
Improving Performance and Capacity of Flash
Storage Devices by Exploiting Heterogeneity of

MLC Flash Memory
Sungjin Lee and Jihong Kim, Member, IEEE

Abstract—The multi-level cell (MLC) NAND flash memory technology enables multiple bits of information to be stored in a memory
cell, thus making it possible to increase the density of flash memory without increasing the die size. In MLC NAND flash memory,
eachmemory cell can be programmedas a single-level cell or amulti-level cell at runtimebecauseof its performance/capacity asymmetric
programming property, which is called flexible programming in this paper. Therefore, MLC flash memory has a potential to achieve
the high performance of SLC flash memory while preserving its maximum capacity. In this paper, we present a flexible flash file system,
called FlexFS, which takes advantage of flexible programming. FlexFS divides a flash memory medium into SLC and MLC regions,
and then dynamically changes two different types of regions to provide an optimal storage solution to end-users in terms of performance
and capacity. FlexFS also provides a reasonable storage lifetime by managing the wearing rate of NAND flash memory, which is
accelerated by the use of flexible programming. Our implementation of FlexFS in the Linux 2.6 kernel shows that it achieves the I/O
performance comparable to SLC flash memory while guaranteeing the capacity of MLC flash memory in various real-world workloads.

Index Terms—NAND flash memory, file system, storage system, operating system

1 INTRODUCTION

AS NAND flash memory technologies rapidly advance,
flash-based storage devices are becoming an attractive

storage solution for various applications from mobile con-
sumer devices to high-end server systems. This rapid growth
of the NAND flash memory market is largely driven by the
desirable characteristics ofNANDflashmemory, such as high
performance, low-power consumption, and high mobility.

There are two types of NAND flashmemory in themarket:
single-level cell (SLC) and multi-level cell (MLC) flash mem-
ory. They are distinctive in terms of capacity, performance,
and endurance. For example, the capacity of MLC flash
memory is larger than that of SLC flash memory. By storing
two (ormore) bits of information in amemory cell, MLC flash
memory achieves significant density increaseswhile lowering
the cost per bit over SLC flash memory, which only stores a
single bit in a cell. However, SLC flash memory has higher
performance and longer cell lifetime thanMLCflashmemory.
Inparticular, itswrite (or programming) performance ismuch
higher than that of MLC flash memory.

As the demand for a high capacity storage device is rapidly
increasing, MLC flash memory is being widely adopted in
manymobile devices, such asmobile phones, digital cameras,

laptops, and other portable devices. However, because of
its poor performance, it is a challenge to satisfy users’ require-
ments for a high performance storage device with a large
capacity.

In order to overcome this poor performance problem, we
exploit the performance/capacity asymmetric programming
property of MLCNAND flash memory, which we call flexible
programming. Flexible programming enables each memory
cell to be programmed as a single-level cell (SLC-mode
programming) or as a multi-level cell (MLC-mode program-
ming). If SLC-mode programming is used to write data to a
particular cell, the effective properties of that cell become
similar to those of an SLC flash memory cell. Conversely,
MLC-mode programming allows us to make use of the high
capacity of an MLC flash memory cell. The most attractive
aspect of flexible programming is that fine-grained storage
optimizations are possible at the system software level, such
as a file system, during runtime. By efficiently exploiting
flexible programing, it is possible to optimize both the per-
formance and capacity aspects of storage solutions, so that
NAND storage solutions can achieve both the SLC perfor-
mance and the MLC capacity.

In order to realize a high-performance and high-capacity
flash-based storage device with flexible programming, how-
ever, several technical challenges need to be addressed prop-
erly. First, flexible programming allows two different types of
memory cells (programmed by either SLC-mode or MLC-
mode programming) to coexist in the same flash memory
simultaneously. These heterogeneous cells should be man-
aged effectively as if they appear to be homogeneous cells to
end-users. Second, with flexible programming, there is a
strong trade-off between performance and capacity, which
should be carefully managed. For example, if too many

• S. Lee is with the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139.

• J. Kim is with the Department of Computer Science and Engineering, Seoul
National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
E-mail: jihong@davinci.snu.ac.kr.

Manuscript received 04Dec. 2012; revised 17Apr. 2013; accepted 12May 2013.
Date of publication 26 May 2013; date of current version 12 Sep. 2014.
Recommended for acceptance by E.-Y. Chung.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.120

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014 2445

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

memory cells are programmed as single-level cells, the
capacity offlashmemory is significantly reduced even though
its I/O performance is improved. It is thus important to
decide the number of single-level and multi-level cells so that
both performance and capacity would be optimally sup-
ported. Third, flexible programming requires frequent data
movements from single-level cells to multi-level cells for
performance and capacity reasons. These data movements
incur a large number of extra block erasures, shortening the
lifetime of a flash-based storage device. Therefore, this life-
timeproblemmust beproperly addressed so that a reasonable
storage lifetime can be supported.

In this paper, we propose a flexible flash file system, called
FlexFS, for MLC NAND flash memory that efficiently ad-
dresses those technical challenges. FlexFS provides end-users
with a homogeneous view of storage, while internally man-
aging two different types of cells. FlexFS guarantees the
maximum capacity of MLC flash memory while achieving
the I/O performance close to SLC flash memory. To provide
high performance and high capacity simultaneously, FlexFS
employs a dynamic free-space management (DFM) tech-
nique. FlexFS also adopts a novel dynamic lifetime manage-
ment (DLM) technique, which manages the storage lifetime
by controlling the use of SLC-mode programming.

We implemented FlexFS in the Linux 2.6 kernel on top of
our in-house flash storage prototype and evaluated its effec-
tiveness using real-world applications from various consum-
er devices, including mobile phones, laptops, and desktop
PCs. To validate the long-term behaviors of FlexFS, we con-
ducted a simulation studywith a trace-driven simulator using
block I/O traces collected for several days from various
consumer devices. Experimental results showed that FlexFS
achieves the performance close to SLC flash memory, while
offering the capacity of MLC flash memory.

The rest of this paper is organized as follows. In Section 2,
we briefly review NAND flash memory and explain some
unique properties of MLC flash memory, which enable flexi-
ble programming. In Section 3, we present an overview of
FlexFS and describe the proposed dynamic free-space and
lifetime management techniques in detail. Our experimental
results are given in Section 4, and relatedwork is summarized
in Section 5. In Section 6, we conclude with a summary.

2 BACKGROUND

2.1 NAND Flash Memory
NAND flash memory consists of multiple blocks, each of
which is composed of several pages. In many NAND flash
memories, the size of a page is between 512 B and 8 KB, and
one block consists of between 4 and 128 pages. NAND flash
memory does not support an overwrite operation because of
its write-once nature. Therefore, before writing new data into
a block, the previous block must be erased. Furthermore, the
total number of erase operations allowed for a block is
typically limited to between 5,000 and 100,000 cycles.

Like SRAM and DRAM, NAND flash memory stores bits
in amemory cell, which consists of a transistor with a floating
gate that can store electrons. The number of electrons stored
on the floating gate determines the threshold voltage, ,
which represents the state of the cell. In case of SLC flash
memory, each cell has two states, and thus only a single bit can

be stored in that cell. Fig. 1(a) shows how the value of a bit is
determined by the threshold voltage. If the threshold voltage
is greater than a reference voltage, it is interpreted as a logical
‘0’; otherwise, it is regarded as a logical ‘1’. In general, the
write operation moves the state of a cell from ‘1’ to ‘0’, while
the erase operation changes ‘0’ to ‘1’.

If flash memory is composed of memory cells which have
more than two states, it is calledMLC flashmemory, and two
or more bits of information can be stored on each cell, as
shown in Fig. 1(b). Even though the density of MLC flash
memory is higher than that of SLC flash memory, it requires
more precise charge placement and charge sensing because of
narrower voltage ranges for each cell state, which in turn
reduces performance and lifetime of MLC flash memory.

2.2 MLC NAND Flash Memory Array
In MLC flash memory, it is possible to use SLC-mode
programming, allowing a multi-level cell to be used as a
single-level cell. To understand the implications of SLC pro-
gramming, it is necessary to know the overall architecture of a
flash memory array. Fig. 2 illustrates the array of flash
memory cells which forms a flash memory block. We assume
that each cell is capable of holding two bits. For a description
purpose, this figure does not show all the elements, such as
source and drain select gates, which are required in amemory
array. (For amore detailed description, see references [2], [3].)

As shown in Fig. 2, the memory cells are arranged in an
array of rows and columns. The cells in each row are con-
nected to a word line (e.g.,), while the cells in each
column are coupled to a bit line (e.g.,). These word and
bit lines are used for read andwrite operations.During awrite
operation, the data to be written (‘1’ or ‘0’) is provided at the
bit line while the word line is asserted. During a read opera-
tion, theword line is again asserted, and the threshold voltage
of each cell can then be acquired from the bit line.

Fig. 2 also shows the conceptual structure of a flash block
corresponding to an MLC NAND flash memory array. The
size of a page is determined by the number of bit lines in the
memory array, while the number of pages in each flash block
is twice the number of word lines because two different pages
share the memory cells that belong to the same word line.
These twopages are respectively called the least significant bit
(LSB) page and the most significant bit (MSB) page. As these
names imply, each page only uses its own bit position of a bit
pattern stored in a cell. This is possible because each memory
cell stores two bits, for example, one bit for the LSB page and
the other for the MSB page. Thus, if a block has 128 pages,
there are 64 LSB and 64 MSB pages. A memory cell in an
erased state is interpreted as a logical ‘11’.When a logical ‘0’ is
programmed to the LSB position of the cell, the cell will then
have abit pattern of ‘10’,which is interpreted as a logical ‘0’ for

Fig. 1. Threshold voltage distributions of SLC and MLC flash
memories.

2446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

the LSB page. If the MSB position is then programmed as ‘0’,
the bit pattern will change to ‘00’.

2.3 SLC-Mode and MLC-Mode Programming
In MLC NAND flash memory, LSB pages must be pro-
grammed before their correspondingMSB pages.1When data
are written to a certain LSB page, the distribution of the
threshold voltages of cells becomes similar to that of SLC
flash memory as illustrated in Fig. 1(a). Then, when data are
written to the corresponding MSB page, all available four
states in cells are fully utilized, so the threshold voltage
distribution is changed to that shown in Fig. 1(b). Because of
this programming mechanism of MLC flash memory [4], if
LSB pages in a block are only used for writing data, that block
becomes similar to a block in SLC flash memory in terms of
performance and capacity. For example, the performance
characteristic of the block is improved, but its capacity is
reduced by half in comparison with MLC flash memory. On
the other hand, if both LSB andMSB pages in a block are used
for writing data, its physical characteristics remain the same
as those of MLC flash memory. Note that recent 3-bit MLC
flash memory also supports SLC-mode programming [5],
which is similar to that of 2-bit MLC flash memory.

In flexible programming, SLC-mode programming is real-
ized bywriting data to only LSB pages in a block. Conversely,
MLC-mode programing is made by using both LSB andMSB
pages forwriting data. Furthermore, the datasheets of NAND
flash chips specify the offsets of LSB andMSBpages in a block,
and thus two different types of pages can be accessed by the
primitive I/O operations of NAND flash memory, such as a
page read or page write operation. Therefore, SLC-mode and
MLC-mode programming is easily controlled by system soft-
ware such as a file system at runtime.

Table 1 compares the performances of two different types
of programming modes. We used two different MLC NAND
flash chips: Samsung’s KFXXGH6X4M [6] and Micron’s
MT29F8G08AAA [7]. The column shows the read
and write response times when only LSB pages are used,
whereas the column shows the performances
when both LSB and MSB pages are used. All the data were
measured in a block device driver. As shown in Table 1, there
were no significant performance differences between page
read and block erase operations. However, the write perfor-
mance was greatly improved with , which was
almost equal to that of pure SLC flash memory fabricated at

the same process. This high write performance of SLC-mode
programming is the main motivation of FlexFS. Our primary
goal is to improve the write performance using SLC-mode
programming, while maintaining the capacity of MLC flash
memory using MLC-mode programming.

3 DESIGN AND IMPLEMENTATION OF FLEXFS
In order to achieve the SLC performance, FlexFS writes as
many data as possible to flash memory using fast SLC-mode
programming. However, the excessive use of SLC-mode
programming rapidly exhausts free space available for writ-
ing data because it wastes MSB pages in blocks, leaving them
unused. This wasted storage space can be reclaimed by
moving valid data in blocks (which were programmed by
SLC-mode programming) to other blocks using MLC-mode
programming. In this paper, this process is called free-space
reclamation. Free-space reclamation requires many page mi-
grations as well as block erase operations, but it can be done
with a low performance penalty by leveraging storage idle
time.Usually,most consumer devices, such asmobile phones,
laptops, and desktop PCs, have a considerable amount of idle
time (e.g., average idle time is 83%-98%). Thus, FlexFS can
continuously create sufficient free space so that all of the
requesteddata canbewrittenusing SLC-modeprogramming.

The approachmentioned above seems to be effective, but it
poses several technical issues that must be properly handled.
First, heterogeneous memory cells must be managed appro-
priately at the level of a file system. In FlexFS, the number of
different types of memory cells is changed at runtime, and
furthermore they are scattered across a storage medium.
Second, the amount of free space available for writing must
be properly managed. If free-space reclamation performs too
frequently, sufficient free space can be maintained for SLC-
mode programming. However, this frequent reclamation
often incurs useless data migrations (which turn out to be
unnecessary later), thereby shortening the storage lifetime
uselessly. On the other hand, if free-space reclamation is
conducted too infrequently, available free space is quickly
exhausted. Thus, FlexFS cannot write incoming data to flash
memory, even though a storage capacity offered to end-users
is not fully utilized. Third, FlexFS writes incoming data to
flash memory using SLC-mode programming and then
moves them to other locations using MLC-mode program-
ming for free-space reclamation, which requires lots of block
erasures. For this reason, the storage lifetime could be seri-
ously limited becauseflashmemory ismore rapidlyworn out.

FlexFS is designed to properly deal with such technical
issues. FlexFS efficiently manages heterogeneous memory
cells, giving an illusion to end-users that they are using a
homogeneous storagedevicewithhighperformance andhigh
capacity as well as a reasonable lifetime. These benefits of
FlexFS can be realized by adopting two novel techniques:

TABLE 1
Performance Comparisons of Different Types of Programming

Modes (Unit:)

Fig. 2. An organization of an MLC flash memory array.

1. The programming order of LSB andMSB pages can be exchanged,
depending on flash memory manufacturers.

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2447

dynamic free-space and lifetimemanagement techniques. The
dynamic free-space management (DFM) technique resolves
the problems caused by improper management of free
space by maintaining minimal but sufficient free space. The
dynamic lifetime management (DLM) technique adaptively
controls the wearing rate of flash memory (which is acceler-
ated by free-space reclamation) so that a reasonable storage
lifetime can be provided.

In the following subsection, we present the overall archi-
tecture of FlexFS, focusing on its heterogeneous cell manage-
ment. The detailed descriptions of the dynamic free-space
and lifetimemanagement techniques are given in Sections 3.2
and 3.3, respectively.

3.1 Management of Heterogeneous Cells
FlexFS is based on a JFFS2 file system [8], so its architecture is
similar to JFFS2, except for some features required to manage
heterogeneous cells. Thus, we focus on how FlexFS dealswith
different types of memory cells.2

Fig. 3 shows the layout of flash blocks in FlexFS and how it
handles write requests.3We assume that the number of pages
in a block is 128, and a page size is 4 KB. These values will be
used throughout the rest of this paper. FlexFS logically di-
vides the flash memory medium into two regions: an SLC
region and an MLC region. The SLC region is composed of
SLC blocks programmed by SLC-mode programming, and
the MLC region consists of MLC blocks programmed by
MLC-mode programming. If a block does not contain any
data, it is called a free block. In FlexFS, a free block is neither an
SLCblocknor anMLCblock; its type is determinedwhendata
are written into it later. For simplicity’s sake, we assume that
the size of a free block is the same as that of an SLC block.
Regardless of the number of SLC, MLC, or free blocks, FlexFS
provides the maximum capacity of MLC flash memory to
end-users.

When a write request arrives, FlexFS decides the type of a
region to which data are to be written and stores requested
data temporarily in a proper write buffer, which is separately
managed for two different regions. This temporary buffering

is necessary because the unit of read andwrite operations is a
page in flash memory. FlexFS performs write operations in a
similar fashion to other log-structured file systems [8]–[10],
except that two log blocks (one for the SLC region and the
other for theMLC region) are reserved forwriting.Whendata
are evicted from thewrite buffer, FlexFSwrites them to the log
block of a corresponding region using a proper programming
mode. If existing data are updated in flash memory, the old
version of the data is first invalidated, while the new data are
appended to the free space of a log block. The space occupied
by the invalid data is reclaimed by garbage collection later [1].

FlexFS has a special operation, called free-space reclama-
tion,whichmoves valid pages in SLCblocks toMLCblocks to
expand available free space in flash memory. Fig. 4 shows
how free-space reclamation increases available free space.
Initially, there are two SLC blocks and one free block. We
assume that SLC blocks contain only valid pages. To create
free space, FlexFS copies 128 pages in two SLC blocks to the
free block using MLC-mode programming. The free block
accordingly becomes a newMLCblock. Then, two SLCblocks
are erased and become free blocks. As a result, free-space
reclamation frees up one block, increasing available free
space.

Free-space reclamation incurs lots of extra I/O operations.
To prevent user I/O requests from being delayed by such
extra I/Os, free-space reclamation is performed only when
there are no user I/O activities and on-demand free-space
reclamation is not required (see Section 3.2). If an observed
idle period is longer than a certain threshold value, FlexFS
triggers free-space reclamation, expecting that there will be a
long idle period. This threshold value must be carefully
decided. If a threshold value is too short, a great performance
penalty caused by background free-space reclamation cannot
be avoided.On the other hand, if a threshold value is too long,
the amount of idle time that can be exploited for free-space
reclamation is reduced, lowering the efficiency of free-space
reclamation. Currently, FlexFS uses a fixed threshold value
which is set to 50 ms (see Section 4.1.1). In our observation, a
threshold value of 50 ms is long enough not to incur a
significant I/O performance penalty even with I/O intensive
workloads. Even though a relatively long threshold value is
chosen, it is short enough to create sufficient free space in real-
world workloads without losing lots of chances of utilizing
idle time for free-space reclamation.

Beforefinishing this subsection,we summarize some terms
that represent free space inFlexFS. In this paper, the amount of
free space currently available for writing data to the SLC
region is called currently available free space or simply called free
space. On the other hand, from end-users’ perspective,

Fig. 4. Free-space reclamation.Fig. 3. A layout of flash blocks in FlexFS.

2. A detailed explanation of traditionalfile-systemdesign issues (e.g.,
the management of files/directories and the process of file-system
mount/unmount) is omitted in this paper because they are almost the
same as those of JFFS2. Note that FlexFS shares the same limitations as
JFFS2 like slow mount time. However, these inherited limitations can be
overcome by implementing the main features of FlexFS in a recent file
system (e.g., UBIFS) because FlexFS is designed towork independently of
JFFS2 in principle.

3. For a more detailed description of how FlexFS handles read
requests, please refer to our previous work [1].

2448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

available free space is the amount of empty space not occu-
pied by user data, and it is offered to end-users based on the
capacity of MLC flash memory. To differentiate it from the
former one, this empty space is called unused storage space. In
the example of Fig. 4, free space is changed from 256 KB to
512 KB, but unused storage space is fixed to 1 MB.

3.2 Dynamic Free-Space Management
FlexFS has tomaintain sufficient free space to write requested
data to the SLC region. If available free space is exhausted,
FlexFS must perform free-space reclamation on demand to
make free space, suspendinguser I/O requests. The requested
data then can be written to the newly reclaimed free space.
This on-demand free-space reclamation incurs a great perfor-
mance penalty. As shown in Fig. 4, for the free space of 256KB
tobe reclaimed, FlexFSneeds tomove the data of 512KB to the
MLC region. Due to this high migration cost, I/O perfor-
mance becomes lower than that of MLC flash memory.

The simplest approach that maintains sufficient free space
is to reclaim as much free space as possible during idle time.
This approach is called early free-space reclamation in which it
creates free space as early as possible whenever available idle
time is observed. Considering plenty of idle time available in
consumerdevices, FlexFS creates sufficient free space for SLC-
mode programming. Note that the case where the amount of
idle time is not enough is discussed in Section 3.2.3.

Even though early free-space reclamation helps us to keep
a large amount of free space, it frequently incurs useless free-
space reclamation that moves the data to be invalidated soon
to the MLC region. As shown in Fig. 5(a), early free-space
reclamationmoves data to theMLC region right after they are
written to the SLC region if idle time is observed. However,
many of data are updated or deleted in the MLC region and
become invalid soon. Therefore, the migration of those data
turns out to be useless. Free-space reclamation requires many
block erase operations, so useless free-space reclamation
adversely affects the lifetime of a flash device.

To resolve such a lifetime problem, FlexFS employs a
delayed free-space reclamation policy that delays free-space
reclamation as long as possible so that many data are inva-
lidated in the SLC region. As shown in Fig. 5(b), delayed free-
space reclamation does not trigger free-space reclamation
unless available free space is smaller than . Here,

is the amount of spare free space that must be main-
tained in flash memory, so as to prevent on-demand free-
space reclamation. If available free space becomes smaller
than , free-space reclamation is invoked and then is
conducted like early free-space reclamation until the free
space of is to be reclaimed. FlexFS chooses infrequently
updated data as victim data for free-space reclamation. This
helps us to further reduce useless data migration.

As astute readers may notice, FlexFS uses unused storage
space as the temporal SLC buffer for storing incoming data
rapidly. According to [15]–[17], a storage device is not always
full and a large amount of storage space remains unused.
Thus, this SLC buffering is useful inmost cases except when a
storage device is nearly full. In Section 3.2.2, we discuss how
FlexFS handles the case where unused storage space is almost
exhausted.

In FlexFS, must be carefully decided because it
greatly affects not only storage performance but also its
lifetime. If is too large, useless free-space reclamation
is frequently conducted like early free-space reclamation. If

is too small, performance degradation caused by on-
demand free-space reclamation is frequently observed. Thus,
our goal is tomaintain as small as possible so long as free
space exhaustion does not occur. In the following subsection,
we describe how FlexFS determines .

3.2.1 Determination of
We first analyze two important characteristics of I/O traffic,
including the amount of written data and the amount of
available idle time, which have a great effect on the determi-
nation of . Fig. 6 displays the amount of data written per
second and the percentage of available idle time per second,
both of which are observed in a laptop PC. As shown in Fig. 6,
a storage device is usually in an idle state for a significant
amount of time, which is denoted by and . Con-
versely, a large amount of data is written to a storage device
during a short time period, which is denoted by and

. These idle and busy periods are irregularly repeated
over time.

The observation in Fig. 6 gives an important clue to
deciding . Suppose that the amount of free space re-
quired for storing the data issued during is . Given
sufficient idle time, FlexFS can reclaim the free space
required for during available idle periods (e.g., in
Fig. 6). Once sufficient free space is obtained, it is not neces-
sary to further perform free-space reclamation because more
free space will be not required. Suppose further that there are
() busy/idle periods, , , , and
FlexFS performs free-space reclamation to create the exact

Fig. 5. A comparison of early free-space reclamation and delayed free-
space reclamation.

Fig. 6. Characteristics of I/O traffic in a laptop PC.

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2449

amount of free space for the respective busy per-
iods . All the incoming data can be written to
the SLC region without free-space exhaustion and useless
free-space reclamation can be minimized.

If the amount of free space for future busyperiods is known
in advance, FlexFS can control so that the exact amount
of free space is prepared for the next busy period. However, it
is difficult to predict free space for future busy periods
because write traffic and idle time vary greatly over time.
For this reason, FlexFS determines in a conservative
manner; it chooses the largest amount of free space required
for past busy periods as , expecting that the free space
required for future busy periods would be not larger than the
largest one previously observed.

Fig. 7 illustrates how FlexFS determines by referring
to the history of I/O traffic. Assume that the unit time interval
is one second. At a certain time , is the amount of
written data to the SLC region and is the amount of
free space that can be reclaimed during available idle time.
FlexFS divides the time into pairs of two consecutive periods,
a busy period and an idle period. The time intervals during
which are regarded as a busy period. The
time intervals duringwhich > are considered as
an idle period. Suppose that there are () pairs of busy/
idle periods, and and for denote
individual busy and idle periods. The amount of data written
in the SLC region during a busy period is denoted by

. The amount of free space that can be created during an
idle period is denoted by . For example, in Fig. 7, is

, and is
.

The amount of free space required for a busy period
can be estimated using the equation below:

>

In Eq. (1), is the amount of free space required to store
data issued during , whereas is the amount of free
space that can be reclaimed during the idle period . If

> , the data of still remain in the SLC region at
the beginning of because of the insufficient idle time.
Since the data of are requested for writing during ,
the free space of is required for . If

, the free space required for is . For example,
, , and in Fig. 7 are 30 MB, 50 MB, and 10 MB,

respectively.

Among all the values of for , the largest
one is the maximum free space that was required by previ-
ously observed busy periods. Suppose that the similar write
traffic will be requested in the future and the amount of free
space required by future busy periods is not larger than the
largest one previously observed. In that case, FlexFS does not
need toperform free-space reclamation ifmore free space than
the largest one exists in flash memory. In that sense, FlexFS
chooses the largest one of all the values of as ,which is
formally expressed as follows:

If an unexpectedly large amount of data is requested, (e.g.,
more free space than 50 MB are requested in the example of
Fig. 7), on-demand free-space reclamation inevitably occurs.
In practice, free-space exhaustion is not frequently observed
because is decided in a very conservative way. Further-
more, since a storage device is initially empty, it would take a
long time until available free space is reduced to . Thus,
FlexFS is trained sufficiently by monitoring I/O traffic for a
long time before free space becomes smaller than . Note
that, in this paper, this monitoring period is called a training
period.

The value of is obtained with small memory and
computational overheads. To calculate , it is only necessary
to keep and for the previous busy/idle period, and

for the current busy period. If > , becomes new
; otherwise, it is discarded. The computational cost for

profiling the amount of written data and the amount of
data reclaimed during idle time was very low.

3.2.2 Management of Insufficient Free Space
FlexFS uses available free space as temporary SLC buffer to
speed up write performance. If an unused storage space is
large enough, FlexFS achieves high performance by writing
all the data to the SLC region while reclaiming free space for
futureuse.However, if a storagedevice is almost full (i.e., only
a small number of free blocks remain) or if free space required
for busyperiods is too large (i.e., is too large), it is hard to
provide SLC performance because FlexFS cannot create suffi-
cient free space for SLC-mode programming.

FlexFS judges that there is insufficient free space when
potential free space is smaller than . is similar to
currently available free space as mentioned in Section 3.1, but
it includes the space occupied by invalid andwasted pages as
free space, which can be free after garbage collection or free-
space reclamation. That is, indicates the maximum
amount of data that can be stored in the SLC region. Note
that is also the same as half of an unused storage capacity,
which is available storage space seen by end-users. If

< , it means that FlexFS cannot create more free
space than , regardless of the amount of idle time. If
SLC-mode programming is used for writing data even when

< , free space could be exhausted before all the
requested data are written to the SLC region. In that case,
FlexFS must trigger on-demand free-space reclamation to
create more free space, which incurs a great performance
penalty.

One of the feasible approaches that avoid on-demand
free-space reclamation while providing relatively high

Fig. 7. Determination of by monitoring busy and idle periods.

2450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

performance is to adaptively use two different types of pro-
gramming modes according to the distribution of free space
required for busy periods. For example, if almost all busy
periods require smaller free space than except only a few
busy periods requiring larger free space than , it might be
better to keep writing data using SLC-mode programming.
This is because almost all data can bewritten to the SLC region
without incurring on-demand free-space reclamation. On the
other hand, if most of the busy periods require larger free
space than , using MLC-mode programming is a better
choice because it avoids a performance penalty caused by free
space exhaustion.

Inorder tofigure out thedistributionof required free space,
FlexFS keeps the free-space histogram using the values of

, , and for individual busyperiods . Fig. 8(a)
shows how FlexFS composes the free-space histogram. For

in Fig. 7, are 30MB. (Note that and are not
available). Itmeans that requires the free space of 30MB.
In Fig. 8(a), a bin width is assumed to be 10 MB. Thus, the
frequencies of 3 histogram bins ranging from 0 MB to 30 MB
are increased by 1. For , the values of , , and are
30 MB, 20 MB, and 40 MB, respectively. As explained in
Section 3.2.1, () is the amount of free space
consumed by previous busy periods (i.e., in Fig. 7, and,
for , it is 10 MB. Since the data of 40 MB are written
during , the frequencies of 4 histogram bins ranging
from 10MB to 50MB are increased by 1. In this manner,
can be added to the histogram.

Using the free-space histogram, FlexFS constructs a cumu-
lative data histogram (CDH). The CDH consists of a list of
(,) pairs. A finite number of (,) pairs are indexed by
thehistogrambin ,where is the smallest free space that falls
into the -th histogram bin and is the responding empirical
cumulative probability of occurrence (free space).
Fig. 8(b) shows the CDH corresponding to Fig. 8(a). Using the
CDH, it is possible to estimate howmany data can be written
to flash memory without requiring more free space than a
given one. For example, if is 40 MB, (free space
40 MB) is 0.875. That is, 87.5% of future write requests are
likely to require less free space than 40 MB.

Fig. 9 shows two representative examples ofCDHs. Fig. 9(a)
is the CDH of I/O traffic where a majority of busy periods
require a small amount of free space, whereas Fig. 9(b) is the
CDHwhere almost all busy periods require a large amount of
free space. Suppose that is denoted by in the CDHs of
Fig. 9. Even for the same , of Fig. 9(a) is close to 1.0, but
of Fig. 9(b) is close to 0.0. As the value of increases, more
data can be written to the same free space without incurring
on-demand free-space reclamation. For this reason, for I/O

traffic with a similar CDH to Fig. 9(a), it would be better to use
SLC-mode programming. On the other hand, MLC-mode
programmingwould bepreferred for I/O trafficwith theCDH
of Fig. 9(b).

In order to choose a proper programming mode, FlexFS
needs to estimate the expected write performance depending
on the programing mode using the CDH of given I/O traffic.
First, if MLC-mode programming is used, the amount of data
that can be stored in the potential free space is increased to

, which is denoted by in Fig. 9. Since the unused
storage space offered to end-users is aswell, more data
than cannot be requested. Thus, there will be no free-space
exhaustion, but write performance is reduced to that of MLC
flash memory. If the time taken to write a page to the MLC
region is denoted by , the expected page write perfor-
mance with MLC-mode programming is defined as
follows:

Second, if SLC-modeprogramming is used, the probability
of writing data without free-space exhaustion is
according to the CDH shown in Fig. 9. The probability that
free-space exhaustion occurs (i.e., more data than are to be
written) is . When free-space exhaustion occurs,
FlexFS moves data in the SLC region to the MLC region, and
thenwrites pending data to theMLC region.4 If the time taken
to move a single page for free-space reclamation is and
the time spent to write a page to the SLC region is , the
expected write performance with SLC-mode program-
ming is defined as follows:

In Eq. (4), as the value of () increases, decreases
because more data can be written to the SLC region with less
free-space reclamation. If < , it is better to use SLC-
mode programming; otherwise, MLC-mode programming is
preferred. In our measurement, , , and are

, , and , respectively. According to
Eqs. (3) and (4), < when () is higher than 0.77.

By choosing the most appropriate programming mode,
FlexFS provides higher performance thanMLC flashmemory
even when available free space is smaller than . How-
ever, when () is low (i.e., lower than 0.77) as depicted in

Fig. 8. A free-space histogram and a cumulative data histogram (CDH)
corresponding to the example in Fig. 7. Fig. 9. Two representative examples of CDHs.

4. If the pending data are still written to the SLC region, they could
cause additional free-space reclamation. This is the reason why FlexFS
writes them to the MLC region when free-space exhaustion occurs.

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2451

Fig. 9(b), the performance is inevitably reduced to that ofMLC
flash memory.

To further improve performance when () is low,
FlexFS employs a more sophisticated writing strategy that
writes part of the incoming data to theMLC region. If some of
the incoming data are written to the MLC region while
sending the rest of them to the SLC region, the exhaustion
of free space can be delayed because more data can be stored
in the same free space. As shown in Fig. 9(b), the amount of
data that can be written to flashmemory without on-demand
free-space reclamation is increased to . As expected,

, and thus . The probability that
free-space exhaustion occurs becomes , which is
lower than the probability when only SLC-mode
programming is used. In the example of Fig. 9(b), is close to
, and . As a result, by writing part of the

incoming data to the MLC region, lots of on-demand free-
space reclamation can be avoided even ifwrite performance is
reduced to that between SLC and MLC performances.

The proportion of the incoming data sending to the SLC
region is denoted by , where . As the value of
approaches 1.0, a large amount of data is written to the SLC
region. To offer the optimal I/O performance, the value of
must be carefully decided because it determines (1) the value
of , (2) the value of , and (3) the amount of the data
written to the SLC region. The following equation formalizes
the relationship between and .

Using in Eq. (5), the value of depending on is
obtained using the CDH as follows:

<

The time taken to write a page to flashmemory depending
on the value of is formalized as follows:

Based on Eqs. (4)–(7), the expected write performance
according to the value of is defined as follows:

To determine the optimal value of , FlexFS calculates the
expected performance while increasing from 0.0 to
1.0 by 0.1, and chooses that minimizes . Note that
Eqs. (3) and (4) are the special cases of Eq. (8) where the values
of are 0.0 and 1.0, respectively.

Finally, we discuss memory and computational overhead
issues in obtaining the value of . FlexFS maintains the free-
space histogram and updates the frequencies of histogram
bins. To compute the new value of , FlexFS constructs the
CDH using the free-space histogram. Building the CDH
requires extra computational cost. Thus, FlexFS computes the
new value of every 1,024 page writes. The bin width of a
histogram is also set to 4MB. For a 32GB storage device, there
are 8,192 histogram bins. Since is much smaller than a

storage capacity, the number of the histogram bins actually
used in building the CDH is smaller than 8,192. This helps us
to further reduce the cost of obtaining the value of . Accord-
ing to our implementation study, the time taken to build the
CDH is , on average, in an embedded processor
running at 400 MHz. Regarding the memory overhead, only
two plain arrays are necessary to maintain the free-space
histogram and the CDH. Therefore, the memory space over-
head is 64 KB for a 32 GB flash device.

3.2.3 Free Space Management under Insufficient Idle
Times

If available idle time is very short, FlexFS cannot create
sufficient free space for SLC-mode programming. In that case,
the data requested for writing are accumulated in the SLC
region over time, and consequently they incur on-demand
free-space reclamation. FlexFS resolves this problem by re-
ducing the amount of data written to the SLC region smaller
than the amount of free space reclaimed during available idle
time.

Suppose that there are () busy and idle periods.
According to Eq. (1), the average amount of data newly
written is) and the average amount
of free space to be reclaimed during idle time is

). If > , it means that there
is not sufficient idle time. In that case, FlexFS changes the
maximum value of to to limit the data written
to the SLC region smaller than the data to be reclaimedduring
idle time. To prevent a premature decision and change the
value of in response to a changing workload, FlexFS com-
putes the new value of whenever the amount of newly
written data exceeds half of the total storage capacity.

Note that most consumer devices exhibit sufficient idle
time. Thus, in our evaluation, a performance penalty caused
by the lack of idle time is not observed.

3.3 Dynamic Lifetime Management
FlexFS prolongs the storage lifetime by employing delayed
free-space reclamation.However, it doesnotmean that FlexFS
always provides a reasonable storage lifetime. In FlexFS, each
block undergoes more P/E cycles because a lot of data are
temporarilywritten to the SLC region,waiting to bemoved to
the MLC region during idle periods. In order to provide a
longer storage lifetime, it would be better to write data to the
MLC region directly. However, this reduces the overall per-
formance. To efficiently deal with such a performance/
lifetime trade-off, we propose a novel dynamic lifetime man-
agement (DLM) technique that controls the amount of data to
be written to the SLC region, so as to achieve a reasonable
storage lifetime.

3.3.1 Minimum Lifetime Metric
We start by introducing a new lifetime metric which is de-
signed to express the trade-off between lifetime and perfor-
mance. Themaximum lifetime offlashmemory depends
on the storage capacity and the number of P/E cycles as well
as the amount ofwritten data [11], and is expressed as follows:

2452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

where is the total capacity of flashmemory, and is
the number of P/E cycles allowed for each block. The writing
rate indicates the amount of data written in a unit time
period (e.g., day).

is not appropriate to express the trade-off between
lifetime and performance because it just shows an expected
storage lifetime. Therefore, we use an explicit lifetime ,
which represents the minimum lifetime that must be ensured
by a file system. is specified by flash storage manufac-
turers, and is usually set to 2-5 years. FlexFS can control the
writing rate by adjusting the amount ofwrite traffic sent
to the SLC region. Thus, the trade-off between performance
and lifetime can be expressed as follows:

where is a write-acceleration index, which represents the
ratio of the data destined for the SLC region to the total
incoming data. If is close to 1.0, FlexFS writes all the data
to the SLC region, and this increases because of frequent
free-space reclamation. If is close to 0.0, is decreased.
FlexFS controls so that the lifetime specified by is to be
satisfied.

3.3.2 Assignment of Writing Budget
FlexFS divides the lifetime into time windows for

, and the length of a time window is . Each
time window is a unit time period for managing a storage
lifetime, so the length of must be properly decided. We
discuss this issue in Section 3.3.3. Suppose that is the
writing budget assigned to , which represents the amount
of flash space allowed to be used for writing data during .
The writing rate for can be expressed as

.
The assignment ofwriting budget to eachwindow impacts

greatly on both the performance and the rate at which flash
memory wears out because it determines the amount of data
to be written to the SLC or MLC region. In this work, FlexFS
equally distributes available writing budget to all time win-
dows. Therefore, can be expressed as follows:

where indicates the amount of writing budget that
has actually been used by . If < , .
The remaining writing budget is ,
and the number of the remaining windows is . Thus,
the remainingwriting budget is shared equally by the remain-
ingwindows.Note that is computed at the beginning
of .

3.3.3 Determination of a Write-Acceleration Index
Once writing budget has been assigned to a time
window , FlexFS adjusts the write-acceleration index so
that writing budget actually used in the future time window

is smaller than or is equal to .

Fig. 10 shows how the amount of writing budget used for
writing data is changed depending on the value of . Suppose
that 512 KB data are requested for writing. If is 1.0, 512 KB
data are written to two SLC blocks. If the data in two SLC
blocks are not invalidated, 512 KB data will be moved to one
MLC block for free-space reclamation. The total amount of
writing budget used is thus 1.5MB because three blocks have
been used for writing data. If is 0.5, the writing budget of
1 MB is used because it requires two blocks for writing data.
Finally, if is 0.0, 512 KB data are written to one MLC block.
Thus, the writing budget of 512 KB is used.

This simple example suggests that we can generalize the
relationship among the write-acceleration index, the amount
of incoming data, and the amount of writing budget actually
used in the following way:

where is the amount of the data thatwill arrive during
the future time window , and is the amount of the
writing budget used depending on . More specifically,

is thewriting budget used forwriting incom-
ing data to flash memory. For example, in Fig. 10(a),

is 1 MB. On the other hand, is
the writing budget which is used for free-space reclamation.
Someof the data stored in the SLC region could be invalidated
before being moved to the MLC region. The value of is the
ratio of the datamoved for free-space reclamation to the entire
data written to the SLC region. If is 1.0, it means that all the
written data aremoved to theMLC region.On the other hand,
if is 0.0, noneof thedata aremoved. For instance, inFig. 10(a),
is 1.0 and is 1.0, and thus . As a

result, is 1.5 MB. If is 0.0, is 1.0 MB. Since
the value of is changed according to aworkload, the average
amount of data moved to the MLC region for free-space
reclamation is used for estimating .

FlexFS writes as many hot data as possible to the SLC
region if it is necessary to regulate write traffic for a lifetime
guarantee. If hot data are selectivelywritten to the SLC region,
the value of can be reduced because theywill be invalidated
before being moved to the MLC region. This helps us to
improve both storage performance and lifetime. Regarding
the detection of hot/cold data in FlexFS, please see our
previous study [1].

The value of must be chosen so that .
Thus, it can be expressed as follows:

>

Fig. 10. The amount of writing budget used depending on the value of .

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2453

In Eq. (13), is decided at the beginning of when the
exact value of is unknown.According to our previous
study [12], the future write traffic is accurately estimated by
monitoring input write traffic for a relatively long time (e.g.,
30 minutes or several hours). For this reason, we set to
30 minutes and estimate to be the moving average of
thepast four timewindows. Thenewvalueof is used if < .
Thus, the write performance is throttled only when a preset
lifetime is unlikely to be achieved.

Note that FlexFS cannot guarantee a preset storage lifetime
in some special cases. For example, if write traffic is so heavy
(i.e., is always larger than), it is hard to
guarantee the lifetime . In that case, FlexFS writes all the
incomingdata to theMLCregion, limiting the value of to 0.0.
Thus, FlexFS can provide a lifetime close to that of JFFS2.

4 EXPERIMENTAL RESULTS

We implemented FlexFS in a custom FPGA-based flash stor-
age prototype and then conducted performance and lifetime
evaluations, using various application usage scenarios. To
validate the feasibility of FlexFS with long-term scenarios, we
also conducted a simulation study, using a trace-driven sim-
ulator with the I/O traces collected for a long time. We first
present our performance evaluation results in Section 4.1, and
then show our lifetime evaluation results in Section 4.2.5

4.1 Performance Evaluation

4.1.1 Evaluation with Linux Implementation
FlexFS was implemented in the Linux 2.6.25 kernel and was
evaluated in a custom FPGA-based flash storage prototype
called BlueSSD [13]. Our flash storage prototype was
equipped with a flash array board, which was composed of
32flash chips. Eachflash chipwasMicron’s 1GBMLCNAND
flash memory [7]. The page size was 4 KB and there were 128
pages in a block.

We evaluated FlexFS in our storage prototype by replaying
I/O traces gathered from a variety of systems with six differ-
ent scenarios, including a Qtopia-based mobile phone [14],
laptops, and desktop PCs. A detailed description of the
respective I/O traces is summarized in Table 2. All the I/O
traces were a set of I/O system calls sent to a file system, such
as fopen(), fread(), and fwrite(). A strace tool was used for
collecting system-call traces from a Qtopia mobile phone,
which was based on a Linux operating system. To gather
I/O activities from Windows XP-based laptops and desktop
PCs, we used a Process Monitor tool offered by Microsoft
Corp. The collected I/O traces were replayed on our flash
storage prototype board as if actual applications were run-
ning on top of a file system. This I/O trace playback not only
helped us to repeat the same I/O traffic under various file
systemconfigurations, but also allowedus to quickly evaluate
a variety of applications (which run on different platforms

such asQtopia orWindows)withoutmuch effort to port them
to our storage platform.

For fair comparisons, we performed our evaluations with
the following file system configurations: ,

, EARLY, and FlexFS. was a JFFS2 file
system that used SLC-mode programming, and
was JFFS2 that used MLC-mode programming. EARLY was
the FlexFS file system with early free-space reclamation.
FlexFSwas theproposed FlexFSwith bothdynamic free-space
management and dynamic lifetime management techniques.
The total storage capacity of was 16 GB. For

, EARLY, and FlexFS, the total capacity was 32 GB.
The number of P/E cycles for each block was set to 3 K.
A threshold value for triggering free-space reclamation was
set to 50 ms.

The space utilization of a storage device has a great effect
on the performance of FlexFS. According to Agrawal et al.’s
study [15] that analyzed the storage space usage of 60,000
personal computers, the average fullness was about 41%.
In our evaluation, therefore, 59% of the total storage space
(i.e., 18.8 GB) was set to free space. In Section 4.1.2, we
evaluate the performance of FlexFS in detail when the storage
space is nearly full.

Due to a relatively short length of I/O system-call traces
(e.g., 30-120 minutes), it was hard to decide the meaningful
value of in our Linux implementation study. Therefore,
for respective traces, the values of were set to the largest
free space which was obtained by an offline analysis of
system-call traces under the assumption that was prop-
erly decidedbymonitoring I/O traffic for a long time. Instead,
in Section 4.1.2, we investigate how well FlexFS decides the
value of in detail using a trace-driven simulator with
long-term I/O traces.

Write Performance: Fig. 11(a) shows the average write
response time of four file system configurations.
exhibits the best write performance because all the requested
data are written to the SLC region. Conversely,
shows the worst performance among all the configurations.
EARLY achieves the same performance as . As
shown in Table 2, idle periods account for 90%-98% of the
total trace execution time across all the traces. Thus, EARLY
creates sufficient free space for SLC-mode programming by
moving all the data written in the SLC region to the MLC
region during idle periods. Similarly, FlexFS also offers the
performance close to by exploiting plenty of idle

TABLE 2
Descriptions of Benchmark Programs

5. We present additional experimental results in Appendix (available
on-line in the Computer Society Digital Library at https://doi.ieeecom-
putersociety.org/10.1109/TC.2013.120) which illustrate the changes of
major parameters used in FlexFS according to the characteristics of a
workload.

2454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

time. In our observation, the storage lifetime is not a problem
in our current setting (i.e., the storage capacity of 32 GB with
3 K P/E cycles), so the performance degradation for the
lifetime guarantee is not observed.We performmore detailed
analysis on the storage lifetime with various storage device
settings in Section 4.2.

The write performance is somewhat different depending
on I/O traces. This is mainly due to the effect of a write buffer
employed in both JFFS2 and FlexFS. If small-size data (e.g.,
smaller than 4 KB) are requested to the file system, those data
are temporarily stored in awrite buffer, avoidingactualwrites
to flash memory. Thus, the overall write latency is reduced
accordingly. On the other hand, the benefit of using a write
buffer is not observed in some I/O traces like Qtopia, which
usuallywrite a bulk of data toflashmemory.Regardless of the
effect of a write buffer, the performance benefit of FlexFS is
maintained.

Free-Space Reclamation Overhead: We evaluated the
migration overhead caused by free-space reclamation. For
this purpose, we analyzed the amount of data that were
moved from the SLC region to the MLC region for two
configurations, EARLY and FlexFS, which used different
free-space reclamation policies.

Fig. 11(b) shows the amount of data moved by free-space
reclamation. FlexFS moves a smaller amount of data to the
MLC region in comparison with EARLY because it delays
free-space reclamation as long as possible so that many data
are to be invalidated in the SLC region. For Office,
General H , General L , and Devel, the reclamation over-
heads are reduced by 69%, 29%, 39%, and 28% over EARLY,
respectively. In those traces, many files are removed or
updated while they stay in the SLC region. In cases of Web
and Qtopia, an update on the previously written data or the
deletion of the existingfiles is rarely observed, so the benefit of
delayed free-space reclamation is limited to 2-4%.

By eliminating useless page migrations, FlexFS also re-
duces the number of P/E cycles performed on flash memory.
For Office, General H , General L , and Devel traces, the
number of P/E cycles is reduced by 28%, 12%, 15%, and 11%
overEARLY, respectively. On the other hand, for Web, only the
reduction of 4% is obtained, and no reduction on P/E cycles is
observed in Qtopia.

Effect of Free-Space Reclamation on I/O Latency: To
understand the effect of free-space reclamation on perfor-
mance, we measured the write latencies of FlexFS while
changing a threshold value from 0 to . If a threshold
valuewas 0, FlexFS triggers free-space reclamationwhenever

thereweredata in the SLC region regardless of the existence of
idle time. Conversely, if a threshold value was , free-space
reclamation was never triggered. We executed a workload
generator that issued 4 KB writes according to the Pareto
distribution, which was usually used to model I/O traffic. To
simulate awrite-intensiveworkload, the average inter-arrival
time of requests was set to , and the standard devia-
tion was .

Fig. 11(c) shows our evaluation results, which summarizes
the maximum, the minimum, and the average I/O response
times according to different threshold values. When a thresh-
old value is 0, the average write response time is 1.5 times
longer than that without free-space reclamation (i.e.,). In
particular, themaximumresponse time is increased to91.7ms.
However, the write response times become similar to those
without free-space reclamation when a threshold value ex-
ceeds 50 ms (i.e., our default threshold value). Even though
our default threshold value is conservatively decided, suffi-
cient free space is created in realistic workloads due to plenty
of idle time available in consumer devices. As depicted in
Fig. 11(a), FlexFS exhibits the write performance close to

because on-demand free-space reclamation never
occurs.

4.1.2 Detailed Analysis with a Trace-Driven Simulator
The evaluation with the real file system prototype enables us
to assess the performance of FlexFS accurately. However, it is
not appropriate to evaluate the feasibility of the dynamic
free-space management algorithm that requires a long-term
history of I/O traffic to make a decision. For more detailed
analysis of our free-space management technique, we con-
ducted a simulation studywith a trace-driven simulator using
block I/O traces which were collected for a long time.

The trace-driven simulator used for our evaluation mod-
eled the primitive I/O operations of MLC flash memory. It
also supported FlexFS-specific features, including SLC-
mode/MLC-mode programming, free-space reclamation,
and heterogeneous block management. To improve simula-
tion accuracy, we modeled the write buffer mechanism and
included software overheads in the simulator. According to
our performance comparison study, the performance differ-
ence between the simulator and the storage prototype was
about 14%,whichwas accurate enough to show the benefits of
FlexFS over other file system configurations.

Block-level I/O traces collected at a block device driver
were used as an input for the simulator. Table 3 shows
the detailed descriptions of block I/O traces used for our

Fig. 11. Performance evaluation results with Linux implementation.

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2455

evaluation. A block-level I/O trace did not include file-
system-specific operations, such as file creation and file dele-
tion. However, it provided sufficient information, including
the length of idle periods and the amount of write traffic,
which were required for our DFM technique to make a
decision. The traces were collected using a Diskmon tool for
Laptop1, Laptop2, and Mobile and were gathered using a
blktrace tool for Desktop.

As shown in Table 3, all the I/O traces exhibited very long
idle periods, which facilitated the creation of sufficient free
space for SLC-mode programming. was very different
according to the characteristics of I/O traffic. For example,
Desktop, Laptop1, and Laptop2 required a relatively small
amount of free space for busy periods. Considering thatmany
flash devices usually provided several ten gigabytes of a
storage capacity or more, the amount of free space that must
be reserved for busy periods was not so large. Thus, it is
expected that FlexFS achieves performance close to SLC flash
memory even when the storage utilization is relatively high.
However, for the Mobile trace that often writes many large-
size multimedia files, a large amount of free space needs to be
maintained in flash memory.

First of all, we evaluated how the value of is properly
decided. As pointed out in Section 3.2.1, FlexFS uses the
largest amount of free space (whichwas required by previous
busy periods) as , expecting that there will be no busy
periods requiringmore free space than . To demonstrate
the validity of this assumption, we assessed the write perfor-
mance of FlexFSwhile varying the length of a training period,
which indicates the length of the time until available free
space is nearly exhausted and FlexFS starts free-space recla-
mation to maintain free space .

As depicted in Fig. 12, five different training periods
ranging from 0% to 80% of the total length of the I/O trace
are used for the evaluation. For example, in the case of
Desktop, the length of the 20% training period is 33.2 hours.
After 33.2 hours, free-space reclamation is started with ,
which is the largest amount of free space observed during a

training period. As expected, the write performance of FlexFS
is improved greatly as the length of a training period in-
creases. In particular, the performances of Desktop and
Laptop2 become the same as that of SLC flash memory when
the percentages of training periods are higher than 60% and
20%, respectively. Laptop1 and Mobile exhibit longer write
response times than that of SLC flash memory even with the
80% training period. However, they exhibit 41% and 48%
higher performance than MLC flash memory, respectively.

We then evaluated how FlexFS works when the storage
spaceutilization is veryhigh; that is, potential free space is
smaller than . To simulate sucha situation, the amount of
available free space was initially set to , which was
previously obtained by analyzing the I/O trace. After the
execution of the I/O trace, flash memory was completely
filled with user data, and only MLC blocks remained in flash
memory. The empirical distribution of I/O traffic (obtained at
offline) was initially given to FlexFS, which was exploited to
decide the amount of data to be written to the SLC or MLC
region.

We evaluated three different file system configurations:
, EARLY, and FlexFS. wrote all the

incoming data to the MLC region, and thus the overhead
caused by on-demand free-space reclamation never occurred.
EARLYwrote requested data to the SLC region, regardless of
the remaining space in a storage device. FlexFS was the
proposedFlexFS that decided the amount of data to bewritten
to the SLC or MLC region by exploiting the CDH of required
free space. Fig. 13(a) shows the write response times of three
configurations and Fig. 13(b) is the CDHs observed in four
different I/O traces.

As shown in Fig. 13(b), in Desktop and Laptop1, a lot of
busy periods require small free space for writing data. On the
other hand, in Mobile, busy periods requiring large free space
are frequently observed because large multimedia files are
often written. In Laptop2, busy periods that require large free
space or small free space are frequently observed. By adap-
tively distributing incoming data to the SLC or MLC region
according to the characteristic of I/O traffic, FlexFS outper-
forms EARLY and by 13% and 38%, respectively.
EARLY exhibits good performance in Desktop and Laptop1,
but its performance greatly deteriorates in Mobile because of
free-space reclamation overheads caused by the excessive use
of SLC-mode programming.

In summary, FlexFS improves write performance by 28%,
on average, over . Note that this performance
improvement, 28%, is achieved when a storage device is
nearly full. Thus, it shows the write performance that FlexFS

TABLE 3
Descriptions of Block I/O Traces

Fig. 12. Write response times with five different training periods, ranging
from 0% to 80% of the total trace length.

Fig. 13. Evaluation results when the space utilization of a flash device is
very high.

2456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

can achieve in the worst-case scenario. Considering that the
amount of free space is usually sufficient enough for SLC
buffering [15], it is expected that FlexFS yields much better
write performance in most cases.

4.2 Lifetime Evaluation
We evaluated the proposed dynamic lifetime management
(DLM) technique. For our evaluation, the number of P/E
cycles allowed to each block was set to 10 K and the storage
lifetime was set to 3 years. Since it is impossible to perform an
evaluation for 3 years, we scaled down the number of P/E
cycles and the target lifetime to 40 and 4 days, respectively.
The capacity of a storage device was 512 MB and the I/O
traces listed in Table 2 were replayed for 4 days.

Table 4 shows the averageP/Ecycles and the averagewrite
response time when the DLM technique is used or not.
Without DLM, FlexFS writes all the requested data to the
SLC region, so it exhibits the performance close to that of SLC
flash memory. However, the average number of P/E cycles
exceeds 40 cycles because of its high data migration require-
ment. Thus, the required storage lifetime cannot be ensured.
WhenDLM is used, FlexFSwrites part of the incoming data to
the MLC region so that the average number of P/E cycles
becomes smaller than 40. Even though this reduces the overall
write performance, the required storage lifetime can be
guaranteed. Fig. 14 shows the distribution of P/E cycles on
all blocks with or without DLM. The maximum number of
P/E cycles with DLM is limited to less than or equal to 40.

Finally, we analyzed the expected storage lifetime while
varying some important parameters that affect the lifetime of
flash-based storage devices, so as to understand the effect of
FlexFS on lifetime in various storage configurations. As noted
in Eqs. (9) and (10), the lifetime of flash devices is dependent
upon a storage capacity, the number of P/E cycles allowed
for a block, and the amount of data written by a workload.
For this reason, our analysis was conducted with different
storage capacities, 8 GB (low) and 32 GB (high), and with
different P/E cycles, 1 K, 3 K, and 5 K. The required storage
lifetime was assumed to be 3 years.

Fig. 15 shows our analysis results using the I/O traces
General H and Office collected from desktop applications.
We also compared the expected storage lifetimes of EARLY
and FlexFS. In general, the 3-year lifetime can be guaranteed
when the capacity of flash memory is large (e.g., 32 GB) and

the number of P/E cycles is high enough (e.g., 3 K-5 K).
However, the specified storage lifetime cannot be ensured
when the storage capacity is small (e.g., 8GB) or thenumber of
P/E cycles is relatively low. Moreover, when write traffic is
heavy (e.g., General H), the expected storage lifetime is
further reduced. In those cases, it is inevitable that some of
the requested data arewritten to theMLC regiondirectly even
though this causes performance degradation. FlexFS achieves
longer storage lifetime over EARLY by reducing useless free-
space reclamation. Therefore, it is expected that FlexFS re-
quires less write performance throttling, providing higher
performance than EARLY.

As depicted in Fig. 15, when the capacity of a storage
device is 32 GB, the expected lifetime is usually longer than
our target storage lifetime (i.e., 3 years). Considering that
recent consumer devices employ a storage device larger than
32GB formobile phones and128GB for laptops/desktopPCs,
it is expected that a storage lifetime would not be a serious
problem in real-world products. Therefore, it may be safely
assumed that a storage lifetime problem would be mitigated
without significant performance degradation. Even if a stor-
age lifetime is limited by heavy write traffic with small P/E
cycles, FlexFS helps to provide a reasonable lifetime by
regulating the amount of write traffic sent to the SLC region.

5 RELATED WORK

There havebeen several efforts to combineboth SLCandMLC
flash memory. Chang et al. suggest a solid-state disk which is
composed of a single SLC flash chip and many MLC flash
chips [18], while Park et al. and Im et al. present a flash
translation layer for SLC-MLC combined storage devices
[19], [20]. The basic idea of these approaches is to store small
and frequently updated data in a small SLC flash chip while
using large MLC flash chips for storing bulk data. This
improves the I/O performance for small writes greatly, while
providing a large storage capacitywith relatively low-cost per
byte. In these approaches, however, it is difficult to provide
performance close to pure SLC flash memory because they
only use small SLCflashmemory to achieve a cost benefit. For
example,whena large amount of data are issued forwriting to
a storage device, the I/O performance is limited to that of
MLC flash memory because all of the requested data must be
sent to MLC flash chips due to the limited capacity of an SLC
flash chip. FlexFS can handle this case efficiently by flexibly
increasing the size of the SLC region. Furthermore, FlexFS
offers a more cost-effective storage solution to end-users over
existing approaches because it is based on pure MLC NAND
flash memory. Consequently, a more efficient storage device,

TABLE 4
Evaluation Results with or without DLM

Fig. 14. Distribution of P/E cycles with or without DLM.

Fig. 15. Expected lifetimes with various storage settings.

LEE AND KIM: IMPROVING PERFORMANCE AND CAPACITY OF FLASH STORAGE DEVICES BY EXPLOITING HETEROGENEITY OF MLC FLASH MEMORY 2457

in terms of performance and capacity, can be realized with
FlexFS, in comparison with existing SLC/MLC hybrid
approaches.

6 CONCLUSIONS

FlexFS is a file system that takes advantage of the flexible
programming of MLC flash memory. The novel features of
FlexFS are the dynamic free-space and lifetime management
techniques, which effectively deal with performance/
capacity/lifetime issues raised by the use of flexible program-
ming at the file-system level. Experimental results show that
FlexFS achieves theperformance of SLCflashmemory and the
capacity of MLC flash memory at the same time while pro-
viding a reasonable storage lifetime in various mobile and
PC workloads.

The performance and lifetime of FlexFS can be further
improved by exploiting file-system-level information. For
example, FlexFS can make a better decision in choosing data
for free-space reclamation by taking into account the different
characteristics of user data and metadata as well as the types
of files. As future work, we are planning to develop an
improved version of FlexFS that exploits file-system-level
information for more efficient performance and lifetime
management.

ACKNOWLEDGMENTS

An earlier version of this paper was presented at the USENIX
Annual Technical Conference, June 17, 2009 [1]. This research
was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (NRF-2013R1A6A3A03063762).
This work was supported by NRF grant funded by the
Ministry of Science, ICT and Future Planning (NRF-
2013R1A2A2A01068260). This research was supported by
Next-Generation Information Computing Development Pro-
gram throughNRF fundedby theMinistry of Science, ICTand
Future Planning (No. 2010-0020724). The ICT at Seoul Na-
tional University and IDEC provided research facilities for
this study. Jihong Kim is the corresponding author of this
paper.

REFERENCES

[1] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A flexible flash
file system for MLCNAND flash memory,” in Proc. USENIX Annu.
Tech. Conf., Jun. 2009, pp. 115–128.

[2] M. Bauer, “A multilevel-cell 32 MB flash memory,” in Proc. Solid-
State Circuits Conf., Feb. 1995, pp. 132–133.

[3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An
overview,” Proc. IEEE, vol. 85, no. 8, pp. 1248–1271, Aug. 1997.

[4] F. Roohparvar, “Single level cell programming in a multiple level
cell non-volatile memory device,” U.S. Patent 7,366,013, Apr. 2008.

[5] S.-H. Shin, et al., “A new 3-bit programming algorithm using
SLC-to-TLC migration for 8 MB/s high performance TLC NAND
flash memory,” in Proc. Symp. VLSI Technol. Circuits, Jun. 2012,
pp. 132–133.

[6] Samsung Corp., “KFXXGH6X4M Flex-OneNAND specification,”
2008.

[7] Micron Technology, Inc., “MT29F8G08AAAWP NAND flash
memory specification,” 2012.

[8] D. Woodhouse. (Jul. 2001). JFFS: The Journalling Flash File
System, Red Hat Inc. [Online]. Available: http://sources.redhat.
com/jffs2/jffs2.pdf.

[9] Aleph One. (2002). YAFFS: Yet Another Flash File System, [Online].
Available: http://www.aleph1.co.uk/yaffs.

[10] M. Rosenblum and J. Ousterhout, “The design and implementation
of a log-structured file system,” ACM Trans. Comput. Syst., vol. 10,
no. 1, pp. 26–52, Feb. 1992.

[11] SanDisk. (Oct. 2008). “Longterm data endurance (LDE) for client
SSD,” SanDisk White Paper [Online]. Available: http://www.
sandisk.com/media/65675/LDE_White_Paper.pdf

[12] S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime management of
flash-based SSDs using recovery-aware dynamic throttling,” in
Proc. USENIX Conf. File Storage Technol., Feb. 2012, pp. 327–340.

[13] S. Lee, K. Fleming, J. Park, K. Ha, A. Caulfield, S. Swanson, Arvind,
and J. Kim, “BlueSSD:An open platform for cross-layer experiments
for NAND flash-based SSDs,” in Proc. Int. Workshop Archit. Res.
Prototyping, Jun. 2010.

[14] NokiaCorp. (2012).Qtopia 4.1.2 [Online].Available: http://qt.nokia.
com/

[15] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-
year study of file-system metadata,” in Proc. USENIX Conf. File
Storage Technol., Feb. 2007, pp. 31–45.

[16] J. R. Douceur and W. J. Bolosky, “A large-scale study of file
system contents,” in Proc. Int. Conf. Measur. Model. Comput. Syst.,
Jun. 1999, pp. 59–70.

[17] H.Huang,W.Hung, andK. G. Shin, “FS2: Dynamic data replication
in free disk space for improving disk performance and energy
consumption,” in Proc. Symp. Operating Syst. Principles, Oct. 2005,
pp. 263–276.

[18] L. P. Chang, “Hybrid solid-state disks: Combining heterogeneous
NAND flash in large SSDs,” in Proc. Conf. Asia South Pacific Des.
Autom. (ASP-DAC), Mar. 2008, pp. 428–433.

[19] S. Park, J. Park, J. Jeong, J. Kim, and S. Kim, “A mixed flash
translation layer structure for SLC-MLC combined flash memory
system,” in Proc. Workshop Storage I/O Virtual. Perform. Energy Eval.
Dependability (SPEED), Feb. 2008.

[20] S. Im and D. Shin, “ComboFTL: Improving performance and life-
span of MLC flash memory using SLC flash buffer,” J. Syst. Archit.,
vol. 56, no. 12, pp. 641–653, Dec. 2010.

Sungjin Lee received the BE degree in electrical
engineering fromKoreaUniversity,Seoul, in2005,
and the MS and PhD degrees in computer
science and engineering from the Seoul National
University,SouthKorea, in2007and2013,respec-
tively. He is currently working as a postdoctoral
associatewith theComputerScienceandArtificial
Intelligence Laboratory, the Massachusetts Insti-
tuteofTechnology,Cambridge.His research inter-
ests include storage systems, operating systems,
and embedded software.

Jihong Kim received the BS degree in computer
science and statistics fromSeoul National Univer-
sity, Seoul, Korea, in 1986, and the MS and Ph.D.
degrees in computer science and engineering
from the University of Washington, Seattle, WA,
in 1988 and 1995, respectively. Before joining
SNU in 1997, he was aMember of Technical Staff
in the DSPS R&D Center of Texas Instruments in
Dallas, Texas. He is currently a Professor in the
School of Computer Science and Engineering,
Seoul National University. His research interests

include embedded software, low-power systems, computer architecture,
and storage systems.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

