1176 IEI1 Transactions on Consumer Electronics, Vol, 45, No. 4, NOVEMBIR 1999

DESIGN AND IMPLEMENTATION OF A JAVA-BASED MPEG-1 VIDEO DECODER

Dohyung Kim
Department of Computer Engineering
Seoul National University
Seoul, Korea, 151-742
dhkim@iris.snu.ac.kr

Abstract

Although Java has many usclul programming language
leatures for developing consumer multimedia
applications, it ts not widely used for multimedia
application development, One of the main reasons Tor
the lack of Java usage in consumer multimedia
application development is a concern lor the execution
speed of Java-based applications. In this paper, we
investigate the feasibility of using Fava as a language lor
multimedia applications, As a specilic multimedia
application example, we have developed a Java-based
MPEG-1 video decoder. We describe the design and
implementation of the MPEG-1 video decoder and report
our experience in optimizing the decoding performance,
Based on the performance analysis results (rom a Java
performance proliler, we have applicd both gencral and
Java-specific optimizatton techniques. The final
implementation could decode aboul 28.67 frames per
second on @ Pentium-11 300MH? computer [or a 240 x
170 MPEG-1 video bitstream, a speed-up of 2.8 times
over the initial implementation. Our cxperience
strongly suggests that the pure Java-based media
processing is a feasible solution.

Keywords: Java performance, MPEG-1 video decoder,
perlormance evaluation.

1 Introduction

Fava has many useful programming language features [or
developing consumer multimedia applications. For
cxample, the buoilt-in support for the concurrency and
object-oriented design can help a programmer in
designing and implementing a2 complex nmultimedia
application such as a video decoder. In addition, Java's
platform independence {write U]]CC,’ run cverywhere)
feature is very attractive for multi-platform application
developers.

In spite ol these advantages, however, Java has not been
widely used for multimedia application development,
One of the main reasons fot the tack of Java usage in
multimedia application development is a concern for the

Conltributed Paper

Manuscript received August 9, 1999

Jihong Kim
Department of Computer Science
Seoul National University
Seoul, Korea 151-742
jihong@davinci.snu.ac.kr

execution speed of Java-based applications due to a
Java's interpretation-based exceution model. In this
paper, we investigate the possibility of using Tava for
multimedia applications. As a specific example
application, we have developed a Java-based MPEG-1
video decoder and cvaluated if it can decode video
bitstrcams in a real-lime rate, 30 frames per second.
We describe the design and mnplementation ol the Java
MPEG-1 video decoder and report our experience in
cvaluating and optimizing the performance of the Java
MPEG-1 video decoder.

Our work has a similar goal as the work done by Patel,
Smith and Rowe lor a C-based MPEG-1 video decoder
fi], 1 that the bolh works evaluate the performance ol a
soltwarc-only MPEG-1 video decoder and explore the
possibility of suppotting the real-lime decoding by a
softwarc-only MPEG-1 video decoder. Anders had
unplemented a Java-based MPEG-1 video decoder but its
perlormance was [ar fromn the real-time decoding [2].

The remainder ol this paper is organized as lollows.
Scction 2 presents a briel” introduction o the MPEG-1
video decoding process. Sectton 3 describes the overall
implementation and functions ol the Java MPEG-1 video
decoder. Scction 4 gives a detailed description of the
optimization techniques used and presents the various
cxperimental results. We conclude with a summary in
Section 5.

2 MPEG-1 Video Decoding Process

In this section, we briefly deseribe the MPEG-1 video
decoding process [3]. (For a detailed description of the
MPEG-1 video compression standard, refer to various
reference books such as [4]). Since a decoding process
is the reverse of an encoding process, we explain the
MPEG- video compression furst.

In order to compress a sequence ol images, MPEG-1
video coding uses three techniques, transform coding,
motion compensation and entropy coding. Transforn
coding exploits the characteristics ol human visual system
and concentrates the encrgy of an image o [ewer values
by a mathematical transform. Tike many other

0095 3063/99 $10.00 © 1999 [EER

Kim and Kim: Design and Implementation of & Java-Based MPG-1 Video Decoder 1177

imagefvideo compression standards, MPUG-1 - video
coding uses an § x § diserete cosine transtorm (RDCT) for
this purpose. DCT converts an 8 X 8 image block [rom
the spatial domain to the DCT domain.

Before applying DCT, MPEG-1 video coding converls
RGB images o YCrCb images, Y value indicales the
luminance level and Cr/Ch values cepresent chromimance.
Since the human eye is more sensitive o luminance than
o chrominance, Cr/Ch values arc subsampled. A
YCrCh image is divided o macroblocks. Bach
macrobleck represents a 16 x 16 pixel arca (i.c., Tour 8 x

8 blocks) of Y image and one 8 x 8 block {rom cach of

Cr/Ch images. Fach block is then trans(ormed by DCT
and quantized. Quantization is the oaly {lossy compression
step used in MPEG-1 video coding and achieves the
compression by removing the high frequency information
to which human visual system s less sensitive. Lo further
compress video data, entropy coding techniques such as
Hufllman coding and run-length encoding are uscd.

Motion compensation exploits the similarity between
successive images. Large compression can be
accotmplished by cncoding only the differences between
itnages, instead of images themsclves, lior the motion
compensation purpose, MPEG-1 video coding classilics
hmages into one of three picture Lypes - [(intracoded)
picture, P {predicted) pictare and B (bidirectional) picture.
1 picture uses only transform coding, but P and B pictures
use both motion compensation and transfornn coding, In
P and B pictures, for cach macroblock, the best
corresponding match in the relerence image is [ound.
Once the hest match is found, the crror macroblock is
compuled by subtracting the current image from the
reference iinage pixel by pixel. DCT is then applied o
the error macroblock. Afler the motion compensation
and transiorm coding are performed, entropy coding s
used to further compress bitstreams.

Figure | shows the overall steps of the MPEG-T video
decoding process. First, u decoder reads a packet and
extracts video and header information. By Hulfman
decoding, DCT values are computed. In case of 1
piclures, the decoder converts DCT values o YCCh
vatues directly by applying IDCT functien, Tn case of P
and B pictares, DCT values are the dilference values
between the reference image and the currently
rcconstructed fmage, and IDCT reconstructs the
difference image. Using a motion information for a
mactoblock, the decoder reconstructs the current image
by adding the difference tmage to the reference image.
B} pictures are decoded in a similar fashion as P pictures
except that two reference pictures are used, one from the
proceeding pictures, and the other from the succceding

I: ;@_{r&nn_ ; |
'rpmxing

[header|] main stream |

kt > L fuffiman

decoding
. P .
[ITame // . P/B frame

Ead —
T e

[RCT ' [il)(;'[' 1

rliccunslruction I

W('}l% C(mvcrrsioin—l
_ ,J e

[Image display I
Figure 1. MPEG-1 video decoding process.

pictures. Onee YCrCh pictures are reconstructed, they
are converted to the RGB format [or display.

3 Overview of Java MPEG-1 Video Decoder
Implementation

Our performance goal in developing a Java-based MPHG-
I video decoder was to support a real time decoding that
can display 30 frames per sceond. In this section, we
explain the design and implementation of the Lirst version
of our Yava MPEG-{ video decoder.

The Java MPEG-1 video decoder consists ol six major
functional modules: the bitstream reader modude, the
stream parser module, the INCT module, the
reconstruction module, the RGB conversion module and
the image display module. The bitstream reader maodule
supports the manipulation of hit values, Since Java does
not have the bit data type as a [irst-class citizen, we made
a new class for processing bitstreams. The new class
extends the bulfered TO class for elficiency. The stream
parser module extracts headers {rom a bitstream and
decodes entropy-coded bitstreams, — As with the Berkeley
MPTG-1 video decoder L], the 1luffman decoding is
implemented using a hierarchical lookup-table technigue.
The IDCT module tansforms an 8 x 8 hlock o the DCT
domain to an 8 X 8 block in the spatial domain. For the
computational cfficicncy, 8 x 8§ 2D IDCT was
implemented by using two | x 8 1D X5, We used
Lee's algorithm for 1 x 8 DCT [5].

The reconstruction moduale rebuilds pictures based on the
motion information and reference pictures. The RGR
conversion module converts YCrCh values to RGB values
for display. In converting one YCCh triplet to a RGB

1178 IELE Transactions on Consumer Lleclronics, Vol. 45, No. 4, NOVEMBLER 1999

Vieure 2. Snapshot ot the Java MPHG- [video decoder.

triplet, 11 floating-point additions and 7 floating-pomnt
multiplications are necessary.

Figure 2 shows a snapshot of our Java MPEG-1 video
decoder. There are three user interface windows: the
disptay window (the lelt window in Figure 2), the imovic
list windlow (the upper right window in Figure 2) and the
parameter sctting window {the lower right window in
Figure 2). The user sclects a movie through the movie
list window and sets decoding related parameters (g,
rate control} through the parameter sctting window.
Once started, the sclected movie 18 displayed i the
display window, The major functions of the video
decoder are summarized i Figure 3. (For interested
readers, we recommend o visit our video decoder
homepage at bttp://mirage.snu.ac ke/dhkim/java/MPEG)

4 Optimizations and Experimental Results

The performance of the first version ol our video decoder
was rather disappointing, For the two test MPEG-!
video bitstreams listed in Table 1, our decoder can play
only 1042 frames per sccond on a Pentium 1T 300MTT2,
machine. [n arder 1o understand the perlormance
bottlenecks ol the first implementation, we have used a
Java profiling tool [6]. Table 2 shows the perfonnance
analysis results for the lest bitstreams, As shown in
Table 2, we have identified three modules as the main
petformance hottlenccks: the [IDCT module (IDCT), the
RGB conversion module (RGB) and the reconstruction
module {Recon). Although the image display modules

(Raster and Display) also consumed o fair amount ol

execution cyeles, we did not consider them for the further
optimization because they heavily depend on the
performance of Java APl routines.

. Display a movie title and a subtitle,

. Play, pause and resume a movie,

- Adjust a display screen to mateh the movic size.

4. Display the average number ol frames decoded
per second.

. Adjust the rate control parameters,

. Replay the same movie continuously il sclected.

. Adjust play tinic.

‘i I —

~ N

Iigure 3. Major functions of the Java MPEG-1 video decoder.,

Stream Size [RENS BPS [:I"B
Movie | 320 x 240 24 TR6432 1:5:3
Movice 2 240 % 176 30 598016 2:1:0

Table 1. Test MPEG-1 video bitstreams,

Movie | Movie 27
Module 7 Time (ms) % Time {ms)
IDCT | 43.22% | 204041 | 4488% | 97503
[T RroB [19.3% | vosk 2053% | 44663
[Recon | 899% 42480 2000 | 444
Rasior | 581% | 27463 6,015 13794
7T,)i:\'p|7‘dy 4 83% 22828 4—.?)’2:(;_ - l 6774 O

Table 2. Performance analysis of the first implementation.

[n order to improve the performance ol the Juva MPEG-1

video decoder, we have used two catcgories ol

optimization techniques: general oprimization techinigues
that are widely used for general programming works, and

Java-specific optimizaiion technigues that reduce the

performance overhead ol using Java-related language

leatures.

4.1 General Optimization Techhiques

The optimization techniques in this category generally
reduce the computational — requirciments. The
representative technigues are lixed-point arithietic, ook-
up tabte-based multiplication, loop unrelling, ete.

The fixed-point arithmetic technique was used Lo optimize
the RGB-to-YCrCh conversion module. In order (o
convert a RGB triplet o a YCrCh triplet based on a
straightforward implementation, it takes 7 floating-point
multiplications and 11 floating-point additions. If the
image resolutton is 352 x 2440, about 600,000 [loating-
point muftiplications and 930,004 Toating-point additions
arc necessary. In the oplimized RGHR-to-YCrCh
conversion implementation, we have replaced floating-
point multiplications with integer multiplications and

Kim and Kim: Besign and Implementation of a Java-Based MPEG-1 Video Decoder 1179

shilt operations. [n order o [urther reduce the nuher
of arithmetic operations, we implemented integer
multiplications based on a look-up table technique. We
also unrolled the conversion loop four times to reduce the
loop overbead and used inline functions (o reduce the
subroutine call overhead, These optimizations reduced
the number ol operations per pixel from |8 aperations to
12.8 operations.

For the implementation of Tee's TRCT algorithm, we have
replaced floating-point multiplications with (ixed-point

multiplications as well. [n order Lo take advantages of

the characteristics of the compressed bitstrcams, in
implementing the 8 x & 2D CT by two (D [DCTs, we
checked i1 all eight coelTicients are zeroes or nol. 1 they
arc all zeroes, we skipped the 1D IDCT caleulations,
Since the overhead of checking whether the coctticients
are all zeroes arc not ingignificant, this test was performed
for the first LI IDCT only.

In order to understand the performance gains Irom using
the fixed-point arithmetic in Java, we measured the cost
of basic Java operations using a Java henchmark on a
Pentium [T 300MHFz machine [7]. Table 3 summarizes the
measurements, Surprisingly, the results showed that there
were no significant performance differences between the
basic loating-point arithmetic operations and integer
arithmetic operations. Furtheninore, for a multiplication
operation, the measurements showed that a (Toating-point
arithmetic operation is cven faster than an ineger
operation, suggesting that we had better use loating-point
multiplications.instead o integer multiplications and
shilts. However, the dominating penally of using the
Moating-point arithmetic does not come from — arithmetic

Operation ‘I'me (ps)

int = (int) float 180155
Mloat = ([Toat} it Gh21
int =int + il 4714
int =int *int 5842
nt =1nt >> int 3288
int =int lint 4499
[loat = [loat + 1loat 4150
float = tloal * Mot 3281

new Object(} HI8683

Table 3. Measured cost ol basic Java operations.

operations but Llype casting operations. As shown in
Table 3, a Hoat-to-integer type cast operation lakes over
50 tinmes more time than a foating-point multiplication
operation. In the floating-point implenientation, type
casling operations dominate the cost of an IDCT
implementation.

tor the reconstruction module, we focused on reducing
the loop overhead and control overhead. Unrolling the
reconstruction loop boedy several times reduced the foop
overhead, while making separate subroutines for various
macroblock Aypes minimized the control overhead.
Although some functions were duplicated, making a
separate function for cach dilferent macroblock type
removes the repeated if-then-else checks.

Uigure 4 shows the performance improvements by the
eeneral optimization techniques using the Movie 2 test
bitstrcam. In the RGB module, the processing time was
reduced by 22.49% using the lixed-point acithmetic over
the initis] Implementation, The look-up table-bascd
multiplications [urther improved the performance by
68.8% over the implementation based on the lixed-point
arithinetic. For the IDCT implementation, the fixed-point
multiplication method plus o 1D IDCT skip technigue
reduced the processing time by 34.8% over the lirst
version,

4.2 Java Specific Optimization Techniques

As described in [8], one ol the main sources ol Java
performance problems comes from the high caost of ohject
creations and object-to-object copy operations. (This
can he casily verified from Table 3: the object ereation is
almost 200 thnes more expensive than a multiplication
operation.} A liberal use of Fava objects is not only
expensive during the object creation time bul also
deteimental o the performance of a garbage collector,
resulting in an overall poor performance. In order to

Movie 2 ;

v
:

(s

120000
100000
80000
60000
40000
20000
D]

[Iapd=3

Processing

[R1S13] 1NCT frecan

Bunoptimizied
‘Efixed--point arithmehic - 10 03O skin - Jloop unroll
{Dlahlu lookup mulliplication

Figurc 4, Performance improvements by the gencral
optimization teehiniques.

1180 IHEL Transactions on Censumer Vlectronics, Vol. 45, No. 4, NOVEMBER 1999

reduce the object-related performance overhead, we have
applicd the object reuse {or object pooling) technique.

The chject pooling technique is very elfective Tor the Tava
MPEG-1 vidco decoder because the decoding process
requires many large objects such as frames (c.g., the
current frame and reference [rames} and display bullers,
[n our optimization, instead of dynamically rececating
these objects whenever necessary, we reused them
without recreating once they are created in the initial
decoding stage.

The second optimization was to avoeid the usage ol array
objects as much as possible. Since a video decoder
manipulalcs a scquential - bitstream, an array is a
conventent data structure. However, in Java, an array
relerence 1s an expensive operation. Dor example, for
cach array reference, the hound check should he
performed 1o guarantee the array index has a valid value.
For time-critical [unctions where the number of array
clements is known as a constant, we did not use an array
but the same number ol scalar variables. For example,
tD 1 x 8 IDCT was a good candidate lor this type of
optimization hecause the number of elements are fixed as
8.

In addition to the object pooling technique, il possible,
functions were declared as final or static. "Uhis cnables a
compiler to do inline function expansions and to support
fust function calls by an underlying JIVM. We also found
that collapsing scveral cquations into one equation
improves the Java performance significantly, Unless the
result of an equation is reused in the later computation,
we collapsed the multiple equations into one cquation.

Figure 5 shows the petformance improvement ol the
IDCT module by applying the Java specific optimization
techniques. For the Movie 2 test bitstream, we can sce
that the performance was improved more than 300% by
not using arrays and collapsing cquations.

4.3 Experimental Results

We have conducted some experiments to examine the
overall performance imprevements by the Lechniques
described in Scetions 4.1 and 4.2, For this purpose, we
have used three versions ol Java MPEG-1 video decoder
described in lable 4. Three video decoder programs
dilfer in the optimization techniques used. Program 1 is
the initial implementation withonut using any optimization
techniques described in Scctions 4.1 and 4.2 while
Program 3 uscs all the optimization techniques. Table 5
lists the decoding performance in derms of the average
number of frames decoded per sccond (aversge (ps) lor
the two test bitstrcams. As can be seen in Table 5, the

IDCT porformance

70000
£ so000 |
50000
i 40000
30000
@ 20000
310000

0

Movie 1 Movie 2

Ewith array Bwithout array | equation collapse]

Figure 5. Performance improvement of the IDCT
implementation using the Java specitic optimization techniques.

decoding perlormance is improved by up o a factor of 3,6,

Figures 6 and 7 show the overall distribution of
processing tumes for the three decoder programs. The
optimization techniques deseribed in Scetions 4.1 and 4.2
were cifective for the IDCT, RGB and reconstruction
modules. The IDCT module was tmproved by 1000%
and 550%, the RGB conversion by 300% and 3209, and
the reconstruction module by 500% and 270% for Movie
I and Movie2, respectively. For the rasterization and
display modules, however, the optimization techniques
described were not applicable because these two inodules
heavily depends on the performance of Java AD[
implementations, which we could not optimize much.

In order to validate that the performance improvements by
the described optimization technigues are not limited 1o
the test bitstreams and the test machine, we measured the
performance of the Java MPEG-1 video decoder using

Program Optimization Techniques Used

Program 1 No optimizations used.

Usc static/final methods,
Usc integer multiplications and shills.
Program 2 Skip ID IDCT if all elements are zeroes.

Use loop unrolling in reconstruction.

Techniques used for Program 2,
Reuse ohjects,

Program 3 Collapse cyuations.

Avold using arrays.

Use alookup table in RGB conversion.

Table 4. Three versions of JTava MPEG-1 video decoder.

Kim and Kim: Design and Implementation of a Java-13ased MPYG-1 Video Decoder 1181

Movie | Movie 2
Progrant 1 422 Ips 1042 fps o
Program 2 12.00 Ips 18.00 fps
Program 3 15.07 Ops 28.67 {ps

Tuble 5. Decoding rate for three versions o Java MPLG-
video decoder.

Movie 1
250000
Loy 200000
.
i s
i 150000 EProgram 1
§ E'rogram 2
2 100000 DOProgram 3
L8]
o 50000 :
ot 1. R

IDCT RGB Recon RHaster Display

-

dgure 6. Processing lime distribution for Movie | using three
versions ol the MPEG-1 video decoder (Line in ms).

Movie 2

120000

100000
n

F
= 80000 i
. EAProgeam 1
% 60000 BProqiam 2 ‘
g AG000 Ofroaan 3
o

20000

O

107 RGEB Reoon Raster Display
Figure 7. Processing time distribution for Movie 2 using three
versions of the MPEG- | video decoder (time in ms).

different bitstreams, different Java virtual machines
(IVMs) and dificrent machines. Table 6 describes the
characteristics of live test bitstreams tested. Vigure 8
shows the performance measurements on - various
machines using five test bitstreams. In general, the
performance tinproves as the processor speed increases.
{(Lhe exception is the case between Pentium 1 266MI Iz
and Pentium [T 300M1ILz. This is because the Pentium 1T
300MHz machine is a notebook compuler. It uses the
slower memory and slower bus architecture.) Figure 9
shows the performance of the Java MPEG-1 video
decoder at different JVMs on a Pentium [T 300MHz,
machine. It shows the performance can be quite
different depending on which TVM is used.

Stream Size EPS Bit Rate I:P:13
Bitstream | 320 % 240} 24 90K 1:5:5
Bitstream 2 320 % 144 7 24 73K 110
Bitstream 3 304 x 224 30 73K 2:1:0
Bitstrcam 4 240 % 170 30 13K 2:1:0
Bitstream 3 240 x 108 24 54K 1:4:10

Table 6. ‘lest Bitstreams,

50
44
40 -
a5 FI Mt 200
£ o 200
ar 1 6
2 ar i 3o
20 .
15 Wi 343
10 EP 11350
5
0
bitstroam bitstroam bitstroam bitstream bilstream
1 2 3 i 5

Figure 8. Java MPHG- | video decoder pecformance on
ditlerent machines.

CISUN JDK 1.2 |
K Netscape 451 ‘L
OIE 4.0

CHRM JDK 1.3/

0 i
bitstrearn bitstroarn bitstream bitstroam bitstroam
1 2 3 4 I

ligwe 9. Java MPTEG-1 video decoder performanee under
different JVMs on a Pentium 11 300 machine.

5 Conclusions

In order to evaluate the [easibility of Java as a multimedia
programming language, we have presented the design and
implementation of a Java-hascd MPLG-1 video decoder
and described several useful optimization techniques used
to speed up the decoder.

The initial implementation of our MPPHG-1 video decoder
was able o play 10,42 {rames per second on a Pentium-H
300 MIIx computer, Lar short of car target rate, 3() frames
per sccond. Based on the performance analysis cesulls
from a Java performance profiler, we have applied two

1182 IEEE Transactions on Consumer Lleelronies, Vol, 45, Na, 4, NOVEMBER 1999

categorics of optimization techniques w0 improve the
petlormance of the video decoder. First, we have
applicd general optimization techniques o compute-
bound routines such as the inverse discrete cosine
translorm (IDCTY and color space conversion o reduce
the computational requirements, Sceond, we have used
Java specilic oplimizations such as the objeel pooling and
scalar-based array replaceient technigues to reduce the
memory management overhead and array relerence
overhead in Java, Aller these optimizations, the MPPLG-
I video decoder could decode about 28.67 frames per
second on the same machine for a 240 x 170 MPEG-|
video bitstrean, a speed-up ol 2.8 Limes over the initial
implementation. Buased on our experience with the Java-
based MPEG-1 video decoder, we strongly belicve that
the pure Java-based media processing is a fzasible
solution.

References

[1] K, Patel, B, Smith and T.. Rowe, Performance ol a
Soltware MPLG Video Decoder, Proceedings of the
conference o Multimedia '93, pp. 75-82, 1993,

J. Anders, [nline MPEG-1 player 1n Java,

httpc s informatik uchemite.de/~ja/MPEGIMPE

G Play himl.

[3] D. Le Gall, MPEG: A Video Compression Standard
for Mulimedia Applications, Communications of the
ACM, Vol, 34, No. 4, Ape. 1991, pp. 46-58,

[4] J. Mitchell, 1. e Gall, and C. Vogg, MPLEG Video
Compression Standard, Chapman and [Tall, t996.

—_
g

5] B. Lee, A New Algorithm o Compute the Diserele
Cosine ‘Transiorm, HEEF Transactions on Acoustics,
Speech, And Signal Processing, Yol ASSP-32, No. 6,
Dec. 1984, pp. 1243-1245.

{6] Optimizelt home page, htp://www.oplinizeit.com.

{71 G. I'reedman, Java Performance Tssues and Solutions,
http:tfwoww.optimizeit.com/Optintization. pdf.

[8] R. Klemm, Practical Guidelines for Boosting Java
Server Perlormance, Proceedings of the ACM 1999
Java Grande Conference, pp. 25-34, 19949,

Biographies

Dohyung Kim received BE and MS degrees in compuler
engineering [rom Scoul National University in 1997 and
1999, respectively. Currently he is working toward Ph.l,
degree at the same department. His rescarch interests
arc in the arcas ol design automation and Java
performance cvaluation.

Jihong Kim is an assistant professor in the Department of
Computer Science, Seoul National University. Before
joining Scoul National University in 1997, he was a
Member of Technical Stafl in the DSPS R&D Center of
Texas Instraments in o Dallas, Texas. Jihong Kim
received his BS in computer science and statistics from
Scoul National University in 1986, and MS and Ph.D.
degrees in computer science and engineering {rotn the
University of Washimgion tm 1988 und 1995, respectively.
His rescarch interests include computer architeogare,
embedded systems, Tava computing, multimedia systems,
and real-time systems. He is a member ol the TH1E
Compuler Society and ACM.

