
0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

1

Effective Lifetime-Aware Dynamic Throttling for

NAND Flash-Based SSDs

Sungjin Lee and Jihong Kim Member, IEEE

Abstract—NAND flash-based solid-state drives (SSDs) are increasingly popular in enterprise server systems because of their

advantages over hard disk drives such as higher performance and lower power consumption. However, the decreasing write endurance

and the unpredictable lifetime remains to be a serious obstacle to their wider adoption in enterprise systems. In this paper, we propose

effective lifetime-aware dynamic throttling, called LADY, which guarantees the required storage lifetime by intentionally throttling the

write performance of SSDs with consideration of the effective write endurance of NAND flash memory. Unlike existing static throttling,

LADY makes throttling decisions based on the characteristics of a workload so that the required SSD lifetime can be guaranteed with

less performance degradation. LADY also exploits the improvement on write endurance depending on the NAND program speed and

the recovery effects of floating-gate transistors, thereby maximally utilizing the available write endurance of NAND flash while mitigating

the decreasing write endurance problem. Our experimental results show that LADY improves write performance by 4.7x with small write

response time variations over existing static throttling while guaranteeing the required SSD lifetime.

Index Terms—NAND Flash Memory, Storage System, Solid-State Drive, Lifetime Management, Performance Throttling

✦

1 INTRODUCTION

NAND flash memory has been widely used in mo-
bile systems ranging from smart phones to laptops.

NAND flash-based solid-state drives (SSDs) are now be-
coming popular storage solutions for enterprise servers.
Despite the prevalence of SSDs in enterprise markets, the
limited lifetime of SSDs is considered a major obstacle
that precludes the use of SSDs in enterprise servers.
Enterprise customers typically require a minimum

storage lifetime (which is usually 3 or 5 years) because
it is essential for designing storage systems as well
as for devising storage deployment and maintenance
strategies, such as the calculation of the total costs of
ownership (TCO) [2, 3, 4]. In spite of the importance
of a storage lifetime in enterprise environments, unfor-
tunately, there are only a few studies on managing the
lifetime of flash-based SSD.
The lifetime of SSDs depends on the amount of written

data, which is decided by the number of program/erase
(P/E) cycles and the SSD capacity. As the semicon-
ductor process is scaled down and a multi-level cell
(MLC) technology is adopted, the capacity of SSDs is
continuously increased; however, at the same time, the
number of P/E cycles is more rapidly decreased. For
example, MLC flash doubles the capacity of SSDs, but
the number of P/E cycles drops to 3K [5], which is
much smaller than 100K P/E cycles of SLC flash. The
lifetime of SSDs is also strongly dependent upon write-
intensiveness of workloads. SSDs can achieve the re-
quired lifetime under non-write-intensive environments
where a small amount of data is written by applications.
On the other hand, the same SSDs are worn out much
earlier if they are used in write-intensive environments.
Because of the rapidly decreasing P/E cycles and the

• An earlier version of this paper was presented at the USENIX Conference
on File and Storage Technologies, February 14-17, 2012 [1].

• S. Lee is with the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139. J. Kim
is with the Department of Computer Science and Engineering, Seoul
National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea. E-
mail: jihong@davinci.snu.ac.kr.

workload-dependent lifetime characteristic, it is a great
challenge for SSDs to satisfy a minimum storage lifetime
that enterprise customers demand.
In this paper, we propose effective lifetime-aware

dynamic throttling, called LADY, which resolves the
lifetime problems of SSDs. The main idea of LADY is to
intentionally throttle the write performance of SSDs to
guarantee the required lifetime. In LADY, the amount of
data written per unit time is controlled by adjusting the
write speed of SSDs. This makes the lifetime of SSDs pre-
dictable, allowing enterprise customers to manage SSDs
according to their performance/lifetime requirements.
The important design issue of LADY is how to prop-

erly throttle write performance. To achieve better write
response times without excessive performance throttling,
LADY predicts future write traffic and decides an ap-
propriate write speed so that the SSD is worn out at the
end of the target lifetime. In particular, LADY carefully
controls the write speed to prevent large fluctuations
in write response times. LADY also supports priority-
aware dynamic throttling that differently throttles write
requests depending on their priorities. This helps us to
manage write performance and lifetime according to the
importance of enterprise services.
LADY exploits the effective wearing characteristics of

NAND flash, so as to minimize a performance penalty
associated with write throttling. The damage caused by
repetitive P/E cycles is lowered by slowing down the
program speed of NAND devices [7]. To take advan-
tage of its benefit on endurance improvement, LADY
uses a slow NAND program mode in throttling write
performance, instead of merely delaying write requests.
Moreover, the damage on memory cells is partially re-
covered during idle times [8, 9, 10]. LADY makes use
of endurance improvement by the self-recovery effect to
maximally utilize the effective lifetime of NAND flash.
By exploiting the effective wearing characteristics, LADY
mitigates the decreasing P/E cycles problem, allowing
more data to be written to SSDs.
In order to evaluate the effect of LADY on storage per-

formance and lifetime, we carried out a set of evaluations

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

2

with trace-driven simulators using enterprise traces. Our
evaluation results showed that LADY improved the av-
erage write response time by 4.7x with smaller variations
over existing throttling algorithms while guaranteeing
the target SSD lifetime. We also implemented the proto-
type of LADY in the Linux kernel to show its feasibility
in real-world applications like TPC-C.
This paper is organized as follows. In Section 2, we

explain the effective wearing characteristics of NAND
flash. Section 3 introduces the motivation of dynamic
throttling and Section 4 formally describes a dynamic
throttling problem after illustrating our write traffic
model. In Section 5, we explain the proposed LADY
technique in detail. Our evaluation results are presented
in Section 6. In Section 7, we explain related work, and
finally, Section 8 concludes with summary.

2 EFFECTIVE WEARING OF NAND FLASH

In NAND flash, program/erase (P/E) operations in-
evitably cause damage to floating-gate transistors, re-
ducing the write endurance of memory cells. At the
device level, cells are gradually worn out as charges get
trapped in the interface and oxide layers of a floating-
gate transistor during P/E cycles. This charge trapping
increases the threshold voltage of a floating-gate, and
the cell becomes unreliable when the threshold voltage is
higher than a certain voltage margin (e.g., 0.65V for MLC
flash) [8]. According to [8, 10], the increase in a threshold
voltage δVtrap because of charge trapping approximately
scales with P/E cycles in a power-law fashion as follows:

δVtrap = Ait ×N
0.62 +Bot ×N

0.3
, (1)

where N is the number of P/E cycles. Ait and Bot

are constant and set to 2.97 × 10−3 and 2.0 × 10−2,
respectively. Usually, NAND flash vendors do not reveal
important parameters for their recent products. For this
reason, Ait and Bot for 20 nm MLC flash memory are
obtained by scaling up values for 90 nm MLC flash
memory (which are available to the public) so that the
number of P/E cycles approximately matches 3K at the
point where δVtrap is 0.65V.
The effective wearing of floating-gate transistors (i.e.,

the amount of damage caused to cells) is greatly reduced
depending on the self-recovery effect of memory cells
and the voltage level applied for erasing blocks. There-
fore, if the effective wearing characteristics of NAND
flash are taken into account, it is possible to exploit much
larger P/E cycles than fixed P/E cycles in datasheets.
Self-recovery Effect: A floating-gate transistor has a

self-recovery property which heals the damage of a cell
by detrapping charges captured in the oxide of a cell.
This recovery (or detrapping) process occurs during idle
times between P/E cycles on the same cell, and its effect
in general increases as the logarithm of idle times (i.e.,
detrapping ∝ ln(t)) where t is the length of idle times.
According to [8, 10, 11], the decrease in a threshold
voltage δVdetrap is expressed as follows:

δVdetrap = Ce × δVtrap × ln(
t

t0
), (2)

where Ce is a recovery efficiency and set to 5.63× 10−2

according to [9]. t0 is 1 hour.

The increase in a threshold voltage δVth with the self-
recovery effect is expressed as follows [8]:

δVth = δVtrap − δVdetrap. (3)

The length of idle times between P/E cycles on the
same block is very long. Thus, the number of P/E cycles
with the self-recovery effect is much larger than the
number of P/E cycles in datasheets.
Performance/Endurance Trade-off: There is a trade-

off between an NAND program speed and the number
of P/E cycles depending on the level of a voltage for
block erasure. To erase a flash block, an NAND chip
controller must apply a high erase voltage (e.g., 14 V) to
memory cells. A recent study reported that if the erase
voltage is reduced, the damage on cells is lowered as
well [7]. Thus, the number of P/E cycles that can be
performed increases with the reduced erase voltage. To
use the reduced erase voltage, however, more precise
charge placement is required to program data to cells,
which inevitably increases the program time.
The erase voltage level can be configured continu-

ously, but NAND devices with discrete erase voltage lev-
els are more feasible in practice. Thus, in this work, we
assume NAND devices that support four program/erase
modes mode for 0, ..., 3 depending on the level of the
erase voltage (as proposed in [7]). If mode is 0, a block is
programmed with the nominal NAND program speed,
but the block must be erased later with the nominal erase
voltage without any benefits on write endurance. Ifmode
is 3, a block is programmed with the slowest program
speed and erasure for the block can be done with the
lowest erase voltage. Thus, the write endurance can be
improved.

The number N
(mode)
P/E (for 0 ≤ mode ≤ 3) of P/E

cycles depending on the program/erase mode mode is
expressed as follows:

N
(mode)
P/E = N

spec
P/E × (1 + r

(mode)
P/E), (4)

where Nspec
P/E is the number of P/E cycles in datasheets

(e.g., 3K) and r
(mode)
P/E is the P/E improvement ratio over

the nominal erase voltage. Based on the real measure-

ment study [7], r
(mode)
P/E for 1 ≤ mode ≤ 3 is 0.33, 0.4, and

0.49. N
(3)
P/E is 1.49x larger than Nspec

P/E . N
(0)
P/E is Nspec

P/E .

The NAND program time T
(mode)
prog (for 0 ≤ mode ≤ 3)

depending on the program/erase mode mode is ex-
pressed as follows:

T
(mode)
prog = Tprog × (1 + r

(mode)
prog), (5)

where Tprog is the nominal NAND program time and

r
(mode)
prog is the performance degradation ratio over the

nominal erase voltage. Based on [7], r
(mode)
prog for 1 ≤

mode ≤ 3 is 0.4, 0.75, and 1.3, respectively. For example,

T
(3)
prog is 2.3x slower than Tprog. T

(0)
prog is Tprog.

While the self-recovery effect occurs during idle times,
the reduced erase voltage affects the NAND program
and block erasure processes. Thus, their effects on the
effective wearing are nearly orthogonal. As a result,
the number Neff

P/E of effective P/E cycles is written as

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

3

 4000

 6000

 8000

 10000

 12000

 0 3000 6000 9000 12000 15000

E
ff
e
c
ti
v
e
 P

/E
 c

y
c
le

s

Idletime (second)

mode = 0

mode = 1

mode = 2

mode = 3

Fig. 1: The number of effective P/E cycles depending on
different idle times and program/erase modes

follows:
N

eff
P/E = N

recov
P/E × (1 + r

(mode)
P/E), (6)

where N recov
P/E is the number of P/E cycles with the self-

recovery effect.
Based on Eq. (6), we plot the effective P/E cycles

of 20 nm MLC flash memory in Fig. 1 depending on
the length of idle times with different program/erase
modes. The number of effective P/E cycles is increased
in proportional to the length of idle times. Similarly, as
the slower NAND program mode is used, the effective
lifetime is improved as well.

3 MOTIVATION

Fig. 2 shows our motivational example for dynamic
throttling. Based on the specification of the SSD, the max-
imum amount of data that can be written is proportional
to the SSD capacity and the number of P/E cycles on
datasheets. For example, if the number of P/E cycles is
3K and the SSD capacity is 128 GB, the data of 375 TB
can be written. Suppose that a target SSD lifetime is 5
years. In the example of Fig. 2(a) with no throttling, the
SSD is worn out before the target lifetime.
In order to ensure a lifetime warranty, some SSD ven-

dors recently adopt static throttling [12, 13]. As shown in
Fig. 2(b), static throttling guarantees the required lifetime
by statically limiting the maximum write throughput un-
der the assumption that incoming write traffic is always
heavy. In practice, actual workloads are not intensive all
the time, so static throttling often slows down the write
speed of SSDs uselessly, underutilizing the available SSD
endurance. For example, in Fig. 2(b), the SSD is still not
worn out at 5 years. Static throttling also incurs large
fluctuations in write response times; it throttles the write
speed so much when a workload is intensive; on the
other hand, it never throttles write performance when a
workload is not intensive.
The proposed effective lifetime-aware dynamic throt-

tling technique, LADY, overcomes the limitations of
static throttling. As depicted in Fig. 2(c), LADY dynami-
cally changes the write speed of the SSD according to the
characteristics of a workload so that the write endurance
is maximally utilized without excessive write throttling.
In particular, LADY exploits the performance/endurance
trade-off by adaptively changing the program/erase
mode and considers the endurance improvement by the
self-recovery effect. This increases the number of P/E
cycles, allowing more data to be written to the SSD.
LADY is designed with the following objectives in

mind to properly control the write speed of the SSD.

Fig. 2: A comparison of throttling policies: no throttling,
static throttling, and LADY

First, the write speed must be properly decided so that
the SSD is worn out at the end of the target lifetime.
If the SSD is less throttled, the required lifetime cannot
be guaranteed (like the SSD without write throttling).
If the write speed is excessively throttled, the write
performance could significantly deteriorate, underutiliz-
ing available write endurance (like the SSD with static
throttling). Second, the write speed must be properly
decided so that response time variations are minimized.
If the write speed is too throttled in a certain time-period
while it is less throttled over another time-period, I/O
response times are greatly fluctuated, resulting in the
degradation of the user experience.

4 PROBLEM FORMULATION

4.1 Write Traffic Model

We first present a write traffic model used throughout
this paper and formally define a dynamic throttling
problem using our model 1. Our write traffic model
includes all of the write requests from the host system as
well as from FTL modules, including garbage collection
and wear-leveling. The target SSD lifetime is denoted by
Tssd. The total amount of data that can be written until
the SSD is worn out is denoted by Cssd. Note that Cssd

changes depending on the length of idle times and the
program/erase mode.
The top figure of Fig. 3 shows original write traffic

represented by our write traffic model. We define a write
element Wi as the basic unit of write traffic and associate
it with the size of requested data and properties related
to time. The size of Wi is fixed to a page which is the
smallest unit for writing data. The size of Wi is denoted
by FS(Wi). Wi has two time properties, Tprog and τ

it
i .

Here, Tprog is the time taken to program Wi. τ
it
i is the

length of idle times until the next write element Wi+1

arrives after the data of Wi are completely served. The
total length of the time for Wi is denoted by FT (Wi),
and it is Tprog + τ

it
i .

1. For readers’ convenience, we summarize mathematical terms fre-
quently used throughout this paper in Section 1 of Appendix.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

4

Fig. 3: An illustration of original write traffic (top) and
throttled write traffic (bottom) in our write traffic model

Using Wi defined above, we represent the write traffic
sent to the SSD until it becomes unreliable as a sequence
Sw of write elements i.e., Sw = 〈W1, . . . ,Wn〉, where Wi

occurs beforeWq if i < q. The total size of data written by
Sw is denoted by FS(Sw). Similarly, FT (Sw) is the total
length of time until the data of FS(Sw) are written to the
SSD. FS(Sw) = FS(W1) + · · · + FS(Wn) and FT (Sw) =
FT (W1)+ · · ·+FT (Wn). FS(Sw) is equal to Cssd because
the SSD is worn out after the data of Cssd are written. If
write traffic is heavy and dynamic throttling is not used,
FT (Sw) could be smaller than Tssd.
In our write traffic model, time is divided into time-

epochs, simply called epochs. Here, an epoch is a unit
period of time for predicting future write traffic and
deciding a write speed (see Section 5). Given the se-
quence Sw, we construct a sequence Ek of write elements
for an epoch k, i.e., Ek = 〈Wk1

, . . . ,Wkm
〉 where Wk1

is a write element in Sw that first arrives at the SSD
after Ek begins and Wkm

is the last one before Ek ends.
The amount of data written during Ek is denoted by
FS(Ek) and the length of Ek is denoted by FT (Ek).
As expected, FS(Ek) = FS(Wk1

) + · · · + FS(Wkm
) and

FT (Ek) = FT (Wk1
)+ · · ·+FT (Wkm

). The write traffic Sw

is also represented as a sequence of epochs, i.e., Sw =
〈E1, . . . , Ej〉 where j is the number of epochs in Sw.

4.2 Dynamic Throttling Problem

LADY delays individual write elements Wi so that the
write traffic Sw is properly regulated to offer a lifetime
guarantee. In LADY, the time taken to write the data
of Wi is variable. As illustrated in Fig. 3, this variable
write time τwt

i is decided by two delay factors, τprogi and

τ
del
i , where τ

prog
i is the NAND program time T

(mode)
prog

depending on the program/erase mode and τ
del
i is the

length of an artificial delay. This artificial delay is needed
because τ

prog
i could not be long enough to sufficiently

delay Wi. If τ
wt
i is longer than Tprog, the time taken to

write Wi is increased by (τwt
i − Tprog). This increased

write time reduces the SSD write performance, creating
the illusion that the SSD operates slowly.
The main objective of LADY is to decide τ

wt
i for Wi

so that FS(Sw) is equal to Cssd at Tssd. To minimize
response time variations, τwt

i must be distributed across
Wi as evenly as possible. Consequently, the problem of

Fig. 4: Three main functions of LADY

dynamic throttling can be expressed as follows:

Decide τ
wt
i for Wi in Sw if FT (Sw) < Tssd

subject to
FS(Sw) = Cssd at Tssd and τ

wt
1 = · · · = τ

wt
n−1.

Otherwise,
τ
wt
1 = · · · = τ

wt
n−1 = Tprog.

(7)

In Eq. (7), τwt
i is decided by LADY when Wi arrives

and the SSD lifetime Tssd is determined by enterprise
customers. However, the write traffic Sw, including
FS(Sw) and FT (Sw), is unknown when a decision on
τ
wt
i is made. Moreover, Cssd changes according to the

length of idle times as well as the program/erase mode
chosen. Thus, the future write traffic Sw and the effective
write endurance Cssd must be carefully estimated for
write throttling. LADY is designed to properly decide
τ
wt
i in real-world environments where no knowledge on

Sw and Cssd is available a priori.

5 DESIGN AND IMPLEMENTATION OF LADY

Fig. 4 shows the overall architecture of LADY, which
is composed of three modules: a write-traffic predictor, a
write-speed selector, and a write-traffic regulator. The write-
traffic predictor analyzes the history of previous write
traffic and estimates the future write traffic (see Section
5.1). The write-speed selector decides the write speed
based on the predicted write traffic and the remaining
write endurance. The remaining write endurance is esti-
mated by taking into account the program/erase mode
and the self-recovery effect (see Section 5.2). Finally, the
write-traffic regulator throttles the write performance so
that the target SSD lifetime will be reached with small
response time variations (see Section 5.3).
LADY is implemented based on a modular design

concept; it runs below the FTL without any functional
dependencies. All of the I/O requests sent from both
the host system and the FTL (e.g., GC and WL) are sent
to LADY. LADY creates the illusion that the FTL runs
on slower NAND flash; it monitors write traffic from
the FTL, decides a write speed, and throttles individual
write elements. Thanks to this modular design, any
kinds of FTL schemes can run on top of LADY.

5.1 Estimation of Future Write Traffic

The write-traffic predictor of LADY uses an epoch-based
approach that estimates future write traffic on an epoch-
by-epoch basis. This is based on our observation that
even though it is difficult to exactly predict the whole of
the future write traffic Sw in advance, the write traffic in
the near future can be accurately estimated by referring

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

5

Fig. 5: Prediction of future write traffic

to the previous history. The write-traffic predictor also
adopts a multiple-expert system [14, 15, 16] that runs
simple multiple workload-prediction policies at the same
time and chooses the best one with the highest accuracy.
The multiple-expert system not only effectively deals
with various workloads [15], but also is useful in a
resource-constrained environment like SSDs [16].
Fig. 5 shows how the write-traffic predictor estimates

the future write traffic Fpred
S (Ek) for the next epochs Ek.

At the beginning of each epoch, it evaluates the accuracy
of individual experts. For each expert, the write-traffic
predictor calculates the difference between the predicted
write traffic and the actual write traffic. Then, it chooses
the expert that shows the best accuracy for the past
epoch. The write-traffic predictor employs three experts
for workload prediction: Average, Weighted, and Cyclic.
• Average is a global average of write traffic observed

in all of the previous epochs. Average is effective when
the long-term behavior of a workload is stable and is
not changed greatly. In Average, the future write traffic
Favg

S (Ek) for Ek is estimated as follows:

F
avg
S (Ek) =

FS(Ek−1) + FS(Ek−2) + ...+ FS(E1)

k
. (8)

• Weighted is an extension of Average. It gives a higher
weight to recent three epochs, so as to reflect the re-
cency of a workload. In Weighted, the future write traffic
Fwgt

S (Ek) for Ek is estimated as follows:

F
wgt
S (Ek) =

FS(Ek−1) + FS(Ek−2) +FS(Ek−3)

3
× 0.8 +

FS(Ek−4) + ...+ FS(E1)

k − 3
× 0.2.

(9)

• Cyclic is motivated by the previous observations [17]
that enterprise workloads often exhibit cyclic behaviors
with periods between several minutes or several days.
Cyclic detects the repeated pattern of a workload and
adjusts the length of an epoch so that it includes the
entire repeated pattern [1]. Then, it assumes that the
write traffic observed in the latest epoch will be repeated
again in the next epoch. In Cyclic, the future write traffic
Fcyc

S (Ek) for Ek is estimated as follows:

F
cyc
S (Ek) = FS(Ek−1). (10)

In Fig. 5, if Fcyc
S (Ek) exhibits the smallest write-traffic

difference, Fpred
S (Ek) is set to Fcyc

S (Ek).

5.2 Determination of Write Speed

The write-speed selector decides the write speed for the
next epoch based on the future write traffic and the

Decide Write Speed (modek−1, τ
wt
k−1) {

1: if (Fpred
S (Ek) == ck) { /* with the same program mode

used in the previous epoch */
2: return (modek−1, τ

wt
k−1);

3: }
4: mode := modek−1 ;
5: τ

wt
k := ∞;

6: while (1) {
/*(1) Decide a change ∆τ

wt in the previous write time τ
wt
k−1*/

7: Change the NAND program speed to T
(mode)
prog ;

8: if (Fpred
S (Ek) > ck) {

9: calculate ∆τ
wt using Eq. (11);

10: τ
wt
tmp := τ

wt
k−1 + ∆τ

wt ;

11: } else if (Fpred
S (Ek) < ck) {

12: calculate ∆τ
wt using Eq. (12);

13: τ
wt
tmp := max (T

(mode)
prog , τwt

k−1 - ∆τ
wt);

14: } else { /* Fpred
S (Ek) = ck */

15: τ
wt
tmp := T

(mode)
prog ;

16 }
17: if (τwt

tmp < τ
wt
k) {

18: modek := mode;
19: τ

wt
k := τ

wt
tmp ;

20: } else break;

/*(2) Decide a proper program/erase mode*/

21: if (mode < 3 and T
(mode+1)
prog ≤ τ

wt
k) {

/* increase the NAND program speed */
22: mode := mode + 1;
23: continue;
24: }

25: if (mode > 0 and T
(mode)
prog == τ

wt
k) {

/* decrease the NAND program speed */
26: mode := mode - 1;
27: continue;
28: }
29: break;
30: }

31: return (modek , τ
wt
k); /* τ

del
k = τ

wt
k − T

(modek)
prog */

};

Fig. 6: A write speed decision algorithm

available write endurance. In this subsection, we first
explain our mechanism for deciding the write speed
and then describe how the available write endurance is
estimated with consideration of the self-recovery effect
as well as the program/erase mode.

Write-Speed Decision Overview: Whenever a new
epoch Ek begins, the write-speed selector decides a write
time τ

wt
k for Ek by increasing or decreasing a previous write

time τwt
k−1 used for a previous epoch Ek−1. The newly de-

cided write time is equally applied to all write elements
in the epoch (i.e., for Wk1

, . . . ,Wkm
in Ek, τ

wt
k1
, . . . , τwt

km

are equal to τ
wt
k). After the epoch ends, the write-speed

selector decides a write time τ
wt
k+1 for a next epoch Ek+1

by updating τ
wt
k . In LADY, the changes of the write time

occur only at the beginning of each epoch. This is not
only useful to avoid response time variations caused by
the frequent write speed changes, but also allows us to
decide the write speed according to changing workloads.

Write-Speed Decision Algorithm: We now detail how
the write-speed selector decides the write speed. The
write time τ

wt
k is decided by two factors: the pro-

gram/erase mode τ
prog
k and the length of an artificial

delay τ
del
k . The write-speed selector starts with the nom-

inal program/erase mode with no artificial delays. Then,
at the beginning of the k-th epoch Ek (k > 1), it decides
the write speed based on the expected future write traffic
Fpred

S (Ek) and an epoch capacity ck. The epoch capacity

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

6

(a) F
pred
S (Ek) > ck

(b) F
pred
S (Ek) < ck

Fig. 7: A change in a write time

ck is the number of writable bytes assigned to Ek. The
epoch capacity changes depending on the length of idle
times and the NAND program mode. We explain how
the epoch capacity is estimated later.
Fig. 6 shows our write speed decision algorithm. The

write-seed selector first sees if the expected future write
traffic is equal to the epoch capacity (i.e., Fpred

S (Ek) = ck)
with the program mode used before. If it is, the write
time becomes the same as the previous one under the
assumption that the similar traffic would be repeated in
future (lines 1-3). Otherwise, the write-speed selector
attempts to decide the new write time based on the
expected future write traffic and the epoch capacity.
The write-speed selector uses the same program/erase
mode that was used for the previous epoch (i.e., mode
:= modek−1). The write time is initially set to ∞ (i.e., τwt

k
:= ∞) (lines 4-5).
If the expected future write traffic is larger than the

epoch capacity as shown in Fig. 7(a) (i.e., Fpred
S (Ek) > ck),

the write time must be longer than the previous write
time. A change ∆τ

wt in the previous write time is
obtained as follows:

∆τ
wt
k =

{

F
pred

T
(Ek) ×

(

F
pred

S
(Ek)

ck
− 1

)}

m
if F

pred

S
(Ek) > ck, (11)

where m is the number of write elements allowed to be
written during Ek and Fpred

T (Ek) is the length of Ek. To
make the data written during Ek equal to ck, F

pred
S (Ek)−

ck of the data must be delayed to the next epoch as
shown in Fig. 7(a). The total time required to delay those
data is approximated as Fpred

T (Ek) × (Fpred
S (Ek)/ck − 1).

Since write elements are equally delayed, ∆τ
wt
k is ob-

tained by dividing the total delay by m. τwt
k−1 + ∆τ

wt is
chosen as a temporary write time τ

wt
tmp (lines 8-10).

If the expected future write traffic is smaller than the
epoch capacity as shown in Fig. 7(b) (i.e., Fpred

S (Ek) <
ck), it means that write requests were not intensive
enough to wear out the SSD before a target lifetime or
they were too throttled in the previous epoch. The write
time must be shorter than the previous write time so
that more data are to be written. A change ∆τ

wt in the
previous write time is as follows:

∆τ
wt
k =

{

F
pred

T
(Ek) ×

(

ck

F
pred

S
(Ek)

− 1

)}

m
if F

pred

S (Ek) < ck. (12)

(a) T
(mode+1)
prog < τ

wt
k (b) T

(mode)
prog = τ

wt
k

Fig. 8: A change in a program mode

To increase data to be written by ck − Fpred
S (Ek), the

temporary write time is set to τ
wt
k−1 − ∆τ

wt. If τ
wt
k−1 −

∆τ
wt < T

(mode)
prog , it is set to T

(mode)
prog because the program

time is fixed to T
(mode)
prog (lines 11-13).

If the temporary write time is shorter than the pre-
viously decided write time (i.e., τwt

tmp < τ
wt
k), the write-

speed selector chooses the temporary one along with the
corresponding NAND program mode (i.e., τwt

k = τ
wt
tmp

and modek = mode). Otherwise, the previously decided
write time is maintained and the write speed decision is
finished (lines 17-20). Note that the artificial delay

τ
del
k is τ

wt
k − T

(modek)
prog (line 31).

The write-speed selector attempts to choose a proper
program/erase mode. If mode is smaller than 3 and
the write time is longer than the next slower NAND

program speed (i.e., T
(mode+1)
prog ≤ τ

wt
k), the write-speed

selector selects the slower one (lines 21-24). Then,
the write time is calculated again. The slower program
mode improves the write endurance, allowing us to
write more data. Thus, as depicted in Fig. 8(a), the write
time decreases with the slower mode.
If mode is larger than 0 and the current NAND pro-

gram time is equal to the write time (i.e., T
(mode)
prog = τ

wt
k),

the NAND program speed may be set too slow (i.e.,

T
(mode)
prog > τ

wt
k−1−∆τ

wt). This would overly throttle write
performance. The write-speed selector chooses the next
faster mode and calculates the write time again (lines
25-28). As illustrated in Fig. 8(b), the over-throttling
problem can be avoided with the faster program mode.
As a result, the write time with the faster mode is shorter
than that with the slower one.
The expected future write traffic could be the same

as the epoch capacity after changing the program mode
(i.e., Fpred

S (Ek) == ck). In that case, the temporary write
time is the same as the newly chosen program time
because future write traffic would be properly regulated
with no artificial delays (lines 14-16).
Finally, the write-speed selector changes the pro-

gram/erase mode until the above two conditions are
not met (line 29) or the write time with the new pro-
gram/erase mode is longer than the previously decided
one (line 20).
Estimating Epoch Capacity: In order to know the

epoch capacity ck, the write-speed selector first estimates

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

7

Fig. 9: Estimation of the remaining writable bytes

the number Cr of remaining bytes that can be written
until the SSD becomes unreliable. It then decides the
epoch capacity by equally distributing the number of
remaining bytes to future epochs. The wearing-rate of
NAND flash depends on the length of idle times and the
program/erase mode. The number of remaining writable
bytes is thus a function of the current P/E cycles, the
length of idle times between consecutive P/E cycles

Tidle, and the NAND program mode T
(mode)
prog chosen for

writing data.

Cr = fcr (current P/E cycles, Tidle, T
(mode)
prog). (13)

The SSD is composed of several thousands of flash
blocks, so the current P/E cycles and Tidle of individual
blocks are different from each block. In this paper, we
estimate remaining bytes in a conservative way. The
highest number of P/E cycles among all of the flash
blocks is chosen as current P/E cycles and the shortest
idle time is used as Tidle.
Fig. 9 illustrates how Cr is estimated. The write-speed

selector estimates the maximum number of effective P/E
cycles using Eq. (6) in Section 2 under the assumption

that Tidle and T
(mode)
prog will be the same in the future.

In Fig. 9, the number of current P/E cycles and the
maximum number of effective P/E cycles are 1.5K and
6K, respectively. The number of remaining effective P/E
cycles is 4.5K (= 6K - 1.5K), so Cr is 4.5K×SSD Capacity.
Finally, the epoch capacity ck is obtained by dividing Cr

by the number of remaining epochs.

5.3 Write Performance Regulation

Once the write speed is decided, the write-traffic reg-
ulator of LADY throttles write performance by equally
delaying write elements in the same epoch. This write-
traffic regulation is effective in minimizing response time
variations, but it may not guarantee the required lifetime
all the time – if unexpectedly heavy write traffic comes,
more data than the epoch capacity could be written. For
this reason, the write-traffic regulator adopts the epoch-
capacity regulation policy that prevents more data than
our expectation from being written.
One of the easiest ways to enforce the epoch capacity

is to stop writing if the epoch capacity is exhausted. We
call it strict capacity regulation. For example, suppose that
the epoch length is 4 seconds and the epoch capacity is
1 MB. Further suppose that the epoch capacity of 1 MB
runs out at the end of the 3rd second. The write-traffic
regulator prevents the overuse of the epoch capacity
by stopping writing data for the remaining 1 second.

This strict capacity regulation incurs great response time
variations because write requests arriving after 3 seconds
are delayed until the next epoch begins.
We resolve this problem by introducing the concept

of a default capacity and a spare capacity. The default
capacity is some of the epoch capacity, which is evenly
assigned to every second by default. The default capacity
is useful to offer the minimum write throughput. The
spare capacity is an additional capacity borrowed from
future epochs. If the spare capacity is 10%, the write-
traffic regulator borrows 10% of the capacities of all the
future epochs. If more data than the default capacity are
written, the write-traffic regulator temporarily uses the
spare capacity for writing data, avoiding strict capacity
regulation. After the epoch ends, the write speed for
future epochs is slightly reduced to reclaim the epoch
capacity overly used by previous epochs.
We give a detailed explanation about how the write-

traffic regulator behaves with the spare capacity. Sup-
pose that the spare capacity is 10% and there are j
epochs. The epoch capacity is denoted by c1, ..., cj ,
respectively, and c1 = ... = cj = Cr/j. If the length of
the epoch is n seconds, the default capacity for the 1st
epoch is c1/n. The spare capacity for the 1st epoch is
(c2 + ...+ cj)× 0.1. The total capacity assigned to the 1st
epoch is c1 + (c2 + ... + cj) × 0.1. For example, if j is 4
and Cr is 4 MB, c1 is 1 MB (= 4 MB/4) and the spare
capacity is 0.3 MB (= 3 MB×0.1). If the data smaller than
c1 have been written, the remaining capacity Cr after the
1st epoch is equally distributed to the remaining epochs
and the spare capacity is decided by (c3+...+cj)×0.1 for
the 2nd epoch. For instance, if 1.0 MB of data are written
in the 1st epoch, the spare capacity is not used and Cr

is reduced to 3.0 MB 2. c2, c3, and c4 are 1.0 MB (= 3.0
MB/3) and the spare capacity is 0.2 MB (= 2.0 MB×0.1).
If the spare capacity is partially used, c2, ... , cj are

reduced to 90% of the original capacity and only the
unallocated capacity is used as the spare capacity. In the
above example, if the data of 1.2 MB are written in the
1st epoch, Cr is reduced to 2.8 MB at the beginning of the
2nd epoch. c2, c3, and c4 are 0.9 MB and the spare capac-
ity becomes 0.1 MB. This capacity assignment makes the
write-speed selector slightly reduce write performance
with a smaller epoch capacity (i.e., the epoch capacity
is 0.9 MB instead of 1.0 MB), helping us to reclaim the
overused capacity in the future epochs.
In the worst case, the spare capacity could be com-

pletely used up before the epoch ends. In this case, the
write-traffic regulator strictly regulates write traffic to
prevent more data than we assigned from being written.
In the example above, the sum of the epoch and spare
capacities assigned to the 1st epoch is 1.3 MB. Fig. 10
illustrates what happens when the data of 1.4 MB are
requested for writing in the 1st epoch. Here, we assume
that the length of the epoch is 4 seconds. The write-traffic
regulator assigns the default capacity of 0.25 MB (= 1
MB/4 seconds) to every second. The spare capacity is not
assigned and is reserved. Initially, 0.25 MB are written in

2. According to Eq. (13), Cr changes depending on the length of idle
times and the program mode. For the sake of simplicity, we assume
that these parameters are the same as the previous epoch.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

8

Fig. 10: An example of how LADY handles write traffic
when the spare capacity is exhausted

the 1st second and 0.15 MB are written in the 2nd second.
0.1 MB of the capacity assigned to the 2nd second are
not used. The unused capacity is forwarded to the 3rd
second. In the 3rd second, 0.65 MB are written. The
total capacity assigned to the 3rd second is completely
consumed (= the spare capacity of 0.3 MB + the unused
capacity of 0.1 MB + the default capacity of 0.25 MB).
In the 4th second, 0.35 MB are requested for writing.
Since the spare capacity is exhausted, the write-traffic
regulator allows only the data of 0.25 MB to be written,
delaying the data of 0.1 MB to the next second. As a
result, 1.3 MB of data have been written in the 1st epoch.
After the spare capacity runs out, the write-traffic reg-

ulators sets the spare capacity to 0 MB and then throttles
incoming write traffic using strict capacity regulation.
At the beginning of the 2nd epoch, Cr is 2.7 MB and
the capacity of the 2nd epoch becomes 0.9 MB. The
spare capacity is 0 MB. Therefore, more data than 0.9
MB cannot be written in the 2nd epoch. This could
incur great response time variations, but allows us to
guarantee the required lifetime.
The spare capacity must be carefully chosen. If the

spare capacity is unlimited, it is equivalent to LADY
without epoch capacity regulation in which an unlimited
spare capacity can be borrowed from future epochs.
On the other hand, if the spare capacity is too small,
strict capacity regulation would be frequently observed
due to the lack of the spare capacity. In this work, the
spare capacity is empirically set to 10% of the remaining
capacity. In our observation, it is large enough to avoid
strict capacity regulation in real-world applications.

5.4 Priority-Aware Dynamic Throttling

Enterprise services have different performance require-
ments, so their importance is different from one an-
other [18, 19]. For example, in database management sys-
tems (DBMS), transactions having a great effect on end-
users’ experiences are handled with a higher priority
than other ones. Similarly, interactive enterprise services
are also served in advance of other services like batch
jobs, so as to improve the quality of end-users.
To effectively handle write requests from services with

different priorities, we propose priority-aware dynamic
throttling, called PA-DT, which is an extension of LADY.
The basic idea of PA-DT is to less throttle write requests
from important services so that they are more quickly
served. The SSD lifetime is more used by important
services. This overused lifetime is offset by further throt-
tling write requests from less important services

Fig. 11: A procedure of PA-DT in deciding write speeds

Fig. 11 illustrates how PA-DT decides write speeds
for services with different importance. Initially, PA-DT
receives a list of importance values Il for enterprise
services Service l from administrators, i.e., Service 1,
Service 2, and Service 3 as in the example of Fig. 11.
The importance value of a service ranges from 1 to
4. In Fig. 11, the importance values I1, I2, and I3 for
Services 1, 2, and 3 are 1, 2, and 2, respectively. An
enterprise service with a smaller important value is more
important. PA-DT computes relative throttling priorities
Pl for target services using their importance values. PA-
DT obtains a throttling priority Pl for Service l as follows:
Pl = Il/(I1 + · · · + INs

), where Ns is the number of
services with specific importance values. The sum of the
throttling priorities is always 1.0. In Fig. 11, P1, P2, and
P3 are 0.2, 0.4, and 0.4, respectively. Similarly, a service
with a smaller throttling priority has a higher priority.
According to the priorities of services, PA-DT decides

priority-aware artificial delays τ
del
(k,l) for Services l as

follows: τdel(k,l) = Ns × τ
del
k × Pl. In Fig. 11, τdel(k,1), τ

del
(k,2),

and τ
del
(k,3) for Services 1, 2, and 3 are 0.6 ms, 1.2 ms, and

1.2 ms if τdelk is 1.0 ms. τdel(k,l) is proportional to Pl. For

example, τdel(k,1) is twice shorter than τ
del
(k,2) and τ

del
(k,3). For

services without importance values, τdelk is used. Finally,
PA-DT throttles write elements differently according to
their write times τ

wt
(k,l).

In order to support PA-DT, the SSD firmware must
know (i) importance values for enterprise services and
(ii) service numbers to which individual write elements
belong. First, a list of important values for services can
be delivered by adding a new custom command to
the existing bus interface, such as ATA and SATA. The
S.M.A.R.T function of the SATA interface that allows
device vendors to define their own commands would
be useful for this. Second, in order to deliver a service
number to which a write element belongs, a SATA
WRITE command must be modified to specify a service
number of a write request. The modification of a block
device driver is also needed to deliver software-side
information (i.e., important values and service num-
bers) via those H/W interfaces. Considering that SSD
manufacturers often offer custom device drivers and
interfaces, it would not be a serious obstacle to add such
custom commands/interfaces to SSD products.

5.5 Discussion

Multi-channel architecture support: For the sake of
simplicity, we describe LADY based on the SSD with

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

9

single-channel architecture, but LADY works well with
multi-channel architecture. Regardless of the underlying
channel architecture, LADY controls write performance
by changing the write speed of individual NAND de-
vices (e.g., NAND flash chips). This throttling mecha-
nism allows LADY to work independently of organiza-
tions of SSD architectures. For a more detailed explana-
tion, please see Section 3 of Appendix.
Throttling issues with multi-threaded and multiple

applications: In our write traffic model in Section 3,
we assume that if one write element is delayed by t,
the arrival times of the following write elements are
delayed by the same amount of time. This is not true
in some environments like multi-threaded and multiple
applications. Suppose that two write elements are issued
by two threads running on different CPUs. In that case,
even if one write element is delayed by t, the arrival
time of the other write element may not be delayed
because two threads run independently. Therefore, the
write traffic may be not properly throttled and more
data than our expectation are written. LADY effectively
handles such a situation. If incoming write traffic is
not sufficiently throttled, LADY continuously increases
a write time, further slowing down the write speed of
the SSD, until write traffic is properly regulated. The
behaviors of host applications in fact do not affect LADY.
A more detailed description of throttling issues with
multiple applications is found in Section 4 of Appendix.
Using LADY in the RAID system: The SSD with

LADY can be used to comprise a disk array of the
RAID system. However, since LADY changes the write
speed of the SSD according to the characteristic of input
write traffic, if some SSDs receive different write traf-
fic from other ones in the same RAID, then response
times across SSDs could be very different. This problem
could be solved by implementing LADY in the RAID
controller so that it manages multiple SSDs together.
Coordinating multiple SSDs in the RAID controller to
reduce response time variations is not new and has been
studied intensively by [23, 24]. Moreover, since LADY
has no dependencies with other SSD firmware modules,
it can be easily implemented in the RAID controller.

6 EXPERIMENTAL RESULTS

In order to evaluate LADY, we first carried out a set
of evaluations with trace-driven simulators. We also
implemented the prototype of LADY in the Linux kernel
to assess its feasibility in real-world environments.

6.1 Experiments with Trace-Driven Simulators

Experimental Settings: The NAND flash was based on
2-bit MLC flash, and a block was composed of 64 4 KB
pages. The page read and program times were 50 µs and
600 µs, respectively, and the block erasure time was 2 ms.
The number of P/E cycles was set to 3K, but it changed
depending on idle times and the program/erase mode.
The NAND program time was also changed according to
the program/erase mode chosen. The SSD lifetime was
5 years.
We performed our evaluations using two types of

trace-driven simulators: an SSD simulator and a dy-
namic throttling (DT) simulator. The SSD simulator was

Techniques DT LADYRECOV LADYALL

Artificial Throttling Delay © © ©
Self-Recovery Effect × © ©
Program/Erase Mode × × ©

TABLE 1: A summary of evaluated sub-techniques

based on a DiskSim-based SSD simulator with four
channels [22]. Because of its rich functionalities, however,
it exhibited a slow simulation speed. For this reason,
we used the SSD simulator to collect firmware-level I/O
traces sent to NAND flash, which included all of the
I/O requests both from SSD firmware and from a host
system. The SSD simulator used the page-level FTL with
a greedy garbage collection policy. We used a firmware-
level trace as an input for our DT simulator. The DT
simulator supported several throttling algorithms. Since
the DT simulator did not simulate complicated FTL
algorithms, it was much faster than the SSD simula-
tor. Throttling algorithms worked independently of FTL
algorithms; they reduced write performance and did
not change the behaviors of FTL algorithms. Thus, our
simulation method was effective enough to accurately
evaluate throttling algorithms in a rapid manner.
We compared LADY with two existing SSD config-

urations, NT and ST. While NT was the SSD without
write throttling, ST was the SSD with static throttling.
We categorized LADY into three sub-techniques: DT,
LADYRECOV, and LADYALL, which are summarized in
TABLE 1. All the three sub-techniques used the same
write-traffic estimation and write performance regula-
tion policies, which were explained in Section 5.1 and 5.3,
respectively. DT throttled write performance by chang-
ing artificial delays without considering the effective
lifetime of NAND flash. DT used 3K P/E cycles with the
nominal NAND program speed. LADYRECOV was the
same as DT, except that it considered the self-recovery
effect. LADYRECOV always used the nominal NAND
program speed. LADYALL was the same as LADYRECOV,
but it exploited different program/erase modes. A de-
fault epoch length was set to 10 minutes, but for Cyclic
it changed adapting to workloads.
We chose two enterprise traces, proxy and proj from

the MSR-Cambridge benchmark [20] and used three
production traces, exchange, map, and msnfs, from the
MS-Production benchmark [21]. Table 2 summarizes the
traces. Because of the limited duration of the traces, we
performed our evaluations under the assumption that
the same I/O pattern will be repeated for 5 years. Note
that the maximum epoch length for Cyclic was smaller
than half of the trace duration because we replayed
the same traces repeatedly. The amount of written data
per hour was different depending on the traces. proxy
and proj exhibited low write traffic compared with
exchange, map, and msnfs. The write amplification
factor (WAF), which has a great effect on the size of write

Trace Duration
Data written

WAF
SSD

per hour (GB) capacity (GB)

proxy 1 week 4.94 1.93 32
proj 1 week 2.08 1.62 32

exchange 1 day 20.61 2.24 128
map 1 day 23.82 1.68 128

msnfs 6 hours 18.19 2.26 128

TABLE 2: A summary of traces used for evaluations

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

proxy proj exchange map msnfs

S
S

D
 L

if
e

ti
m

e
 (

y
e

a
r)

Target Lifetime
(5 Years) NT

ST

DT

LADYRECOV

LADYALL

Fig. 12: A comparison of SSD lifetimes for five traces

traffic, ranged from 1.62 to 2.26. The SSD capacity was
configured differently depending on the size of traces.
For proxy and proj, the SSD capacity was 32 GB. For
exchange, map, and msnfs with high write traffic, the
capacity of the SSD was set to 128 GB.
Lifetime Analysis: Fig. 12 shows evaluation results

on SSD lifetimes with five traces. NT cannot guarantee
the required SSD lifetime for all the traces, except for
proj. The write traffic of proj is not so heavy, so NT
ensures the 5-year lifetime without throttling. ST and DT
do not consider the effective lifetime of NAND flash,
throttling write performance based on 3K P/E cycles.
Since the P/E cycles of NAND flash increase because
of the self-recovery effect, the effective SSD lifetimes
with ST and DT are much longer than the required
lifetime. It means that ST and DT excessively throttle
write performance, which results in poor write perfor-
mance over LADYRECOV and LADYALL. Unlike ST, DT
dynamically decides the write speed in response to a
changing workload, maximally utilizing 3K P/E cycles
and exhibiting better performance than ST. LADYRECOV

takes advantage of the self-recovery effect, thus it throt-
tles write performance so that the SSD lifetime is close to
5 years. LADYALL considers the self-recovery effect, and
furthermore, it exploits the slow NAND program mode.
Thus, it can guarantee 5-year lifetime with smaller per-
formance penalties. We discuss the performance benefit
of LADYALL over LADYRECOV in detail later.
Table 3 analyzes the lifetimes of SSDs from the per-

spective of written data for proj and proxy. C3K
ssd is

the number of writable bytes based on 3K P/E cycles,
whereas Cssd is the number of writable bytes when the
effective wearing of NAND flash is taken into account.
Wwork is the number of bytes written to the SSD for
5 years. ST and DT throttle write performance so that
Wwork becomes C3K

ssd at the end of the target lifetime.
In the case of ST, however, Wwork is 43% and 11%
smaller than C3K

ssd for proj and proxy, respectively. This
is because ST excessively throttles write performance
under the assumption that write traffic is always heavy.

Trace SSD
C3K

ssd(TB) Cssd(TB) Wwork(TB)configuration

proj

NT

93.75

312.6 144.4
ST 403.4 54.2
DT 346.9 93.7

LADYRECOV 312.8 141.0
LADYALL 312.7 141.3

proxy

NT

93.75

246.6 399.2
ST 357.7 83.5
DT 347.0 93.74

LADYRECOV 271.9 271.9
LADYALL 338.2 331.8

TABLE 3: The amount of data written for 5 years for two
traces, proj and proxy

 500

 1000

 1500

 2000

proxy proj exchange map msnfs

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
e
c
) 6146 60645354

NT

ST

DT

LADYRECOV

LADYALL

Fig. 13: A comparison of average write response times

Unlike ST, DT dynamically changes the write speed
according to a workload, making Wwork close to C3K

ssd.
LADYRECOV fully utilizes the endurance improvement
offered by the self-recovery effect, making Wwork close
to Cssd. In the case of proj, write throttling is not
performed in most cases because write traffic is not
so heavy. Instead of merely delaying write requests
with artificial delays, LADYALL exploits the slow NAND
program mode, allowing us to write more data. For
this reason, Cssd of LADYALL is 24% larger than that
of LADYRECOV for proxy. In the case of proj, Cssd

of LADYALL is almost the same as that of LADYRECOV

because the slow program mode is rarely used.
Performance Analysis: To understand the effect of

LADY on SSD performance, we measured the response
time which was the average elapsed time to write in-
dividual pages. Fig. 13 shows our evaluation results.
NT exhibits the best I/O response time, but it cannot
guarantee the target lifetime. Both LADYRECOV and
LADYALL throttle write requests to meet the required
lifetime, so their performance is worse than that of NT;
LADYRECOV and LADYALL exhibit 1.65x to 1.45x longer
write response time than NT, on average, respectively.
In the case of proj, LADYRECOV and LADYALL do
not reduce write performance because the required life-
time can be satisfied without throttling. LADYRECOV

achieves 2.32x better performance than DT on average.
LADYALL outperforms LADYRECOV and improves the
overall write response time by 13.5%. DT exhibits 1.4x
faster response time over ST on average. DT decides the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
D

F

Response Time (usec)

ST

DT
LADYRECOV

LADYALL

(a) proxy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500

C
D

F

Response Time (usec)

ST

DT
LADYRECOV

LADYALL

(b) exchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 800 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Response Time (usec)

ST

DT
LADYRECOV

LADYALL

(c) map

 0

 0.2

 0.4

 0.6

 0.8

 1

 800 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Response Time (usec)

ST

DT
LADYRECOV

LADYALL

(d) msnfs

Fig. 14: CDFs of write response times

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

11

Prediction Accuracy (%) proxy proj exchange map msnfs

Average 65.9 13.7 79.8 45.2 78.8
Weighted 73.0 17.8 74.6 52.5 78.7
Cyclic 76.0 16.1 71.9 59.3 77.5

Multiple-Expert 76.9 27.7 83.1 68.8 75.5

TABLE 4: Accuracy of write traffic prediction

epoch capacity periodically based on the remaining SSD
lifetime and changes an artificial delay in response to
future write traffic. ST neither considers the remaining
SSD lifetime nor the characteristic of a workload. ST
simply regulates write traffic by limiting the maximum
write throughput, causing lots of unnecessary throttling.
We compared response time variations between differ-

ent throttling algorithms. Fig. 14 shows the cumulative
density functions (CDFs) of write response times for four
traces. ST shows significant response time variations
for all the traces because it forcibly stops writing if
throttling is needed. DT, LADYRECOV, and LADYALL

greatly reduce write response time variations over ST
by evenly slowing down write performance.
Future Write-Traffic Prediction: We evaluated the

accuracy of our future write-traffic prediction policy.
Table 4 compares write-traffic prediction accuracies of
four prediction policies: Average, Weighted, Cyclic, and
Multiple-Expert. Here, the prediction accuracy is obtained
by comparing the difference between the predicted write
traffic and the actual one; the higher the number is the
better the prediction accuracy is. The prediction accuracy
is different depending on the prediction policies and
the workloads, but Multiple-Expert exhibits the highest
accuracy. Fig. 15 shows the effect of the write-traffic
prediction accuracy on response time variations for map.
If future write traffic is inaccurately estimated, LADY
uselessly increases or decreases the write speed accord-
ing to the mispredicted future write traffic, incurring
variations on response times. As expected, Multiple-
Expert showing the best accuracy exhibits the smallest
response time variations.
Effect of Spare Capacity: We evaluated the perfor-

mance of LADY with various spare capacities, 0%, 5%,
10%, and ∞. Fig. 16 shows the CDFs of write response
times for exchange and proxy. For exchange, write
response times deteriorate significantly with the spare
capacities of 0% and 5%; LADY often stops writing
data because of the depletion of the spare capacity. As
the spare capacity increases to 10% and ∞, response
time variations become smaller, avoiding strict capacity
regulation. In the case of proxy, the exhaustion of spare
capacity rarely occurs, thus the size of the spare capacity

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 600 700 800 900 1000 1100 1200 1300 1400

C
D

F

Response Time (usec)

Average

Weighted

Cyclic

Multiple-Expert

Fig. 15: CDFs of write response times with four different
prediction policies for the map trace

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 600 650 700 750 800 850 900 950 1000

C
D

F

Response Time (usec)

0%

5%

10%

∞

(a) exchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 800 1000 1200 1400 1600 1800 2000

C
D

F

Response Time (usec)

0%

5%

10%

∞

(b) proxy

Fig. 16: The CDFs of write response times with various
settings of spare capacity

does not affect overall write response times.∞ shows the
most stable write response times by borrowing unlimited
spare capacity, but it cannot ensure the required lifetime.
For exchange, LADY offers about 4.9 years lifetime.
Worst Case Analysis: LADY properly manages the

SSD lifetime even in the worst-case scenario where the
spare capacity is completely used up. To evaluate this,
we synthesized the worst-case write traffic; the spare
capacity often ran out and the overly-used spare capac-
ity was not fully reclaimed in future epochs. Fig. 17
illustrates how LADY manages incoming write traffic
when the spare capacity is nearly exhausted. Fig. 17
shows the sum of the default capacity and the remaining
spare capacity, which is denoted by a total capacity.
While the default capacity is maintained as 2.2 MB, the
spare capacity is changing over time. Fig. 17 also shows
the amount of data actually written. The spare capacity
is nearly exhausted at around 70th second, but LADY
properly handles write traffic so that more data than
the total capacity are not written. This allows LADY
to guarantee the required SSD lifetime. Because of this
strict write-traffic regulation, the write performance is
inevitably degraded; the write throughput is about 4 MB,
but it is reduced to 2-3 MB after the spare capacity is ex-
hausted. We conducted a more comprehensive analysis
that included lifetime, performance, and response time
variations. For more details, see Section 2 of Appendix.
Adaptability to Write Traffic with Variability: We

evaluated how well LADY behaved under write traffic
with variability. To this end, we combined I/O traces
exhibiting different I/O patterns. We mixed proxy and
proj into one trace (denoted by proxy+proj), and
combined exchange, map, and msnfs into one trace
(denoted by exchange+map+msnfs).
Figure 18(a) shows the write throughput (MB/s) and

throttling delays (msec) of proxy+proj for 0-1,400K
seconds. The throttling delay is the length of time in-

 0

 1

 2

 3

 4

 5

 6

 7

0 25 50 75 100 125 150 175 200

W
ri
tt

e
n

 d
a

ta
 (

M
B

)

Time (Unit: second)

The spare capacity is exhausted

Total capacity (spare + default)
Write traffic

Fig. 17: An illustration of how LADY manages write
traffic when the spare capacity is nearly exhausted

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

12

 0

 10

 20

 30

 40

 0 200000 400000 600000 800000 1e+06 1.2e+06
 0

 0.5

 1

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

T
h
ro

tt
lin

g
 D

e
la

y
 (

m
s
e
c
)

Time (sec)

prxy proj

Write Traffic Throttling Delay

(a) 0-1,400K seconds

 0

 10

 20

 30

 40

 7.8e+06 8e+06 8.2e+06 8.4e+06 8.6e+06 8.8e+06 9e+06
 0

 0.25

 0.5

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

T
h
ro

tt
lin

g
 D

e
la

y
 (

m
s
e
c
)

Time (sec)

prxy proj

(b) 7,800K-9,000K seconds

Fig. 18: Results with proxy+proj

creased by a slower program mode and an artificial
delay. The write traffic of proxy is much heavier than
that of proj, while proj exhibits large fluctuations in
write traffic. Initially, LADY changes throttling delays
frequently; it makes wrong decisions because of the lack
of the previous history. The write traffic rapidly drops
after proj starts, so the throttling delay is reduced to 0
msec. LADY is gradually adapted to the changing write
traffic over time. Figure 18(b) shows the write through-
put and throttling delays for 7,800K-9,000K seconds.
The throttling delays become more stable than those
for 0-1,400K seconds. Figure 20(a) compares the CDFs
of write response times for 0-1,400K and 7,800K-9,000K
seconds. For 7,800K-9,000K seconds, fluctuations in re-
sponse times become smaller. In particular, the average
write response time is greatly improved. LADY applies
long throttling delays to proxy for 0-1,400K seconds,
expecting that heavy write traffic would continue in the
future. However, the write traffic of proj is much lower
than that of proxy. This allows LADY to apply shorter
delays to proxy, which improves write performance.

Figures 19 and 20(b) show write throughput, throttling
delays, and CDFs for 0-250K and 1,610K-1,970K sec-
onds of exchange+map+msnfs. LADY works similarly
to proxy+proj; LADY often changes the length of
throttling delays, but it becomes stable after obtaining
sufficient information about previous write traffic.
Priority-Aware Dynamic Throttling: Finally, we eval-

uated priority-aware dynamic throttling, PA-DT. We ex-
ecuted two traces simultaneously while assigning dif-
ferent importance values. Two I/O trace combinations,
proxy+proj and exchange+map, were used for the
evaluation. The SSD capacity for proxy+proj was
set to 32 GB and the SSD of 256 GB was used for
exchange+map. The target SSD lifetime was 5 years.
Figs. 21 (a) and (b) show the average write response
times for proxy+proj and exchange+map, respec-
tively, with different combinations of importance values
ranging from 1 to 4. If two different traces have the same
importance values (i.e., (1,1) and (4,4)), they exhibit the
same write response times. However, as the difference
between two importance values increases, the difference
between their write response times increases as well. In

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50000 100000 150000 200000 250000
 0

 0.25

 0.5

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

T
h
ro

tt
lin

g
 D

e
la

y
 (

m
s
e
c
)

Time (sec)

exchange map msnfs

Write Traffic Throttling Delay

(a) 0-250K seconds

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1.65e+06 1.7e+06 1.75e+06 1.8e+06 1.85e+06 1.9e+06 1.95e+06
 0

 0.25

 0.5

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

T
h
ro

tt
lin

g
 D

e
la

y
 (

m
s
e
c
)

Time (sec)

exchange map msnfs

(b) 1610K-1970K seconds

Fig. 19: Results with exchange+map+msnfs

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 700 800 900 1000 1100 1200 1300 1400 1500 1600
C

D
F

Response Time (usec)

0 - 1400K

7800K - 9000K

(a) proxy+proj

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 700 800 900 1000 1100 1200 1300

C
D

F

Response Time (usec)

0 - 250K

1610K - 1970K

(b) exchange+map+msnfs

Fig. 20: A comparison of CDFs for proxy+proj and
exchange+map+msnfs

the case of proxy+proj, if proxy has higher impor-
tance than proj, the average response time of proj is
greatly increased. As listed in Table 2, the amount of
data written by proxy is about 2.5 times larger than
that of proj. If a short write time is assigned to proxy

in spite of its heavy write traffic, proj must be throttled
more intensively to offset the SSD lifetime excessively
consumed by proxy. For exchange+map where two
traces write the similar amount of data, the difference
in write response times is not significant in comparison
to proxy+proj. Finally, regarding the SSD lifetime, PA-
DT guarantees the 5-year target lifetime.

6.2 Experiments with Linux Prototype

In order to evaluate the feasibility of LADY in real-
world environments, we implemented a proof-of-concept
prototype of LADY in a PC server with 3.4 GHz i7 CPU,
12 GB RAM, and Samsung’s 840 SSD. The operating
system was Ubuntu 10.04 with the Linux kernel 2.6.32.29.
Experimental Settings: Since it was difficult to imple-

ment throttling algorithms directly in the firmware of a
commercial SSD, we added an intermediate layer, called
a throttling layer, between an I/O scheduler and an SSD.
Fig. 22 shows a schematic description of our prototype.
Throttling algorithms are implemented in the throttling
layer. When a host system issues write requests to the
SSD, the throttling layer intercepts and delivers them
to the SSD. After receiving completion interrupts from
the SSD, it puts them into a throttling queue, instead of
delivering them to the I/O scheduler. After a throttling
delay, it dequeues them from the throttling queue and
delivers them to the I/O scheduler.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

13

 0

 500

 1000

 1500

 2000

 2500

(1,1)(1,2)(1,3)(1,4)(4,1)(4,2)(4,3)(4,4)

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
e
c
)

The Combinations of importance values
(prxy, proj)

prxy
proj

(a) proxy+proj

 600

 650

 700

 750

 800

(1,1)(1,2)(1,3)(1,4)(4,1)(4,2)(4,3)(4,4)

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
e
c
)

The combinations of importance values
(map, exchange)

map
exchange

(b) exchange+map

Fig. 21: The average response times for proxy+proj and
exchange+map

In our implementation study, the effective wearing
properties of NAND flash were not taken into account
due to the limited internal information of the SSD.
Instead, we focused on evaluating how effectively LADY
throttled write performance in real environments. Con-
sidering that the effective wearing only had a great effect
on the number of effective P/E cycles, the limited inter-
nal information was not serious obstacle in assessing the
feasibility of our throttling algorithm.
The benchmark programs used for our evaluations

included TPC-C, bonnie++, and postmark. Since it
was infeasible to run real-world benchmarks for several
years, we manually scaled down the target SSD lifetime
Tssd and the amount of writable data Cssd. In particular,
we executed multiple benchmark instances or threads,
so as to understand whether incoming write traffic was
effectively throttled or not even when independent write
requests were issued. A detailed description of bench-
marks and evaluation settings are noted in Table 5.
Performance/Lifetime Analysis:We implemented two

throttling algorithms, static throttling and LADY in the
throttling layer, which are denoted by ST and LADY,
respectively. We also have evaluated the SSD without
write throttling, which is denoted by NT.
Fig. 23(a) shows the SSD lifetimes of NT, ST, and

LADY. Tssd is set to 1 hour. NT cannot ensure 1-hour
lifetime, while LADY guarantees the target lifetime. For
all the benchmarks, the amount of written data is smaller
than Cssd. ST also ensures the target lifetime, but it
cannot fully utilize the available SSD endurance because
of its excessive throttling, which results in great per-
formance degradation. As depicted in Fig. 23(b), LADY
reduces write response times by 72%, 16%, and 45%
over ST for TPC-C, Bonnie++, and Postmark, respec-
tively. It must be noted that LADY guarantees the target
lifetime in the environment where multiple instances of

Fig. 22: A schematic description of our prototype

Benchmark Description Tssd Cssd

TPC-C

An on-line transaction processing (OLTP)
1 hour 10.8 GBbenchmark for transaction processing systems.

40 users run transactions simultaneously.

Bonnie++

It creates and deletes files in sequential and

1 hour 72 GB
random orders, while performing different

types of file system operations. Five bonnie++
programs are executed at the same time.

Postmark

It emulates a workload of electronic mail and
1 hour 25 GBnetnews services. Eight postmark programs

are executed concurrently.

TABLE 5: A summary of benchmark programs

benchmark programs simultaneously access the SSD. As
noted in Table. 5, five Bonnie++ instances and eight
Postmark instances write data to the SSD at the same
time, but LADY properly regulates write traffic. The
similar results are also observed in TPC-Cwhere 40 users
run transactions concurrently.
Fig. 24 illustrates the write traffic with three throttling

policies, NT, ST, and LADY, when TPC-C is running. NT
exhibits the best performance, but the SSD is completely
worn out at 3,024 seconds. By limiting the maximum
write throughput of the SSD to 3 MB/s (i.e., 10.8 GB /
3,600 seconds), ST extends the SSD lifetime to more than
1 hour. However, the SSD performance is excessively
regulated when write requests are intensively issued; on
the other hand, it is never throttled if there are only
few write requests. For this reason, ST incurs significant
write response variations, underutilizing the available
SSD endurance. Unlike ST, LADY predicts the future
write traffic and then changes write speeds as evenly as
possible. Thus, the SSD is worn out at the target lifetime
with small variations on write response times.

7 RELATED WORK

As the endurance of flash memory is continuously re-
duced, several endurance enhancement techniques that
aggressively reduce the amount of data written to SSDs
have been proposed. Data de-duplication [25] and data
compression [26] are representative ones. These tech-
niques are useful in improving the lifetime of SSDs, but
they have a limitation in that none of them guarantee
the SSD lifetime. J. Guerra et al. presented a storage
configuration strategy that effectively combines flash-
based SSDs with HDDs for multi-tier storage systems [6].
Their technique decided an adequate mix of storage
devices that requires the low capital and operating cost,
satisfying performance requirements with the minimum
power consumption. Although this work considered
various aspects required for designing multi-tier storage
systems, they did not take into account the SSD life-
time having a great effect on the overall storage cost,

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

TPC-C Bonnie++ Postmark

S
S

D
 L

if
e

ti
m

e
 (

H
o

u
r) Target Lifetime

(1 Hour)

NT
ST

LADY

(a) SSD lifetimes

 0

 100

 200

 300

 400

 500

 600

TPC-C Bonnie++ Postmark

R
e

s
p

o
n

s
e

 T
im

e
 (

u
s
e

c
 /

 4
K

B
)

1028.32 usec NT
ST

LADY

(b) Average write response times

Fig. 23: Experimental results with the prototype of LADY
in the Linux operating system

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349517, IEEE Transactions on Computers

14

 0

 5

 10

 15

 20

 2980 3000 3020 3040 3060 3080

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Time (second)

An SSD with NT
is worn out

NT
ST

LADY

Fig. 24: An illustration of the write traffic of three differ-
ent throttling policies with TPC-C

along with a trade-off between SSD performance and
lifetime. Exploiting the recovery effect of NAND flash
has received considerable attention. Mohan et al. first
investigated the effect of the damage recovery on the
SSD lifetime [8]. They showed that the endurance of
NAND flash was durable enough even for I/O inten-
sive enterprise servers due to its recovery ability. Their
investigations were limited to 90 nm NAND flash which
exhibits good write endurance. They also did not exploit
the recovery effect in ensuring the SSD lifetime.
Differences from our previous study: We presented

the basic idea of dynamic throttling in [1]. Our pre-
viously proposed throttling technique was greatly im-
proved in several aspects. First, while our earlier work
only considered the self-recovery effect of NAND flash,
this study took into account the trade-off between
NAND program speed and write endurance in addi-
tion to the self-recovery effect. This improved the write
performance by 13.5% on average over our previous
technique. Second, we improved the write-traffic predic-
tion technique which estimated future write traffic more
accurately, lowering response time variations. Third, we
proposed priority-aware dynamic throttling which man-
aged the performance and lifetime of SSDs according
to the importance of enterprise services. Finally, we im-
plemented a proof-of-concept prototype of LADY in the
Linux kernel and evaluated its feasibility using various
benchmark programs, including TPC-C, bonnie++, and
postmark.

8 CONCLUSIONS

In this paper, we proposed the effective lifetime-aware
dynamic throttling technique, called LADY, to overcome
the lifetime problems of flash-based SSDs in enterprise
environments. LADY throttled write performance so that
the required lifetime was satisfied. In order to guarantee
the SSD lifetime with small throttling penalties, LADY
exploited the effective wearing characteristics of NAND
flash. Our experimental results showed that LADY
guaranteed a lifetime warranty, while achieving better
write response times and smaller variations on response
times over the static throttling technique.

REFERENCES

[1] S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime Management of Flash-Based
SSDs Using Recovery-Aware Dynamic Throttling,” in Proceedings of the
USENIX conference on File and Storage Technologies, 2012.

[2] E. Pinheiro, W.-D. Weber, and L.-A Barroso, “Failure Trends in a Large
Disk Drive Population,” in Proceedings of the USENIX conference on File and
Storage Technologies, 2007.

[3] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating Server Storage to SSDs: Analysis of Tradeoffs,” in Proceedings
of the ACM European conference on Computer systems , 2009.

[4] A. Opitz, H. König, S. Szamlewska, “What Does Grid Computing Cost?,”
Journal of Grid Computing, 2008.

[5] B. You and et. al, “A High Performance Co-design of 26 nm 64 Gb
MLC NAND Flash Memory using the Dedicated NAND Flash Controller,”
Journal of Semiconductor Technology and Science, vol. 11, no. 2, 2011.

[6] C. Black, “24 Months of Intel SSDs... What We’ve Learned about MLC in
the Enterprise...,” Intel Open Port IT Community, 2011.

[7] J. Jeong, S. Hahn, S. Lee, and J. Kim, “Improving NAND Endurance
by Dynamic Program and Erase Scaling,” in Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems, 2013.

[8] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. Stan, “How I Learned to
Stop Worrying and Love Flash Endurance,” in Proceedings of the Workshop
on Hot Topics in Storage and File Systems, 2010.

[9] N. Mielke, H. Belgal, A. Fazio, Q. Meng, and N. Righos, “Recovery Effects
in the Distributed Cycling of Flash Memories,” in Proceedings of the IEEE
International Reliability Physics Symposium, 2006.

[10] Q. Wu, G. Dong, and T. Zhang, “Exploiting Heat-Accelerated Flash Mem-
ory Wear-Out Recovery to Enable Self-Healing SSDs,” in Proceedings of the
Workshop on Hot Topics in Storage and File Systems, 2011.

[11] Y. Pan, G. Dong, and T. Zhang, “Exploiting Memory Device Wear-Out
Dynamics to Improve NAND Flash Memory System Performance,” in
Proceedings of the USENIX Conference on File and Storage Technologies, 2011.

[12] Dell Inc., “Solid State Drive (SSD) FAQ,” 2011.
[13] SMART Modular Technologies, “XceedIOPS SATA SSD,” 2012.
[14] N. Cesa-Bianchi, Y. Freund, D. P. Helmhold, D. Haussler, R. E. Schapire,

M. K. Warmuth, “How to Use Expert Advice,” in Proceedings of the ACM
Symposium on the Theory of Computing, 1993.

[15] G. Dhiman and T. Rosing, “System-Level Power Management using Online
Learning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 676-689, 2009.

[16] S. Yoo and C. Park, “Low Power Mobile Storage: SSD Case Study,” Energy-
Aware System Design, pp. 223-246, 2011.

[17] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload Analysis and
Demand Prediction of Enterprise Data Center Applications,” in Proceedings
of the IEEE International Symposium on Workload Characterization, 2007.

[18] M. Carey, R. Jauhari, and M. Livny, “Priority in DBMS resource schedul-
ing”, in Proceeding of the International Conference on Very Large Data Bases,
pp. 397–410. 1989.

[19] D. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter, “Im-
proving Preemptive Prioritization via Statistical Characterization of OLTP
Locking”, in Proceeding of International Conference on Data Engineering, pp.
446-457, 2005.

[20] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-Loading: Practical
Power Management for Enterprise Storage,” in Proceedings of the USENIX
Conference on File and Storage Technologies, 2008.

[21] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Characteriza-
tion of Storage Workload Traces from Production Windows Servers,” in
Proceedings of the International Symposium on Workload Characterization, 2008.

[22] N. Agrawal, V. Prabhakaran, and T. Wobber, “Design Tradeoffs for SSD
Performance,” in Proceedings of the USENIX Annual Technical Conference,
2008.

[23] Y. Kim, J. Lee, S. Oral, D. A. Dillow, F. Wang, and G. M. Shipman,
“Coordinating Garbage Collection for Arrays of Solid-state Drives”, IEEE
Transactions on Computers, Vol. 63, No. 4, pp. 888-901, April 2014.

[24] Y. Kim, S. Oral, G. M. Shipman, and J. Lee, “Harmonia: A Globally Coor-
dinated Garbage Collector for Arrays of Solid-state Drives”, in Proceedings
of the Symposium on Massive Storage Systems and Technologies, 2011.

[25] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-Aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory Based Solid State Drives,”
in Proceedings of the USENIX Conference on File and Storage Technologies, 2011.

[26] T. Park and J.-S. Kim, “Compression Support for Flash Translation Layer,”
in Proceedings of the International Workshop on Software Support for Portable
Storage, 2010.

Sungjin Lee received the BE degree in electrical
engineering from Korea University in 2005 and
the MS and PhD degrees in computer science
and engineering from the Seoul National Uni-
versity in 2007 and 2013, respectively. He is
currently working as a postdoctoral associate in
the Computer Science and Artificial Intelligence
Laboratory at the Massachusetts Institute of
Technology. His research interests include stor-
age systems, operating systems, and embedded
software.

Jihong Kim received the BS degree in computer
science and statistics from Seoul National Uni-
versity (SNU), Korea, in 1986, and the MS and
PhD degrees in computer science and engineer-
ing from the University of Washington, Seattle,
in 1988 and 1995, respectively. Before joining
SNU in 1997, he was a technical staff member
at the DSPS R&D Center of Texas Instruments in
Dallas, Texas. He is currently a professor at the
School of Computer Science and Engineering,
Seoul National University. His research interests

include embedded software, low-power systems, computer architecture,
and storage systems. He is a member of the IEEE.

