In general, file defragmentation (conventional
and copyless) is useful to write-once files, and space pre-
allocation is effective on SQLite files. However, their effec-
tiveness becomes limited when the file system utilization is
extremely high. Our future work is thus directed to enhance
our copyless defragmenter toward free space defragmenta-
tion for better results under a high space utilization.
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