
Improving User Experience of Android Smartphones Using
Foreground App-Aware I/O Management

Sangwook Shane Hahn

Seoul National University

shanehahn@davinci.snu.ac.kr

Sungjin Lee

DGIST

sungjin.lee@dgist.ac.kr

Inhyuk Yee

TmaxSoft

heyork1@gmail.com

Donguk Ryu

Samsung Electronics

du.ryu@samsung.com

Jihong Kim

Seoul National University

jihong@davinci.snu.ac.kr

ABSTRACT
Modern mobile systems are designed to run multiple apps

simultaneously to provide a better experience for end users.

In such a multi-tasking environment, a foreground app that

a user is actually interacting with is often delayed by back-

ground ones, which results in significant degradation of

user-perceived response time and user experience. Based

on detailed analysis of kernel’s software stack, we find that

the majority of the degradation is caused by the inefficient

management of foreground I/Os in the page cache and block

I/O layers, and existing techniques like a priority inheritance

protocol are not an effective solution to address this. In this

paper, we propose a foreground app-aware I/O management

scheme that accelerates foreground I/Os by preempting back-

ground I/Os in the entire kernel stacks. Our experimental

results on smartphones show that the proposed technique

reduces the user-perceived response time delay by up to

91%, achieving application’s responsiveness close to when a

single app solely runs.

1 INTRODUCTION
Modern mobile systems such as smartphones and tablets sup-

port multitasking for seamless switching between applica-

tions [1, 2]. For example, Android allows one foreground app

and up to four background apps to run simultaneously [3].

More recently, Android smartphones start to support a multi-

window feature that displays more than one app at the same

time on the screen [4]. In such multitasking mobile envi-

ronments, foreground app-aware resource management is

important. For example, if the current interactive session of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

APSys’17, Mumbai, India
© 2017 ACM. 978-1-4503-5197-3/17/09. . . $15.00

DOI: 10.1145/3124680.3124721

a foreground app is blocked or delayed by background apps,

it may significantly degrade the quality of user experience

with mobile systems.

Since the execution behavior of a app is directly affected

by how CPUs are managed, foreground app-aware CPUman-

agement has been extensively studied. For example, in order

to avoid user-perceived delays while running a foreground

app, CPU frequency/voltage scheduling policies are differ-

entiated between user-perceived execution intervals and

user-oblivious intervals [5]. Unlike CPUs, I/O management

has been mostly foreground app-oblivious on mobile systems.

For older smartphones such as Nexus S [6], I/O requests from

a foreground app were rarely interfered with I/O requests

from background apps because the number of background

apps is quite limited due to a small DRAM capacity (e.g.,

382 MB) [7-11]. However, on modern high-end smartphones

with a large number of CPU cores (e.g., 8 cores) and a large

DRAM capacity (e.g., 8 GB) [12-14], the quality of user experi-

ence can be significantly deteriorated because of unexpected

collisions between foreground I/O requests and background

I/O requests [15].

As a concrete example, consider an app launch scenario

where a user must wait until all the required files for an

app are loaded from a storage device before the next inter-

action with the mobile system is initiated. Although an app

launch often involves reading a large number of files (e.g., ex-

ecutables, libraries, images, and binary data), in most mobile

apps, such a startup phase finishes rather quickly (e.g., less

than 1 second). However, when several I/O requests from

multiple background apps are issued simultaneously while

launching the app, the app launching time may significantly

increase over when no background apps interfere with the

foreground app. In our experiments with high-end smart-

phones, the app launch time can increase by up to 4 times

over that no background apps.

Various I/O scheduling techniques have been proposed to

address the problem caused by background I/Os. Boosting

Quasi-Asynchronous I/O (QASIO) is one of such efforts to



provide better I/O scheduling by means of a priority inheri-

tance protocol [16]. QASIO prioritizes I/O requests according

to their types at the block I/O layer – it gives a high priority

to synchronous writes while assigning a low priority to asyn-

chronous writes. Then, if high-priority writes are blocked

by low-priority ones, temporarily promotes the priority of

the low-priority writes so that they can be serviced quickly.

Request-centric I/O prioritization (RCP) [17], more recently

proposed, is also based on a priority inheritance protocol,

but it further improves QASIO by prioritizing I/O requests

at the page cache layer rather than the block I/O layer.

While the aforementioned techniques are rather effective

than a default kernel scheduler, they fail to offer high-quality

experience to end users because of the following limitations.

First, they prioritize I/O requests based on types of requests
(e.g., synchronous or asynchronous), instead of types of apps
(e.g., foreground or background) that request the I/O service.

If background apps issue synchronous I/Os frequently, a

foreground app may be delayed because of background I/O

requests. Second, a priority inheritance protocol is less effective
in a situation where a large volume of I/O traffic is sent by

background apps (e.g., downloading apps) while a foreground

app issues small I/Os in a sporadic manner (e.g., reading

database records). In this case, small foreground I/Os are

blocked by bulky background I/Os for a long time because

the background I/Os are promoted to a high priority.

In this paper, we take a more direct approach to resolving

conflicts between foreground I/O requests and background

requests by preempting background I/O requests whenever
foreground I/O requests are issued. In order to support fore-

ground I/O requests with a higher priority throughout the

entire Android I/O stack, our proposed scheme, called FAIO
(foreground app-aware I/O management), modifies several

layers including the Android platform, the page cache and

the block I/O layer. FAIO identifies the current foreground

app from the Android platform with a negligible overhead.

In the page cache layer, when the foreground app issues

an I/O request, FAIO preempts the global page-cache lock
from the current background I/O request and gives it to the

foreground I/O request right away. (This is the key differ-

ence from the existing techniques which adopt the priority

inheritance protocol.) In the block I/O layer, when an block

I/O request is sent to the storage dispatch queue, FAIO sends

foreground I/O requests with a higher priority than back-

ground I/O requests. By combining these modifications at

the three I/O stack layers, FAIO guarantees that foreground

I/O requests are not delayed by background I/O requests.

In order to evaluate the effectiveness of the proposed

FAIO technique, we have implemented FAIO on various An-

droid smartphones, including Nexus 5 [18], Nexus 6 [19], and

Galaxy S6 [20]. Our experimental results show that FAIO

significantly improves user-perceived response time. For ex-

ample, FAIO can reduce the app launch time by 2.68 times,

achieving a (nearly) equivalent launch time under no back-

ground apps. Furthermore, FAIO reduces delays of app sus-

pension (switching from one app to another) and app loading

(loading resources during app running) by up to 72% and

86%, respectively.

The remainder of this paper is organized as follows. In

Section 2, we report our key findings through our evaluation

study that analyzes the impact of background I/Os on user-

perceived response time. Section 3 describes the proposed

FAIO in detail. Experimental results using real-world smart-

phones are presented in Section 4 and Section 5 concludes

with future work.

2 EMPIRICAL ANALYSIS OF USER-
PERCEIVED RESPONSE TIME

In this section, we first review the overall architecture of the

Android I/O stack, giving a brief explanation of how Android

apps accesses files in storage media. Then, we demonstrate

the impact of background I/Os on response times through

experiments on three smartphones. Finally, we introduce a

major bottleneck we find by analyzing the Android I/O stack.

2.1 Overview of Android I/O Stack
Android is the most widely-used Linux-based operating sys-

tem for mobile systems [21]. Android apps are able to access

storage media through two top libraries, SQLite [22] and

Core Libraries, which are provided by the Android platform.

Two libraries are built on top of the Linux I/O stack, com-

prised of the virtual/local file system, the page cache, and

the block I/O layer.

Android file I/Os (i.e., reads and writes on files) created

by the top libraries are delivered to the virtual file system

through Linux’s system call services. After the information

of the desired file is obtained from the local file system (e.g.,

EXT4 [23]), the Linux kernel sees if corresponding file data

is already cached or buffered in the page cache. If not, free

pages available in the page cache are allocated to individual

file I/Os. If the file I/O is for writes, user data is copied to the

allocated pages in the kernel.

Before sending I/O commands to an underlying block de-

vice, each file I/O is converted into a set of block I/O requests

with designated logical block addresses (LBAs). Block I/O

requests are then transferred to the block I/O layer and put

into proper I/O scheduling queues, synchronous or asyn-

chronous queues, according to their types. I/O scheduling

algorithms (e.g., CFQ [24]) move ready-to-submit block I/O

requests to a dispatch queue, which will be sent to the block

device via the eMMC [25] or UFS [26] interface. If the file

I/O is for reads, data read from the storage device is stored in

2



0 2 4 6 8 10

S6

N5

N6

Gallery Launch Time (sec)

FG only
FG + BG

(a) Gallery app launch time.

0 2 4 6 8 10

S6

N5

N6

Camera Suspension Time (sec)

FG only
FG + BG

(b) Camera app suspension time.

0 2 4 6 8 10

S6

N5

N6

Game Loading Time (sec)

FG only
FG + BG

(c) Game app loading time.

Figure 1: Impact of BG I/Os on user experience.

the allocated pages, and the data is finally copied to a buffer

in a user space.

2.2 Impact of BG I/Os on User Experience
In order to understand an impact of background I/Os on

user experience, we conduct a series of experiments with

three Android smartphones, Nexus 5 (N5), Nexus 6 (N6), and

Galaxy S6 (S6). We measure user-perceived response time for

three real-life usage scenarios of smartphones under heavy

background I/Os, which is depicted in Fig. 1. In order to

generate background I/Os, we select Android’s app update

manager as a background app because it is automatically

invoked in the background when a smartphone is connected

to a Wi-Fi environment. Popular apps such as Twitter are
reported to be updated every 7 days, on average [27, 28].

Therefore, smartphone users are likely to suddenly experi-

ence heavy background I/Os caused by app updates if they

install a relatively large number of apps.

Scenario A – Launching a Gallery App: As pointed
out in Section 1, an app launch requires to read a relatively

large number of files (e.g., executables, libraries, and files).

In particular, as the quality of mobile contents improves, the

amount of data to read while launching an app increases as

well. In the case of a Gallery app [29], for example, about

500 MB of data has to be preloaded. (To prevent reading

the pre-generated thumbnails, we erased all the photos then

stored new ones before launching.) We measure its launch

time, which is defined to be the time interval from when the

app icon is touched by a user to when all the thumbnails of

the photos are created.

Fig. 1(a) depicts the launch time of Gallery on the three

smartphones. Even though there are differences depending

on the hardware performance, significant degradation of

apps’ launch speed is commonly observed on all the smart-

phones when background I/Os are issued simultaneously.

For example, in the Galaxy S6, the launch time (denoted by

FG+BG) increases to 2.6 times, compared with a standalone

launch (denoted by FG only).
ScenarioB – Suspending a CameraApp: Switching from

one app to another becomes a common feature in smart-

phones supporting multitasking. Before moving to the new

app, the current app should be properly suspended. In the

Android platform, the app suspension involves flushing of

buffered dirty data to persistent storage, so as to create as

much free memory as possible for the new app. For apps

that heavily use memory, therefore, lots of writes could be

involved that cause degradation of user experience.

We examine the suspension time of a Camera app [30]

when it switches to a home screen app. The Camera app

is recording a video for 10 minutes. To understand an im-

pact of app suspension on user-perceived response time, we

measure the time interval from when the home button is

pressed (while Camera is running) to when the home screen

is displayed to get the next user input. Fig. 1(b) illustrates the

suspension time of Camera – it is less than 1 second when

no background I/Os are being issued, but increases to 19.5

times under heavy background I/Os.

Scenario C – Loading a Game App: After app launching,
some apps require loading additional files to initiate actual

app contents. One of the representative examples is a Game
app [31] that has to preload game contents (e.g., stage maps,

rendered images, and character information). This loading

process inevitably results in response time delays from the

perspective of end users. We measure the loading time of

the Game app to understand how much background I/Os

affect user-perceived response time. As shown in Fig. 1(c),

the standalone loading time ends in 2-4 seconds, but under

heavy background I/Os, it increases to 4-8 seconds.

2.3 Analysis of Bottlenecks under BG I/O
In order to find bottlenecks causing user-perceived delays,

we have analyzed all of the activities in the Android platform

as well as the Linux kernel while running background and

foreground apps. Surprisingly, we find that the root causes

of user-perceived delays are lock contention in the page cache
layer, rather than I/O scheduling in the block layer.

Once I/O requests arrive at the kernel from user apps, free

pages should be assigned first to the I/O requests. This free-

page allocation holds a global lock of the page cache until

enough free pages are found [32]. Moreover, this free-page

acquisition process is non-preemptive [33]. In common cases,

obtaining free pages is done quickly. However, if there are

3



Fig. 

(a) Foreground app only.

Fig. 

(b) Both foreground app and background app.

Figure 2: Impact of background apps on the I/O latency of the FG app.

not enough free pages, it could take a relatively long time

(longer than 200ms [17]) because it often involves extra I/Os

to flush out dirty pages to the persistent storage. Therefore,

if foreground I/Os are blocked by background ones which

are causing extra I/Os to get free pages from the page cache,

the foreground app is inevitably delayed for a long time.

Fig. 2(a) illustrates an example where a foreground app

reads a photo file whose size is 256 KB from storage media

by calling a read() system call. We compare two difference

cases: 1) when it solely runs and 2) when there is a back-

ground app that writes a large file to the storage device.With-

out no background apps, the foreground app can quickly get

free pages from the page cache (by calling alloc_pages()
1 ). Since the maximum allocation unit of free pages is lim-

ited to 128 KB [34], the kernel calls alloc_pages() twice,

each of which gets 128 KB free pages. After calling each

alloc_pages(), the kernel sends a read I/O command to

the storage device ( 2 ), which transfers file contents from

the storage to the allocated pages. Finally, data kept in the

kernel pages are copied to a user-space buffer in the unit of

128 KB (by calling copy_to_user() 3 ).

In the case where the foreground and background apps

run simultaneously, suppose that the background app calls

the write() system call to write data just before read() is
invoked by the foreground app. The page lock is grabbed

by the background app first, so the foreground app has to

wait until it releases the lock ( 4 ). This could be quite long

if extra I/Os are involved while assigning free pages to the

background app. After the page lock is released by the back-

ground app, the foreground app is able to acquire the lock,

allocates free pages for reads, and releases the lock. Then, it

issues a read I/O command to the device. Copying data from

the user space to the kernel space (copy_from_user()) also
requires holding the same global lock of the page cache ( 5 ).

As depicted in 2(b), if the background app already has the

global lock, the foreground app has to wait again for the lock

to be released, which adds additional user-perceived delays.

Some might argue that the eviction of dirty pages in the

middle of calling alloc_pages() would rarely occur. In our

observation, however, when write-dominant background

apps run (for example, update of apps in Section 2.2 and

other real-life scenarios in Section 4.1), lots of dirty pages are

created in the page cache and available free pages quickly

run out. If foreground app requests I/Os in such situations,

frequent eviction of dirty pages is inevitable.

3 DESIGN AND IMPLEMENTATION OF
FAIO

As pointed out in the previous section, foreground I/Os are

often delayed due to lock contention initiated by background

I/Os at the page-cache level. A priority inheritance protocol

that raises a priority of background I/Os is unable to avoid

such delays since it requires a foreground app to wait for

background I/Os to finish.

The most promising approach may be to preempt back-

ground I/Os upon the arrival of latency-sensitive foreground

I/Os at the page cache. This creates a quick I/O path for

foreground I/Os so that they are served promptly by the

page cache, while suspending less important background

I/Os. Key technical challenges here are (1) how to identify

foreground I/Os from background ones at the page-cache

level and (2) how to preempt background I/Os immediately.

Keeping these technical challenges in mind, we design the

foreground app-aware I/O management (FAIO) with three

modules as illustrated in Fig. 3: a foreground application de-

tector (FG app detector), a foreground-centric page manager

(FG page manager) and a foreground-centric I/O dispatcher

(FG I/O dispatcher).
The FG app detector obtains the information of the cur-

rent foreground app by monitoring the activity stacks of

the Android platform ( 1 ) and forwards it to the FG page
manager ( 2 ). Using this information, the FG page manager
is able to identify I/O requests from the foreground app, sus-

pending the currently executing background I/O jobs ( 3 ).

The FG page manager then grabs a global lock of the page

cache, preferentially assigning free pages to foreground I/Os,

regardless of their arrival time ( 4 ). Until the FG page man-
ager releases the lock, background I/Os are postponed. After

4



Page Cache

Send FG App’s UID, PID, TID

NAND Flash-based Storage

Block Layer

Free Page Pool

2

Send FG I/O LBAs

Get FG BIOs

Get Free Pages for FG I/O

FG App Detector

4

5

7

Android Platform

Activity Stack
1

Get FG App’s UID

FG AppApplications BG Apps

FG I/OBG I/Os

3
Preemption

Dispatch Queue

FG BIOsBG BIOs

6
PreemptionI/O Scheduler FG I/O Dispatcher

8Queue FG BIOs

FG Page Manager

Pages

Figure 3: An overall architecture of FAIO.
acquiring all the free pages required, the FG page manager
builds up block I/O requests for foreground I/Os (FG BIOs)

with designated LBAs, putting them into I/O scheduler’s

queue in the block layer ( 5 ). Upon the arrival of FG BIOs,

the FG I/O dispatcher suspends servicing BG BIOs by lim-

iting I/O queueing ( 6 ) and then immediately delivers FG

BIOs to the dispatch queue ( 7 and 8 ).

3.1 Foreground App Detector
In order to identify a foreground app among all the apps

available in the system, the FG app detector inquires of the
Android activity manager holding all of the activities ini-

tiated by a user. Whenever a user inputs a command to a

phone by touching a screen or an icon, the Android platform

creates a new activity, which is a sort of job corresponding

to user’s command, and puts it into an activity stack in the

Android activity manager. Since the top activity on the stack

points to the current interactive app with a user (i.e., a fore-

ground app), the information of the foreground app in the

system can be easily retrieved.

All of the Android apps have its own unique ID number,

called UID, which is assigned when an app was installed in

the system. An UID number is different from Linux’s process

ID (PID). Thus, our next step is to find a list of Linux processes

connected to the foreground app. A list of the processes in

question can be obtained by examining all the processes

in Linux’s process tree. However, such a exhaustive search

on the process tree takes a relatively long time. Therefore,

the FG app detector maintains an UID-indexed table that

is updated whenever a new process or thread is created or

terminated. Then, using UID as a key, the FG app detector
can quickly retrieve a list of foreground app’s processes.

Whenever the top activity changes, the FG app detector
sends an UID of the new foreground app, along with PIDs

and TIDs of related Linux processes, to the Linux kernel via

the sysfs interface. By doing this, FAIO is able to keep track

of the currently executing foreground app.

Fig. 6

FG I/O
w/ FAIO

BG I/O
w/ FAIO

write( )

read( )

Time

Time

Read I/O Read I/O

waiting waiting waiting



 

Detect

Preempt Resume

FG Page Manager

FG I/O

BG I/O

write( )

Time

read( )

get_free_pages( )
submit I/O

copy..get_free_pages( )
submit I/O

Time
waiting get_free_pages waiting copy_from_user wait


Detect


Preempt


Resume

FG Page Manager

Figure 4: BG I/O preemption by FG page manager.

3.2 Foreground-centric Page Manager
The FG page manager is designed to achieve two main pur-

poses: page allocation control and page access control. The

FG page manager receives the foreground app information

from the FG app detector and preempts background I/Os

when foreground I/Os arrive at the page cache.

Fig. 4 shows how the FG page manager works using the
same example as in Fig. 2. Suppose that the foreground app

generates a read request to the kernel just after the back-

ground app issued a write request. The FG page manager
intercepts a system-call invocation (i.e., read ()) and sees if

the I/O request is from the foreground app or not by compar-

ing its UID, PIDs, and TIDs numbers with the ones previously

received from the FG app detector ( 1 ). If the request comes

from the foreground app, the FG page manager forces back-
ground I/Os to release a global lock of the page cache just

after getting a page currently being requested ( 2 ). After

allocating desired pages to the foreground I/O, the FG page
manager resumes the preempted background I/Os ( 3 ). At

the same time, the kernel issues block I/O requests for the

foreground I/O to fill up the allocated pages with data read

from storage media. In a similar way, the FG page manager
suspends and resumes data copy operations of background

I/Os between user and kernel space.

In order to support the prompt preemption and resump-

tion of background I/Os, we modified Linux kernel’s page

cache-related functions such as alloc_pages(), do_generic
_file_read() and generic_perform_write(). For quickly
preempting the background I/O, these functions were di-

vided intro several execution segments. At the end of each

segment, the FG page manager checks if there is a waiting
foreground I/O or not. These checkpoints also help the sus-

pended background I/O restart quickly because it can resume

its execution where it was suspended.

Unless two user-installed apps are specially designed to

work together, I/Os of a foreground appwill not be dependent

on those of a background app, thus preempting the back-

ground app’s I/O won’t affect the foreground app’s execution.

However, for the pre-defined Android system processes such

as zygote, wifi and phone [35], the FG page manager does
not preempt their I/Os because it may negatively affect the

performance of the foreground app. For example, when data

5



Page Cache

Block Layer

FG I/O

Pages Pages

BG I/Os

BG BIOs
(PID 22171)

Applications FG App 
(PID 10039)

Async. 

Queues

Sync. 

Queues
BG BIOs

(PID 10041)

Dispatch Queue

Async I/O Sync I/O

FG Process

FG I/O Dispatcher 

FG BIOs
(PID 22171,

LBA 52672)

FG BIOs
(PID 10039)

Pages Pages

BG Processkworker (PID 22171)

FG I/O LBAs

BG App 
(PID 10041)

FG Page 
Manager 

LBA
52672

Figure 5: FG I/O acceleration by FG I/O dispatcher.

necessary for the foreground app is downloaded through a

network system process, preempting the network system

process’s I/O may delay the foreground app’s execution. In

order to avoid such self-harming preemption cases, the FG
page manager checks whether background I/Os belong to

system processes or user-installed apps through UID and ex-

cludes system process I/Os from preemption. Since Android

predefines UIDs for system processes and assigns UIDs to

user-installed apps between 10,000 and 19,999 [35], the FG
page manager is able to determine whether background I/Os

belong to system processes or not.

3.3 Foreground-centric I/O Dispatcher
Once block I/O requests are delivered to the block layer from

the page cache layer, they are put into a sync queue or an

async queue in the I/O scheduler according to their types. To

accelerate foreground block I/O requests (FG BIOs), the FG
I/O dispatcher looks for FG BIOs in both queues and moves

them to the dispatch queue immediately.

Depending on the type of a queue, the FG I/O dispatcher
has to take different strategies to find FG BIOs. FG BIOs can

be easily found in the sync queue using the foreground app’s

PID number delivered by FG app detector. In the case of

async I/Os, however, the PID number of all async I/Os is the

same as the PID of the kworker kthread which delivers async

BIOs buffered in the page cache to the block layer on behalf

of foreground processes. Since the PID number is not useless

to find async FG BIOs, the FG I/O dispatcher uses LBAs as
keys to fetch FG BIOs from the async queue.

Fig. 5 illustrates how the FG I/O dispatcher detects FG
BIOs and delivers them to the dispatch queue. Suppose that

both the process (PID 10039) of the FG app and the process

(PID 10041) of the BG app generate sync I/Os and async I/Os

simultaneously. For sync I/Os, since the foreground process

directly puts FG BIOs to the sync queues, sync FG BIOs main-

tains the process PID (i.e., PID 10039). However, for async

I/O, the PID of async FG BIOs is recorded as 22171, which is

kworker khtread’s PID. Therefore, the FG I/O dispatcher is
unable to find async FG BIOs with the PID of the foreground

process. The FG I/O dispatcher receives the LBA number

(52672) of async FG BIOs from the FG page manager, and
by utilizing the LBA, it is able to find async FG BIOs in the

async queue.

Finally, whenever new BIO enter the sync/async queues,

the FG I/O dispatcher prevalidates whether it is FG BIO, then

directly sends FG BIO to the dispatch queue regardless of its

priority in sync/async queues.

4 EXPERIMENTAL RESULTS
For the evaluation of FAIO on real systems, we implemented

the FAIO modules in the Android 5.1.1 and the Linux kernel

3.10. Three different smartphones, Nexus 5 (N5), Nexus 6

(N6), and Samsung Galaxy S6 (S6), were used for evaluation.

N5, N6, and S6 were equipped with a quad-core CPU and

2 GB DRAM, a quad-core CPU and 3 GB DRAM, and an

octa-core CPU and 3 GB DRAM, respectively.

We have chosen two apps for background usage scenarios,

app-update and file-download. The app-update scenario
updates Hearthstone game [36], from Play Store, whose size
is about 1.5 GB. The file-download scenario downloads a

3 GB movie file from the FTP server.

While running background apps, we run three foreground

apps, Gallery (app launch), Camera (app suspension), and

Game (app loading) discussed in Section 2.2. For a fair com-

parison, before the execution of each scenario in a 5 GHz

Wi-Fi connected environment, all other apps except for fore-

ground/background apps are terminated.

4.1 Experimental Results
We compare the performance of five different policies: FG
only, FG+BG, FAIOF PM , FAIOF ID , and FAIO. Here, FAIOF PM
is FAIO only with FG page manager (FPM), while FAIOF ID
is FAIO employing FG I/O dispatcher (FID) only. FAIO is

with both FPM and FID. FAIOF PM , FAIOF ID , and FAIO all

use the FG app detector to detect foreground I/Os.

Fig. 5 shows that FAIO reduces the user-perceive response

time delays of Gallery, Camera and Game by up to 91%, 72%

and 86% over FG+BG, respectively. In particular, in the case of
the app launch times with Gallery and Game, FAIO achieves

a very similar response time as FG only. Unlike Gallery
which is a read-dominant workload, for Camera often issues

writes to the storage device, FAIO shows slightly increased

response times than FG only. This is mainly due to the inef-

ficient device queue management of UFS and eMMC storage.

If foreground reads are mixed up with background writes

inside UFS’s or eMMC’s device queues (e.g., in the cases of

Gallery and Game), the reads are serviced prior to the writes
with a high priority. However, if foreground and background

writes are mixed in the queue (e.g., Camera), they are han-

dled in a FIFO manner according to their arrival time. Thus,

even if FAIO immediately forwards foreground writes to the

6



0 2 4 6 8 10

S6

N5

N6

FG only FG+BG FAIOFPM FAIOFID FAIOFAIOFPM FAIOFID

(sec)

(a) Gallery app launch time.

0 2 4 6 8 10

S6

N5

N6

FG only FG+BG FAIOFPM FAIOFID FAIOFAIOFPM FAIOFID

(sec)

(b) Camera app suspension time.

0 2 4 6 8 10

S6

N5

N6

FG only FG+BG FAIOFPM FAIOFID FAIOFAIOFPM FAIOFID

(sec)

(c) Game app loading time.

Figure 6: Impact of FAIO on user-perceived response time.

device at the kernel level, they are blocked inside the device

by outstanding writes previously issued by background apps.

One of the interesting observations is that the impact of

FID on performance improvement is negligible compared

with FPM. For example, with FAIOF ID , the response times

of the three scenarios are reduced by only 7%, 29%, and 21%

over FG+BG, respectively. This shows that I/O optimization

at the block layer has a limited effect; instead, managing

foreground I/Os at a higher level (i.e., the page cache level)

is more effective in reducing response time delays.

Finally, Fig. 5 also shows that FAIO works more efficiently

atop a faster storage device like UFS (used in S6) than a slower

one like eMMC (used in N5 and N6). In our observation, the

absolute numbers of I/O latencies reduced by FAIO are almost

the same, regardless of the type of underlying storage devices

(i.e., UFS or eMMC). Therefore, the overall improvement ratio

by FAIO becomes more significant for the fast storage, where

foreground apps generally exhibit shorter response times.

This means that as the storage devices get faster, the effect

of FAIO becomes more substantial.

5 CONCLUSIONS
In this paper, we presented a foreground app-aware I/O

management technique, called FAIO, which accelerated fore-

ground I/Os by preempting background I/Os in the kernel

I/O stacks. FAIO was motivated by our empirical findings

that background I/Os significantly affected user experience.

By monitoring an activity stack in the Android platform,

FAIO detected I/O requests from a foreground app. With this

information, the improved page cache and block I/O mod-

ules for FAIO immediately delivered the foreground I/Os

to the storage device with minimum interference from in-

flight background I/Os. Our experimentals showed that FAIO
reduced the user-perceived response time delay by up to 91%.

FAIO achieved high performance improvement for read-

dominant workloads, but the performance improvement for

writes was rather limited due to inefficient device-level I/O

scheduling. As future work, we plan to develop a new device-

level I/O scheduling policy, which is tightly integrated with

the kernel scheduler and thus can handle foreground I/Os

more efficiently inside the device.

6 ACKNOWLEDGMENTS
We would like to thank Tian Guo, our shepherd, and anony-

mous referees for their valuable comments which greatly

improved our paper. This research was supported by the

National Research Foundation of Korea (NRF) grant funded

by the Ministry of Science, ICT and Future Planning (MSIP)

(NRF-2015M3C4A7065645). The ICT at Seoul National Uni-

versity provided research facilities for this study. (Correspond-
ing Author: Jihong Kim)

REFERENCES
[1] Hackborn, D. Multitasking the Android Way.

https://android-developers.googleblog.com/2010/04/

multitasking-android-way.html.

[2] iOS Human Interface Guidelines - Multitasking. https://

developer.apple.com/ios/human-interface-guidelines/

features/multitasking.

[3] Background Execution Limits. https://developer.android.

com/preview/features/background.html.

[4] Multi-Window Support. https://developer.android.com/

guide/topics/ui/multi-window.html.

[5] Song, W., Sung, N., Chun, B., and Kim, J. Reduc-

ing Energy Consumption of Smartphones Using User-

Perceived Response Time Analysis. In Proceedings of the
International Workshop on Mobile Computing Systems
and Applications (2014).

[6] Nexus S. https://en.wikipedia.org/wiki/Nexus_S.

[7] Anwar, A., and Tanveer, O. Performance Optimization

For Android. https://www.slideshare.net/arslantumbin/

performance-optimization-for-android-32797106.

[8] Background Optimizations. https://developer.android.

com/topic/performance/background-optimization.

html.

[9] Optimizing Foreground App Performance on Nexus S.

https://www.reddit.com/r/Android/comments/1wqcuh

/how_do_i_make_android_manage_foreground_apps.

[10] RAM Issue on Nexus S. https://forum.xda-developers.

7

https://android-developers.googleblog.com/2010/04/multitasking-android-way.html
https://android-developers.googleblog.com/2010/04/multitasking-android-way.html
https://developer.apple.com/ios/human-interface-guidelines/features/multitasking
https://developer.apple.com/ios/human-interface-guidelines/features/multitasking
https://developer.apple.com/ios/human-interface-guidelines/features/multitasking
https://developer.android.com/preview/features/background.html
https://developer.android.com/preview/features/background.html
https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/guide/topics/ui/multi-window.html
https://en.wikipedia.org/wiki/Nexus_S
https://www.slideshare.net/arslantumbin/performance-optimization-for-android-32797106
https://www.slideshare.net/arslantumbin/performance-optimization-for-android-32797106
https://developer.android.com/topic/performance/background-optimization.html
https://developer.android.com/topic/performance/background-optimization.html
https://developer.android.com/topic/performance/background-optimization.html
https://www.reddit.com/r/Android/comments/1wqcuh
/how_do_i_make_android_manage_foreground_apps
https://forum.xda-developers.


com/nexus-s/help/ram-issues-nexus-s-jelly-bean-t18

54513.

[11] Performance Drop on Nexus S. http://forums.whirlpool.

net.au/archive/1999853.

[12] The First Android Smartphone in the World with 8 GB

of RAM. http://bgr.com/2017/01/05/asus-zenfone-ar-re

lease-date.

[13] Asus ZenFone AR. https://www.asus.com/us/Phone/

ZenFone-AR-ZS571KL.

[14] Android Mobile Phones with 6 GB RAM. https://www.

techmanza.in/6gb-ram-mobile.html.

[15] Williams, A. How Much RAM Does a Phone Need?.

http://www.trustedreviews.com/opinions/how-much-

ram-does-a-phone-need.

[16] Jeong, D., Lee, Y., and Kim, J. Boosting Quasi-

Asynchronous I/O for Better Responsiveness in Mobile

Devices. In Proceedings of the USENIX Conference on File
and Storage Technologies (2015).

[17] Kim, S., Kim, H., Lee, J., and Jeong, J. Enlightening the

I/O Path: A Holistic Approach for Application Perfor-

mance. In Proceedings of the USENIX Conference on File
and Storage Technologies (2017).

[18] Nexus 5. https://en.wikipedia.org/wiki/Nexus_5.

[19] Nexus 6. https://en.wikipedia.org/wiki/Nexus_6.

[20] Samsung Galaxy S6. https://en.wikipedia.org/wiki/

Samsung_Galaxy_S6.

[21] Android, the World’s Most Popular Mobile Platform.

https://developer.android.com/about/android.html.

[22] Saving Data in SQLite Databases at Android Plat-

form. https://developer.android.com/training/basics/

data-storage/databases.html.

[23] Manthur, A., Cao, M., and Bhattacharya, S. The

New ext4 File System: Current Status and Future Plans.

In Proceedings of Linux Symposium (2007).

[24] Completely Fair Queueing. https://en.wikipedia.org/

wiki/CFQ.

[25] Embedded MultiMediaCard (e.MMC). http://www.jedec.

org/standards-documents/technology-focus-areas/

flash-memory-ssds-ufs-emmc/e-mmc.

[26] Universal Flash Storage (UFS). http://www.

jedec.org/standards-documents/focus/flash/

universal-flash-storage-ufs.

[27] Kumar, U. Understanding Android’s Application Update

Cycles. https://www.nowsecure.com/blog/2015/06/08/

understanding-android-s-application-update-cycles.

[28] Twitter Version History. https://www.apk4fun.com/

history/2699.

[29] QuickPic Gallery. https://play.google.com/store/apps/

details?id=com.alensw.PicFolder.

[30] Android Camera API. https://developer.android.com/

guide/topics/media/camera.html.

[31] Kingdom Story: Brave Legion. https://play.google.com/

store/apps/details?id=com.nhnent.SK10392.

[32] Physical Page Allocation. https://www.kernel.org/doc/

gorman/html/understand/understand009.html.

[33] Blocking I/O. http://www.makelinux.net/ldd3/

chp-6-sect-2.

[34] Memory Mapping and DMA. https://static.lwn.net/

images/pdf/LDD3/ch15.pdf.

[35] Predefined UIDs for Android Processes. https:

//android.googlesource.com/platform/frameworks/

base/+/master/core/java/android/os/Process.java.

[36] Hearthstone. https://play.google.com/store/apps/

details?id=com.blizzard.wtcg.hearthstone.

8

com/nexus-s/help/ram-issues-nexus-s-jelly-bean-t18
54513
http://forums.whirlpool.net.au/archive/1999853
http://forums.whirlpool.net.au/archive/1999853
http://bgr.com/2017/01/05/asus-zenfone-ar-re
lease-date
https://www.asus.com/us/Phone/ZenFone-AR-ZS571KL
https://www.asus.com/us/Phone/ZenFone-AR-ZS571KL
https://www.techmanza.in/6gb-ram-mobile.html
https://www.techmanza.in/6gb-ram-mobile.html
http://www.trustedreviews.com/opinions/how-much-
ram-does-a-phone-need
https://en.wikipedia.org/wiki/Nexus_5
https://en.wikipedia.org/wiki/Nexus_6
https://en.wikipedia.org/wiki/Samsung_Galaxy_S6
https://en.wikipedia.org/wiki/Samsung_Galaxy_S6
https://developer.android.com/about/android.html
https://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/training/basics/data-storage/databases.html
https://en.wikipedia.org/wiki/CFQ
https://en.wikipedia.org/wiki/CFQ
http://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
http://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
http://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.nowsecure.com/blog/2015/06/08/understanding-android-s-application-update-cycles
https://www.nowsecure.com/blog/2015/06/08/understanding-android-s-application-update-cycles
https://www.apk4fun.com/history/2699
https://www.apk4fun.com/history/2699
https://play.google.com/store/apps/details?id=com.alensw.PicFolder
https://play.google.com/store/apps/details?id=com.alensw.PicFolder
https://developer.android.com/guide/topics/media/camera.html
https://developer.android.com/guide/topics/media/camera.html
https://play.google.com/store/apps/details?id=com.nhnent.SK10392
https://play.google.com/store/apps/details?id=com.nhnent.SK10392
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
http://www.makelinux.net/ldd3/chp-6-sect-2
http://www.makelinux.net/ldd3/chp-6-sect-2
https://static.lwn.net/images/pdf/LDD3/ch15.pdf
https://static.lwn.net/images/pdf/LDD3/ch15.pdf
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/Process.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/Process.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/Process.java
https://play.google.com/store/apps/details?id=com.blizzard.wtcg.hearthstone
https://play.google.com/store/apps/details?id=com.blizzard.wtcg.hearthstone

	Abstract
	1 Introduction
	2 Empirical Analysis of User- Perceived Response Time
	2.1 Overview of Android I/O Stack
	2.2 Impact of BG I/Os on User Experience
	2.3 Analysis of Bottlenecks under BG I/O

	3 Design and Implementation of FAIO
	3.1 Foreground App Detector
	3.2 Foreground-centric Page Manager
	3.3 Foreground-centric I/O Dispatcher

	4 Experimental Results
	4.1 Experimental Results

	5 Conclusions
	6 Acknowledgments
	References

