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Abstract— Modern chip multiprocessors (CMPs) employ large
L2 caches to reduce the performance gap between processors and
off-chip memory. However, as the size of an L2 cache increases,
its leakage power consumption also becomes a major contributor
to the total power dissipation. Managing the leakage power of
L2 caches, therefore, is an important issue in realizing low-power
CMPs. In CMPs with private L2 caches, each processor makes
a copy of the data in its local cache in order to access the data
faster, which is called replication. In this paper, we propose a
novel leakage management technique that dynamically turns off
replications in private L2 caches for leakage power reduction by
exploiting two key observations: 1) the cost of an extra cache
miss due to the turned-off replication is small because the same
cache block exists in another on-chip cache and 2) turning off the
replication incurs no extra cache miss if it is invalidated by other
processors in order to maintain cache coherence. Since blindly
turning off the frequently accessed replications can degrade
performance, the proposed technique dynamically controls the
number of turned-off replications. The proposed technique can be
implemented by slightly modifying the MESI protocol with a new
turned-off shared (TOS) coherence state. The TOS state indicates
that the corresponding block is shared by other caches but
turned off. Experiments on a four-processor CMP with private
L2 caches show that the proposed technique reduces the energy
consumption of the L2 caches and the main memory by 19.4%
on average, with less than 1% performance loss over the existing
cache leakage management technique.

Index Terms— Cache coherence, chip multiprocessors (CMPs),
leakage power management, private L2 caches, replication.

I. INTRODUCTION

RECENTLY, high-end mobile devices, such as laptops,
smart phones, netbooks, and tablet PCs have become

popular in everyday life. Since these systems are battery-
operated systems, they should have low-power consumption
although they also require powerful functionalities. In order
to meet these requirements, chip multiprocessors (CMPs) are
rapidly emerging as an alternative architecture for high-end
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embedded systems, providing high performance and low-
power consumption. For example, ARM and Intel produce
Cortex A9 MPCore Processor [1] and ATOM Processor [2],
respectively. AMD also provides Turion Neo X2 and Athlon
Neo X2 Dual-Core Processors for embedded applications [3].
The performance and power consumption of several high-
performance energy-efficient multicore processors are also
shown in [4]. In particular, Cortex A9 MPCore provides the
peak performance of 4000 Dhrystone MIPS within 250 mW
per CPU.

For these battery-operated systems, one of the most impor-
tant issues is power dissipation, which consists of dynamic and
static power. Dynamic power is dissipated due to the transistor
switching activity whereas static power is mainly caused by
sub-threshold and gate-oxide leakage. As the process tech-
nology advances below 65 nm, the leakage power becomes
a major source of total power dissipation, which means that
managing leakage power consumption is one of the critical
design goals in realizing low-power CMPs [5]. Although the
emerging technology, such as high-K dielectrics [6] has been
introduced to reduce gate-oxide leakage, subthreshold leakage
is still dominant in the total static power consumption [7].

On the other hand, since an on-chip L2 cache often deter-
mines the performance of CMPs, the current CMPs dedicate
a large portion of their on-chip area to an L2 cache, making it
a major power contributor. Even in the processors for mobile
devices, an L2 cache becomes larger in order to meet their
high-performance requirements. For example, most recently,
Cortex A15 MPCore supports up to 4 MB of an L2 cache
memory [1]. In these systems, since cores are less aggressively
designed, thus their power dissipation may be 20–50 times
smaller than those of servers, the caches can account for
25%–50% of the total power dissipation [8]. Fig. 1 shows
a fraction of leakage and dynamic power consumption of
cores, a shared bus, and private L2 caches, which is obtained
when nine benchmarks from SPLASH2 [9] are executed using
a multiprocessor simulator [10]. Four in-order cores, each
of which has a private 512-KB L2 cache, are used. We
estimated parameters for the power consumption of cores and
caches from McPAT [11] and a shared bus from [12]. The
experimental result shows that the leakage power consumption
of L2 caches becomes almost 40% of the total power of cores,
interconnect, and L2 caches.

A large body of previous research also shows that the
leakage power consumption represents a significant portion
of the total power consumption. For a single processor, it is
known that 60% of total power dissipation in StrongARM

1063-8210 © 2012 IEEE
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Fig. 1. Fraction of the dynamic and leakage energy consumption.

is consumed by caches and memories [13]. For a multicore
processor, an L2 cache in the Niagara-2 processor consumes
more than 20% of total power dissipation while the power
consumption of cores accounts for 30%. It is also shown
that an L2 cache consumes 37% of total power on average
when running parallel applications and 97% of this is the
leakage power consumption [14]. Reference [15] has shown
that leakage energy consumption ranges from 80% (two-core
two-issue 8-MB L2) to 30% (eight-core eight-issue 1-MB
L2) and most of it is consumed by L2 caches. Although a
fraction of the power dissipated by an L2 cache is different
depending on the architecture, these results emphasize that
managing the leakage power consumption of an L2 cache
becomes particularly important for modern CMPs.

There has been a large body of work focusing on reducing
the leakage power consumption of a cache memory for both of
the single processor [16]–[20] and CMPs [7], [14], [21], [22].
These techniques reduce the leakage power consumption by
gating off a SRAM cell of inactive cache blocks as introduced
in [19]. In single processor systems, a cache block is turned
off by only considering the characteristics of an executing
program and its own cache blocks. In [16]–[18], and [20], the
cache block is turned off if it is not accessed for the predefined
or dynamically adapted threshold time-out cycles, assuming
that it is not accessed again. In the context of CMPs, many
challenges present since more than one program or thread are
simultaneously executed on multiple processors so that their
cache blocks might interact each other. The works in [7],
[21], and [22] exploit these newly introduced characteristics
of cache blocks in CMPs, such as the multilevel inclusion
property, cache coherence, and cache partitioning in order to
save the leakage power consumption in L2 caches. However,
these techniques do not exploit the sharing characteristics of
cache blocks in multithreaded benchmarks.

In this paper, we propose architectural techniques to take
advantage of a characteristic of multithreaded applications. In
multithreaded applications, part of memory blocks is shared
by multiple processors. To access the cache blocks faster, each
processor makes the copy in its local cache, which is called
a replication. Since this replication has its copy in another
on-chip cache, turning it off has the benefit that the cost
of an extra miss requires only an access to another on-chip
private L2 cache rather than the off-chip access. Furthermore,
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Fig. 2. Target architecture of CMPs.

a replication is often not likely to be accessed because it is
replicated by another cache and then invalidated when its copy
is updated. These characteristics allow us to reduce the leakage
power without any significant performance loss by turning off
a cache block immediately after another cache replicates it.

Based on these observations, this paper proposes a
replication-aware leakage management (RALM) technique for
private L2 caches of CMPs, which dynamically turns off a
replication by exploiting its access characteristics. Fig. 2 shows
the target architecture of the proposed technique, where each
core has instruction and data L1 caches and a private L2 cache.
Private L2 caches have shorter access latency than shared
L2 caches because they are typically smaller than shared L2
caches. Furthermore, each processor makes replications of the
shared data in its local private L2 cache in order to achieve
the lower access latency by placing it close to the requesting
processor.1 These replications can make private L2 caches
less capacity-efficient than shared L2 caches. However, prior
research [23]–[25] has shown that private L2 caches achieve
better performance if replications are efficiently managed. The
private L2 cache organization is also more power efficient [24],
[25] considering the following reasons: 1) a private L2 cache
can be used as a unit for resource management to save energy
when its processor is idle; 2) it can keep low set-associativity
that consumes lower power; and 3) CMPs with a private L2
cache organization require a simple on-chip interconnect since
only the misses from a private L2 cache access an interconnect,
which also consumes less power.

The proposed technique can be integrated by slightly mod-
ifying the existing MESI cache coherence protocol without
increasing implementation cost. Unlike the original MESI
cache coherence protocol, our modified cache coherence pro-
tocol has one new state, turned-off-shared (TOS), in which
the cache block is shared by other processors but turned
off. In some cases, if the TOS blocks are accessed fre-
quently, the performance could be degraded since the data
are brought from the remote L2 cache every time they are
requested. The amount of performance degradation due to
TOS blocks varies depending on the behavior of a program

1Even though current shared L2 caches are implemented with several
banks to reduce the access latency, data might be located far away from
the requesting core, thus causing latency to access the requested data. This
becomes a more serious problem to solve as the number of cores increases.
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Fig. 3. SRAM cell with a gated-Vdd.

or its phase. The proposed RALM technique tracks perfor-
mance degradation caused by TOS blocks for each period
and dynamically regulates them in order to not degrade the
performance below the predefined performance degradation
threshold.

Experimental results show that the proposed technique
reduces the energy consumption by 19.4% on average over
the existing leakage management technique without significant
performance degradation. The rest of this paper is organized
as follows. In Sections II and III, we introduce the related
work and motivation of our approach, respectively. Then, we
describe the proposed RALM technique in Section IV. Exper-
imental results are discussed in Section V, and conclusions
are presented in Section VI.

II. RELATED WORK

To reduce the leakage power consumption of a cache mem-
ory, there have been several efforts, such as [7], [14], and [16]–
[22]. In these techniques, the leakage power consumption can
be saved by gating off a SRAM cell as proposed in [19] and
shown in Fig. 3. A cache decay technique [18] turns off cache
blocks if they have not been accessed for time-out threshold
cycles by predicting that they are not likely to be accessed
in the near future. If the prediction is correct, the leakage
power consumption can be saved during the turned-off period
without any performance loss. However, it causes extra off-
chip accesses when the turned-off cache blocks are accessed
again since gating off a SRAM cell does not preserve the data.
On the other hand, the drowsy cache [17] supplies the mini-
mum power to preserve data to overcome the drawbacks of the
cache decay technique. Although its performance degradation
is less than the cache decay technique, the leakage power
reduction also decreases. Adaptive mode control (AMC) [20]
proposes to dynamically change the time-out threshold value
during runtime and thus uses the smaller value if the overall
performance does not degrade. This allows the cache blocks to
be turned off earlier than when the static predefined threshold
value is used. The cache decay technique is also developed for
L2 caches to save the large leakage power consumption for

single processor systems [16]. It proposes a smart predictor
to determine an adaptive threshold value for each cache block
based on the access interval between hits.

For multiprocessor systems, virtual exclusion [21] exploits
one of the multiprocessor characteristics, multilevel inclusion.
It turns off the repetitive cache blocks in the L2 caches
if L1 caches have the data, but it is applicable only when
the sizes of the L1 and L2 cache blocks be the same.
Monchiero et al. [7] also reduced the leakage power consump-
tion of the L2 caches in CMPs by minimizing the possibility
that dirty blocks are turned off in order to improve the
performance of decay. It also proposes the technique that turns
off cache blocks when they are invalidated, which can reduce
the leakage power consumption without any performance loss.
Reference [22] proposes a power-aware cache partitioning
technique that combines power-gating and cache partition-
ing, which are important design issues in designing high-
performance and low-power shared caches for CMPs. LEMap
[14] also aims at reducing leakage power consumption in last
level cache by a novel virtual address translation technique,
which requires modification in OS.

Although the existing leakage management techniques for
CMPs are efficient, they can be improved by exploiting the
characteristics of replications in CMPs. In terms of the per-
formance improvement, several previous techniques propose
to dynamically allocate replications in the private L2 cache
organization of CMPs [23], [24] in order to balance between
capacity and latency. Cooperative caching [24] replicates cache
blocks with a given probability varying from 0% to 100%.
ASR [23] limits the number of replications if the costs of
allocating replications exceed its benefit. These techniques
control the number of replicated cache blocks statically or
dynamically, and the cache space for the replicated cache
blocks is used for new data in order to reduce the cache hit
rate. These are complementary to the proposed technique. On
the other hand, [26], [27] introduce self-invalidation in order
to reduce cache coherence overhead caused by replications.
However, in these techniques, the energy consumption of the
L2 caches is not considered, which is an important factor in
designing low-power CMPs.

Sharing patterns of replications are also considered in order
to improve the performance of a cache and its coherence
protocol. Prior research [28]–[31] classifies the shared cache
blocks into several particular patterns. [28] classifies the shared
data into a small number of categories and shows that how
an adaptive caching mechanism can achieve the performance
improvement. Reference [32] also classifies the shared cache
block into three groups: 1) read_only; 2) migratory; and
3) producer_consumer. Reference [29] and [31] adapt the
cache coherence protocol to migratory sharing, which occurs
when shared data is modified in a critical section. These
techniques do not consider energy consumption of an on-chip
cache memory. In addition, [30] classifies the access patterns
into produce_consumer, migratory, multiple read/write, and
multiple reader, and the proposed coherence protocol reduces
the average L1 miss penalty by using adaptive replication,
migration, and producer–consumer optimization. This tech-
nique only considers the dynamic energy consumption.
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III. MOTIVATION

The proposed technique is based on a simple observation
that many of the replications can be turned off to save the
leakage power consumption without negatively affecting the
overall system performance. In this section, we first classify
the access patterns of the replications into four major groups
similar to prior research [29], [31], and analyze their charac-
teristics in order to exploit them in reducing the leakage power
consumption of a private L2 cache.

Typically, in multithreaded benchmarks, a memory block
is referenced by only one processor, it is called an exclusive
block while the memory block is called a shared block when
it is referenced by more than one processor. When each
processor has its local cache, the shared block is replicated in
the requesting processor’s cache, which is a replication. In this
paper, we classify the sharing patterns of the replications into
read_only, migratory, producer_consumer, and multiple_rw.
Replications are classified as read_only sharing if they are
written zero or one time and then read by another processor
which does not write to them. This sharing pattern can be
observed either when data is input to a program and other
threads read them or when program codes are shared by
multiple threads. Migratory sharing is observed when several
threads read and write their shared data within a critical
section, and it occurs commonly in multithreaded benchmarks.
Cache blocks with this sharing pattern are replicated and then
invalidated by another processor. Producer_consumer sharing
occurs when processors write to and read from particular
memory blocks in turn. Typically, a producer thread writes
the produced data into the shared buffer memory space and
a consumer thread reads the data written by the producer
thread from it. If replications are read and written by multiple
processors but do not have any particular patterns, we classify
them as multiple_rw.

In this paper, unlike the previous research, we analyze and
exploit the sharing characteristics of replications in reducing
the leakage energy consumption. Especially, the proposed
technique focuses on read_only and migratory sharing pat-
terns. The prior research [33] has also proposed a leakage
management technique for CMPs with private L2 caches
while it targets cache blocks with producer_consumer sharing
patterns. This technique can be easily integrated into the pro-
posed technique because it is complementary to the proposed
technique. Our proposed technique aims to dynamically turn
off read_only and migratory replications in order to reduce
the leakage power consumption of L2 caches based on the
following observations.

1) In the target architecture, on a cache miss, data can be
loaded into its local L2 cache from another processor’s
L2 cache (if it has the requested data) that has a shorter
access latency than the off-chip memory. This allows
that replications can be turned off aggressively to save
the leakage power without decreasing the overall per-
formance if it is guaranteed that their replications exist
on-chip. Although the turned-off replications are needed
again, they can be brought from another processor’s
cache.
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Fig. 4. Distribution of replications.

2) For replications with the migratory sharing pattern,
they are invalidated by other processors after they are
replicated and their copies in the replicating processors’
caches are modified. This allows us to turn them off
before they are invalidated without any performance
loss.

3) For replications with the read_only sharing pattern, they
can be turned off without an expensive cost while their
copy is on-chip cache. Moreover, if they are accessed
only once or a few times after they are allocated,
turning them off can reduce the leakage power con-
sumption without affecting the performance. However,
unlike the migratory replications, it could cause the
performance degradation if they are accessed frequently.
Although these extra misses only require accesses to
another processor’s on-chip cache, the performance can
be degraded significantly. In this context, it is necessary
that these replications are dynamically turned off if they
might incur performance drop.

Fig. 4 shows the distribution of sharing patterns among the
allocated cache blocks in L2 caches for MPGdec and MPGenc
of ALPBench [34] and VOLREND, BARNES, RAYTRACE,
and LU of SPLASH2 [9]. The sharing patterns of the cache
blocks are identified by keeping track of their access history
while they are in the cache. Once a cache block is invalidated
after it is allocated in the cache, the next miss to that
cache block allocates a new cache block. This indicates that
the number of all allocated cache blocks is larger than the
number of all accessed memory blocks. A sufficiently large
private L2 cache, which is a 16-way 16-MB cache for each
processor, is used in order to contain the working set of
most programs, thus avoiding capacity misses. As can be
seen, more than 50% of the cache blocks allocated during the
program execution are replications. In particular, for MPGdec,
57.0% of the allocated cache blocks are classified as migratory
replications while read_only replications account for 8.0%. For
other benchmarks, there are also a large portion of read_only
and migratory replications. This means that the proposed
technique can save the leakage power consumption without
significantly decreasing the overall performance by turning
them off efficiently. Furthermore, the proposed technique can
be easily integrated into the existing MESI cache coherence
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Fig. 5. Lifetime of the replications.

protocol with small modifications. Since all of the actions
required to turn on/off the replications are performed when the
transactions in the original MESI cache coherence protocol
occur, the proposed technique can be implemented with a
small hardware overhead.

IV. LEAKAGE MANAGEMENT BY TURNING OFF

REPLICATIONS

A. Cache Decay Technique

The proposed technique is based on the time-out based
cache decay [18] technique. In this technique, a cache block
is turned off if it is not accessed during the preset time-out
cycles. In order to keep track of the elapsed cycles from the
last access, two levels of counters, global and local counters,
are used. The global cycle counter sends a tick signal to the
local counters every certain cycles, and the local counter of
each cache block is incremented by one whenever it gets the
tick. When the local counter reaches the time-out threshold, the
corresponding cache block is turned off. When the cache block
is accessed, its local counter is reset to zero. In the experiment,
we use four million cycles for the time-out threshold [18]. We
also empirically observe that it is enough not to incur many
extra misses in private L2 caches.

The proposed scheme is also based on the private L2 cache
organization that uses the inclusion property [35], which is
usually used in multilevel caches to efficiently implement
a cache coherence in multiprocessor systems. In inclusive
caches, the cache blocks that exist in the higher level caches
should exist in the lower level caches. In this way, only the
tags and states of the lower level caches are checked when
cache coherence protocol messages are received by keeping
the states of the blocks of the higher level caches in the
lower level caches. Otherwise, both of the higher and lower
level caches might check their tags and states every time,
the transaction is presented on a snooping bus. This causes a
significant performance degradation of the higher lever caches.

This inclusion property should also be considered even
when employing the cache decay technique. If the tags are
turned off with their data by the cache decay technique, the
corresponding L1 cache blocks should be invalidated in order
to meet the inclusion property, which can incur performance
degradation. Therefore, we turn off only data portions of the
cache blocks, keeping the tags and states of the blocks active.
It allows only tags and states of the L2 caches to be responsible
for maintaining the cache coherence as in a private L2 cache
organization that does not employ the cache decay technique.
Even though the proposed technique does not turn off the tags
and states, it can significantly reduce leakage power because

the energy consumption of the tags and states is relatively
smaller than that of data blocks. When the dirty blocks in
the L2 caches are turned off, the data should be written back
to the memory. If the corresponding L1 cache blocks are in
dirty states, they are also invalidated. In [7], it is shown that
invalidating the dirty data can improve the system performance
when the leakage management technique is applied to L2
caches. Since the time-out threshold value is long enough, the
turned-off blocks of the L2 cache and the invalidated blocks
of the L1 cache do not incur extra misses.

B. Algorithm of RALM

We assume that m memory addresses m1, m2, . . . , mm are
referenced by n processors p1, p2, . . . , pn during the execu-
tion in parallel programs. In the parallel programs, a memory
address mi ∈ M can be referenced by only one processor
or multiple processors. In this paper, a cache block for a
memory address mi , which is requested by a processor p j , is
denoted by bmi ,p j . When a processor p j references a memory
address mi , only one cache block bmi ,p j exists in p j s on-
chip L2 cache. On the other hand, when multiple processors,
e.g., p j and pk , request the same memory address mi , two
cache blocks bmi ,p j and bmi ,pk are allocated in the L2 caches
of p j and pk . In this case, if p j requests mi first, bmi ,p j is
allocated in p j s L2 cache from the off-chip memory. After
that, if pk requests mi , the replication of bmi ,p j , say bmi ,pk ,
is allocated in pks L2 cache. These cache blocks, bmi ,p j and
bmi ,pk , become replications.

In order to describe the turned-off period of the replications
when using the proposed RALM technique, Fig. 5 shows
the lifetime of two replications of a memory address mi ,
bmi ,p j , and bmi ,pk , which are allocated in the private L2
caches of the processors, p j and pk . The lifetime of bmi ,p j is
overlapped by that of bmi ,pk during the time when bmi ,pk is
replicated and bmi ,p j is replaced. For migratory replications,
if pk modifies its copy bmi ,pk , bmi ,p j is invalidated before it
is replaced. Since bmi ,p j is not accessed during the period
Tinvalidated − Treplicated, it can be turned off immediately after
being replicated without any performance loss. On the other
hand, for read_only replications, bmi ,p j can also be turned
off during the period Treplaced −Treplicated. As explained above,
these read_only replications can be accessed during the turned-
off period. If many of them are frequently accessed during
this period, the performance may decrease. Our proposed
technique also considers this performance degradation and
dynamically turns off the replications in order to avoid it.

Algorithm 1 shows the algorithm of the proposed RALM
technique, which includes operations that should be performed
when read miss, read hit, and write hit occur in a processor pk .
On the cases that are not shown here, the cache operates in the
way the same as the original private L2 cache that employs a
MESI cache coherence protocol. When pk reads the memory
block mi but the read miss occurs in its L2 cache, the memory
block is brought from the L2 cache of another processor or
the off-chip memory. In this context, if another processor p j

( j �= k) already has a valid cache block bmi ,p j , it flushes its
data to pk while turning off bmi ,p j . It should be noted that if
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Algorithm 1 Algorithm of RALM

1: if (read miss for mi occurs in pk) then
2: if (another processor pj has a valid bmi,pj ) then
3: if (bmi,pj is dirty) then
4: write data back to the memory;
5: end if
6: turn off bmi,pj ;
7: Cbmi,pj

= 0;
8: end if
9: else if (read hit for mi occurs in pk) then

10: if (bmi,pk
is shared and turned off) then

11: if (Cbmi,pk
< τ ) then

12: Cbmi,pk
+= 1;

13: else
14: turn on bmi,pk

;
15: end if
16: end if
17: else if (write hit for mi occurs in pk) then
18: if (bmi,pk

is shared and turned off) then
19: turn on bmi,pk

;
20: invalidate other copies of mi on-chip;
21: end if
22: end if

bmi ,p j is dirty, the data is written back to the off-chip memory
before the cache block is turned off.

In order to avoid the performance degradation explained
above, we employ an access counter for each cache block, e.g.,
Cbmi ,p j

for bmi ,p j , which keeps track of a number of accesses
that occur after its cache block is turned off. This Cbmi ,p j

is
reset to zero when the cache block is turned off. When pk reads
mi but it has bmi ,pk that is turned off, the proposed technique
only increments Cbmi ,pk

by one instead of turning on the
cache block while fetching the data from another processor’s
cache (or from the off-chip memory if it does not exist) if
its Cbmi ,pk

is less than a threshold τ . However, if Cbmi ,pk
reaches τ , the proposed technique turns on the corresponding
cache block to avoid the performance degradation. On the
other hand, when the replication is modified after being turned
off, it should be turned on to keep the new data as its
Cbmi ,pk

is reset to zero. In order to keep performance below
the predefined performance degradation threshold, the RALM
technique dynamically changes τ during runtime, which is
described in Section IV-D.

C. Modified Cache Coherence Protocol

Since the actions in the RALM algorithm are activated
by the transactions used in the cache coherence protocol,
we integrate the proposed technique into the original cache
coherence protocol with only a small modification to it, instead
of implementing the RALM algorithm in separate hardware.
Fig. 6(a) and (b) shows state transition diagrams for the
original and modified MESI cache protocol, respectively.

The original MESI protocol consists of four states: 1) mod-
ified (M); 2) exclusive (E); 3) shared (S); and 4) invalid (I).
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Fig. 6. Original and modified cache coherence protocols. Dashed and Solid
lines represent additional transitions for RALM. TOS indicates an additional
TOS state in which the corresponding cache block is shared by other caches
but turned off. (a) Original cache coherence protocol. (b) Modified cache
coherence protocol.

In the diagram, the notation “A/B” indicates that when the
controller observes the transaction “A” from a processor or
bus, it generates the bus transaction or action “B” while
changing the state. “−” means that no action occurs. For
both of the original and modified protocols, the solid arcs
represent transitions due to local processor transactions while
the dashed arcs represent transitions due to bus transactions. In
the original MESI, when a cache block is first read by a local
processor, PrRd in the diagram, it enters the S state if the copy
of it exists in another cache. In this case, it also generates the
BusRd transaction to make the other copies enter the S state.
If its copy does not exist, it enters the E state. When the cache
block in the E state is written by a local processor, PrWr, it can
transition to the M state without generating a bus transaction
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because no other cache has a copy while writing to the cache
block in the S state generates the BusRdX transaction on the
bus to invalidate the copies in other caches.

On the other hand, in the modified version, the TOS state
is added to the original one. In this state, only the data block
is turned off while its tag is kept turned on but treated the
same as in the S state. The only difference from the S state is
that when the cache access occurs, the data is brought from
the other caches as the miss occurs. This additional state is
needed in order to maintain the access counters for each L2
cache block. In the original protocol, the cache block enters the
S state from M, E, or S when the BusRd transaction presents
on the bus while supplying the data to the requesting cache.
However, in the modified version, when the cache block at
one of those states receives the BusRd transaction from the
bus, its state is changed to the TOS state instead of the S state
while the data block of it is turned off. In this case, the data is
flushed to the requesting cache in the same way as the original
one.

The cache block in the TOS state does not change its
state when the PrRd transaction from the local processor is
presented, which means that it remains continuously turned
off but only its access counter is incremented by one. The
requested data is fetched from another processor’s cache by
generating a BusRd transaction along with a TOS signal,
which does not turn off the cache block. The TOS block is
turned on only when either of these two following transac-
tions occurs. First, when the PrWr transaction from the local
processor occurs, the cache block is turned on while changing
its state to M. Second, when the PrRd transaction occurs and
the access counter of the TOS block reaches the threshold
τ , the data block is turned on while changing its state to S
because it is the frequently accessed block. Multiple copies
can be in the S states if they are frequently accessed at the
same time. Whether the access counter reaches τ or not is
indicated as “P” in the diagram.

Fig. 7 shows the organization of RALM. The global counter
sends a tick signal to the local counters (one per cache line)
as in the cache decay technique. However, in RALM, power
mode control (PMC) is added to turn off the cache block based
on the local counter signal and the state transition. When the
local counter reaches the threshold value or the state of the
cache block is changed to TOS or I, PMC turns off the cache
block by switching the supply voltage to 0 V. As in [7], RALM
turns off a cache block when it is invalidated. When the cache
block is accessed after being turned off, PMC switches its
supply voltage to 1.0 V to turn it on. The additional circuit
is not on the critical path because the state transition time is
the same as in the original cache protocol and the comparison
between the access counter and the τ can be processed when
the tag matching occurs.

RALM can also be employed on CMPs with a directory-
based cache coherence protocol. In this architecture, when the
requested data is turned off, a request should be first sent to
its home directory with the directory information in order to
identify which core has a copy of the data. If the core’s L2
cache with the home directory (called a home node) has a copy
of the data, it sends the data to the requesting core. However,
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if the home node does not have a copy, it selects the core
which has a copy of the data and forwards the request to the
selected core. Then, the core’s L2 cache with the data sends
them to the requesting core after receiving the forwarded mes-
sage. ACK/NACK messages can be used to indicate whether
the data is successfully forwarded to the original requesting
core or not. Only after the home directory receives ACK
or NACK messages, the data or their directory state can be
updated.

D. Dynamic Control of TOS Blocks

In RALM, as shown in Section IV-B, a cache block dynam-
ically enters a TOS state if the value of its access counter is
lower than a threshold τ . However, the best value of τ for
each program and each program phase is different depending
on how many times and how frequently the TOS blocks
are accessed during an execution. In some applications with
only a few replications that are not frequently accessed, the
performance does not degrade even when the high threshold
value is employed. On the other hand, the performance could
be deteriorated with the high threshold value when many
blocks enter the TOS state and they are frequently accessed
after being turned off. For these applications, the number of
TOS blocks should be restricted to minimize the performance
degradation. The proposed technique dynamically controls the
number of TOS blocks by changing a threshold τ depending
on the behavior of the program and its phase during the
runtime.

Algorithm 2 shows how the RALM technique dynamically
determines τ . RALM estimates the performance degradation
ratio caused by TOS blocks during the runtime and keeps
it below the maximum performance degradation ratio, Max-
PerfDegradationRatio, by adjusting τ . On every predefined
number of instructions, which is two million instructions in
the evaluation, RALM calculates the amount of performance
degradation due to the TOS blocks, denoted as PerfDegrada-
tionOfRALM. It can be estimated by the ratio of the additional
cycles due to the TOS accesses, AdditionalCyclesWithRALM,
to the execution cycles, TotalCycles, during the period. Addi-
tionalCyclesWithRALM is calculated by multiplying the num-
ber of the accesses to the TOS blocks, NumAccessesToTOS, to
the average remote cache access latency, AvgRemoteLatency.
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Algorithm 2 Dynamic Control Algorithm of RALM

1: AdditionalCyclesWithRALM = NumAccessesToTOS *
AvgRemoteLatency;

2: PerfDegradationOfRALM = AdditionalCyclesWithRALM
/ TotalCycles;

3: if (PerfDegradationOfRALM > MAXPerfDegradationRa-
tio) then

4: τ /= 2;
5: if (τ == 0) then
6: τ = MinTau;
7: end if
8: else
9: τ *= 2;

10: if (τ > MaxTau) then
11: τ = MaxTau;
12: end if
13: end if

In this paper, we use the static value for AverageRemoteLa-
tency. After PerfDegradationOfRALM is calculated, it is used
to adapt the threshold value, τ . If PerfDegradationOfRALM is
higher than MaxPerfDegradationRatio, RALM decreases τ by
the half of it. On the other hand, if performance degradation
is less than MaxPerfDegradationRatio, which means the TOS
blocks are not accessed frequently, τ is doubled.

The proposed dynamic control mechanism is simple, and
this simplicity is one of the advantages of the proposed
technique in terms of implementation. Since τ is determined
periodically, the proposed technique achieves a great energy
reduction without any performance loss if the behavior of
the workload does not significantly change. In this case, the
determined τ works well for the next periods. For the workload
which oscillates between different phases, the value of τ
determined in the previous period might not be exactly suitable
in the next period. This makes the proposed technique less
effective. However, the proposed dynamic control mechanism
also does not significantly degrade the overall performance
because τ is only doubled or halved through phases, which
means that it is not drastically changed according to the
behavior of the workload.

Once τ is determined, it is applied to the entire cache blocks
even though the numbers of accesses to each cache block
are different from one another. In this technique, every cache
block whose access counter is larger than τ does not enter
the TOS state. However, this dynamic threshold adjustment
technique can prohibit a cache block with a small number
of accesses from being turned off and thus decreases energy
reduction of the RALM technique. This result indicates that
τ should be dynamically changed based on the prediction of
the number of accesses to each cache block. In Section V,
we evaluate energy reduction when only the cache blocks
with a large number of accesses are disallowed to enter the
TOS state. The number of accesses is predicted based on
the access history of each memory address. We obtained this
by storing the number of accesses of all memory addresses
during runtime. The evaluation results show that the proposed

RALM technique, which uses the same value τ for all cache
blocks, can reduce energy consumption more aggressively
even though its performance degradation is slightly larger than
the block-level dynamic control. Moreover, this block-level
dynamic control requires more complex implementation and
a large area overhead to predict the number of accesses to
each cache block. The proposed dynamic control technique
can efficiently reduce energy consumption only with a small
hardware overhead.

The TOS state can increase the number of remote private
cache accesses, increasing network-on-chip power consump-
tion. This means that if the number of the remote accesses
significantly increases, the increased energy consumption can
outnumber the energy saving achieved by TOS blocks. How-
ever, since we mainly focused on cache blocks with migratory
and read-only sharing patterns, remote private cache accesses
are not common. The cache blocks with migratory patterns
are not likely to be reused as described in Section III, which
means that they do not increase the number of network-on-chip
accesses after being turned off. When the cache blocks with
read-only sharing patterns are frequently reused, the proposed
dynamic control mechanism can restrict the number of TOS
blocks so as to not increase the network-on-chip power. In
Section V, experimental results show that RALM can effi-
ciently reduce the energy consumption of the memory systems
that include the shared bus, private L2 caches, and DRAM by
not significantly increasing the network on-chip power.

The proposed technique described in this paper assumes an
inclusive private L2 cache. However, it can also be applied to
CMPs with other L2 cache organizations, such as noninclusive
or cooperative private caches [24] because they also have
replications. Under these organizations, as in the inclusive
private L2 cache organizations, a cache block enters the
TOS states when it is replicated. When a cache miss occurs
because the cache block is turned off, the requested data
can also be brought from another core’s L1 or L2 cache. In
these organizations, the proposed technique may cause more
significant performance degradation than the inclusive private
L2 caches since a large portion of cache access can be served
by the corresponding L1 caches in inclusive private L2 caches.
However, the dynamic control mechanism proposed in this
paper can restrict the number of TOS blocks when they incur
performance degradation.

V. EXPERIMENTAL RESULTS

A. Simulation Environment

To evaluate our technique, we modified the CATS [10]
multiprocessor simulator to use a snoop-based MESI protocol
for the cache coherency that supports cache-to-cache transfer
of the cache block among private L2 caches. Table I shows
the simulation parameters used in evaluations. We evaluated
the proposed technique with multithreaded benchmarks from
ALPBench [34] and SPLASH2 [9].

B. Evaluated Schemes

In this paper, first, we evaluate the proposed RALM tech-
nique which does not control the number of TOS blocks, called
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TABLE I

SIMULATION PARAMETERS

Parameter Value

4 ARM Cores, 1 GHz

Processor in-order, 2-issue width

bimodal predictor, no prefetcher

Private L1 I-cache and 16 KB, 32 B block

D-cache 2-way set-associative, 1 cycle latency

Private L2 Cache
512 KB, 8-way

64 B block, 8 cycle latency

Cache coherency protocol MESI

Interconnect AMBA AHB bus, 64-bit width, 10 mm

Off-Chip Memory 512 MB DDR2, 300 cycle latency

RALM_NSEL, by comparing the existing leakage manage-
ment techniques, such as DECAY and AMC. RALM_NSEL
turns off cache blocks whenever they are replicated by other
caches and thus could cause performance degradation if the
turned-off replications are frequently accessed. We evaluated
RALM_NSEL by combining it with DECAY and AMC, called
RALM_NSEL and AMC+RALM_NSEL since the RALM
technique can be easily combined with the existing time-
out based leakage management techniques. The evaluation of
this RALM_NSEL technique shows that the RALM technique
should dynamically turn-off replications.

DECAY and AMC employ the cache block turn-off tech-
niques in [18] and [20], respectively. While DECAY uses
the predefined time-out threshold value and applies it to all
cache blocks, AMC adaptively changes the time-out threshold
value at runtime. In each period, this technique keeps track
of the number of ideal misses that occur when the cache
decay technique is not applied and the number of sleep misses
that are caused by the cache decay technique. Based on this
information, when the number of sleep misses becomes much
larger than that of ideal misses, the time-out threshold value is
increased for the next period. On the other hand, it is decreased
when the number of sleep misses becomes much smaller than
that of ideal misses. AMC can reduce energy consumption
more than DECAY if it can decrease a time-out threshold value
when its performance degradation is not significantly large. In
AMC+RALM_NSEL, the cache blocks except for replications
are turned off based on the time-out threshold value which is
dynamically changed as in the AMC technique.

The energy and performance of all of the evaluated tech-
niques are normalized to the baseline technique, which does
not employ a time-out based leakage management technique.
However, even in the baseline technique, we turn off the
cache blocks whenever they are invalidated by a cache coher-
ence protocol as proposed in [7]. It can efficiently save the
leakage energy consumption of a cache without any perfor-
mance loss. Furthermore, in all of the techniques evaluated
in this paper, cache blocks are turned off when they are
invalidated.

We also evaluate the RALM technique that uses static
threshold values from four to 256. The RALM techniques
with these static threshold values four, 16, 64, and 256 are

TABLE II

ENERGY PARAMETERS

Power/Energy Parameter Specifications

CMOS process technology 45 nm

Private L2 cache
Dynamic read energy/access 0.12 nJ

Leakage power/block 0.098 mW

Shared bus
Dynamic energy 0.006 nJ

Leakage power 33 mW

Off-chip memory
Read/write dynamic energy 2 nJ

Standby power 50 mW

indicated by RALM_TH4, RALM_TH16, RALM_TH64, and
RALM_TH256, respectively. Finally, the RALM technique
with the dynamic control mechanism is evaluated, which is
referred to as RALM. Through the evaluation of RALM with
static threshold values, we can see which threshold value
achieves the best energy consumption and performance for
each benchmark and how the dynamic control mechanism
of RALM can maximize the energy reduction while not
degrading performance to below the predefined performance
degradation ratio. In the evaluation, it is set to 5%. In addition,
as described in Section IV-D, RALM_DB is also evaluated.
RALM_DB determines whether a replication is turned off or
not at the block level. In this technique, only the cache blocks
with a large number of accesses are disallowed to enter the
TOS state by predicting the number of accesses to each cache
block.

C. Energy Model

We considered both the dynamic and leakage power con-
sumption of an L2 cache, a shared bus, and off-chip memory.
Dynamic energy consumption includes the dynamic energy
consumption of the extra L2 cache and memory accesses
caused by turning off cache blocks too early. We also take into
account the dynamic and leakage power consumption overhead
of additional counters in the proposed technique. The ten-bit
global counter and the 12-bit local counters used in the cache
decay technique. In addition, the proposed technique requires
access counters for each cache block to control the number
of TOS blocks and one additional bit per cache block for the
new state in the modified MESI protocol, which increases by
1% of the energy consumption and area of the total cache in
comparison with the baseline technique. The dynamic control
mechanism also requires a storage overhead per core, which
becomes 2 bytes for AdditionalCyclesWithRALM, 1 byte
NumAccessesToTOS, 1 byte for PerfDegradationOfRALM,
3 bytes for TotalCycles, and 1 byte for MAXPerfDegradation-
Ratio. Therefore, the total storage overhead for the dynamic
control of τ is 9 bytes, which is less than 1% of a private L2
cache area. The extra logic for the Gated-Vdd technique [19] is
also considered, which becomes less than 5% of the total cache
leakage. Table II shows the energy parameters that are obtained
from CACTI 6.5 [36] using the 45-nm technology and the off-
chip memory energy estimation [37]. The power consumption
of a shared bus is also obtained using the bus power model
in [12] and the wire properties based on ITRS [38]. Since the
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Fig. 8. Normalized energy consumption.

activity of a shared bus in the embedded systems is much
lower than in the high-performance desktop computer, we
assumed the activity factor α to be 0.15 in the power model. A
private L2 cache can further reduce the activity of a shared bus
compared to when the bus is placed between L1 D/I caches
and a shared L2 cache because only misses to the private L2
cache access the shared bus [25].

D. Energy/Performance Evaluation

1) Evaluation of RALM With No TOS Control: Fig. 8
shows the normalized energy consumptions of DECAY, AMC,
RALM_NSEL, and AMC+RALM_NSEL. RALM_NSEL
reduces the energy consumption by 46.0% and 24.8% on
average over the baseline technique and the DECAY tech-
nique, respectively. In particular, for MPGdec, MPGenc,
WATER, BARNES, and VOLREND, RALM_NSEL can
reduce the energy consumption by 26.5%, 18.0%, 27.3%,
41.1%, and 44.6% over DECAY, respectively, while RADIX,
CHOLESKY, FFT, OCEAN show less than 10% energy reduc-
tion by turning off replications without waiting for the time-
out threshold cycles. Meanwhile, the AMC technique reduces
energy consumption on average by 11.4% compared to the
DECAY technique, by reducing the time-out threshold value
if the number of extra cache misses caused by the current
time-out threshold value is not large. However, when the
RALM_NSEL technique is combined with AMC, it can also
reduce energy consumption by 31.8% and 23.0% over DECAY
and AMC, respectively.

In the proposed technique, the amount of reduction in
leakage power consumption depends on a fraction of repli-
cations with migratory and read_only sharing patterns. The
cache blocks with migratory sharing patterns can be turned off
after being replicated without any performance loss because
the data are not needed any more. However, the energy
reduction by migratory replications can be smaller than the
energy reduction by read_only replications if the cache blocks
with the migratory sharing patterns are invalidated in a short
time after being replicated. On the other hand, although the
energy reduction achieved by read_only replications can be
larger than the energy reduction by the migratory replications,
performance can be degraded by turning off the read_only
frequently accessed replications.
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Fig. 9 shows how many replications with migratory and
read_only sharing patterns are allocated during the execution
of each benchmark. As can be seen, MPGdec, MPGenc,
WATER, and LU have more than 20.0% of the migratory
replications as analyzed in [32], thus showing significant
energy reduction in RALM_NSEL with less than 2.0% per-
formance loss compared to DECAY, as shown in Fig. 10.
In particular, MPGdec has 57.0% of the migratory replica-
tions and thus RALM_NSEL reduces energy consumption
by 26.5% over DECAY. In this benchmark, RALM_NSEL
also decreases performance by 14.8% compared to the base-
line technique because some of the turned-off read_only
replications are frequently accessed. On the other hand,
BARNES and VOLREND have a large portion of read_only,
and thus RALM_NSEL can reduce energy consumption sig-
nificantly. However, for BARNES, although RALM_NSEL
reduces energy consumption by up to 41.1% over DECAY,
it also degrades performance by 11.6%. It turns off a large
number of read_only replications, but the most of the turned-
off cache blocks are reused many times, thus degrading perfor-
mance. This shows the necessity of the RALM technique that
dynamically turns off replications, considering performance
degradation.

On the other hand, we can see that the scientific bench-
marks, such as RADIX, FMM, and FFT, and OCEAN from
SPLASH2 do not have many migratory replications. In these
benchmarks, RALM_NSEL has less opportunity to turn off
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Fig. 11. Normalized energy consumption.

the cache blocks than other benchmarks. However, even in
these benchmarks, RALM_NSEL reduces energy consumption
by turning off read_only replications. RALM_NSEL does
not degrade performance because the read_only cache blocks
in these benchmarks are not accessed frequently after being
turned off. Since the proposed technique does not invalidate
the cache blocks in the L1 cache even when the corresponding
L2 cache blocks are turned off, most of the read_only cache
blocks can be hit in the L1 cache, thus not affecting the
performance.

2) Evaluation of RALM With Dynamic Control: Fig. 11
shows the normalized energy consumption of RALM_TH4,
RALM_TH16, RALM_TH64, RALM_TH256, RALM, and
RALM_DB. As can be seen, for RALM with static thresh-
old values, the amount of energy reduction increases as the
threshold value becomes larger. For all of the benchmarks,
RALM_TH256 shows the largest energy reduction because it
turns off more replications than RALM_TH4, RALM_TH16,
and RALM_TH64. As a result, RALM_TH4, RALM_TH16,
RALM_TH64, and RALM_TH256 reduce energy consump-
tion by 12.7%, 17.0%, 19.4%, and 21.8% on average, respec-
tively, over DECAY by turning off the replications. Fig. 12
shows the normalized execution time of each technique. As
can be seen, for MPGdec and BARNES, the performance of
RALM_TH256 decreases by 7.1% and 11.6%, respectively,
over the baseline technique while it shows the largest energy
reduction. Although it can reduce performance degradation
over RALM_NSEL by prohibiting the cache blocks which are
accessed more than 256 times from being turned off, the per-
formance degradation is still high. In particular, for BARNES,
RALM_TH4 starts to degrade performance by 6.4%. This
indicates that the RALM technique should adaptively decrease
the threshold value less than four for BARNES.

RALM, which dynamically controls the threshold value,
reduces energy consumption as much as RALM_NSEL for
the benchmarks which do not show performance degradation.
For these benchmarks, it increases the threshold value up to
the maximum level because turning off cache blocks when-
ever they are replicated does not affect the overall perfor-
mance. However, for the benchmarks which show a higher
performance degradation ratio than the predefined maximum
performance degradation ratio, RALM decreases the threshold
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value so that the performance degradation ratio is not higher
than the predefined one. As a result, RALM reduces energy
consumption by 42.9% and 19.4% on average with an aver-
age of less than 3.0% and 1.0% performance loss over the
baseline technique and DECAY, respectively. This indicates
that the cache blocks turned off by the RALM technique
are not frequently reused, thus the network traffics do not
significantly increase. Only for BARNES, RALM degrades
the performance by up to 5.9%, which is caused by 17.0%
increase in network traffics over DECAY, while keeping the
performance for the other benchmarks by not increasing the
network traffics. Although this slowdown can increase the
leakage power consumption of interconnect and DRAM, the
energy reduction achieved by the proposed technique can
compensate for the increased energy consumption by turning
off the large number of cache blocks. Fig. 13 shows the energy
delay product of each technique normalized to the baseline
technique. RALM can improve the energy delay product by
19.2% on average compared to DECAY, which is slightly
larger than the best technique, RALM_TH256. This can be
achieved by dynamically turning off replications while keeping
performance.

The experimental results in this section show that the pro-
posed technique can reduce the energy consumption depend-
ing on the fraction of the cache blocks with read-only and
migratory sharing patterns. For example, RALM_NSEL and
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Fig. 14. Normalized energy consumption and execution time in a 256-KB
cache. (a) Normalized energy consumption in a 256-KB cache. (b) Normalized
execution time in a 256-KB cache.

RALM reduce the energy consumption by 29.2% and 23.6%,
respectively, on average, over DECAY for benchmark pro-
grams with read-only and migratory sharing patterns among
cache blocks. For example, MPGdec and MPGenc from ALP-
bench and WATER, VOLREND, BANRNES, CHOLESKY,
RAYTRACE, LU, and RADIOSITY from SPLASH2 belong
to this type of benchmark programs. This indicates that RALM
can reduce the energy consumption if applications have a
larger portion of cache blocks with read-only and migratory
sharing patterns. As migratory sharing patterns are more read-
ily adopted in CMPs [32], the RALM technique can reduce the
energy consumption for other multiprocessor benchmarks as
well. On the other hand, several applications, such as OCEAN,
FMM, and RADIX, exhibit producer–consumer and multiple
read–write patterns in addition to some degree of read-only
and migratory sharing patterns. Since these applications do
not have a high degree of read-only and migratory sharing
patterns that RALM is targeting on, the amount of energy
consumption reduced by the proposed technique is not so
high as in the applications with a high degree of read-only
and migratory sharing patterns. For example, for FMM and
OCEAN, RALM reduces the energy consumption only by
8.0% and 7.9%, respectively. At the same time, FMM and
OCEAN also experience a negligible performance loss, 1.3%

and 1.5% only, respectively. For a cache block with the
producer–consumer sharing patterns, such as in FMM and
OCEAN, the producer core produces data in its local L2 cache
and a consumer core makes a copy of them in its L2 cache
from the producer’s L2 cache. When the proposed technique
is applied, the cache block in the producer core is turned
off while entering the TOS status when the consumer core
copies it. When the producer core modifies the replication,
the turned-off replication is turned on while entering the M
state as explained in Section IV-C. In this case, since the TOS
block is turned on again immediately after being accessed, the
performance does not significantly degrade. This subsequently
decreases the amount of the power consumption reduced by
RALM. This indicates that RALM does not negatively affect
the power consumption and the overall system performance
even when the applications do not exhibit the high degree of
read-only and migratory sharing patterns.

RALM_DB shows that its energy consumption is larger
than RALM by up to 11.9% while it can efficiently reduce
performance degradation. This is because the number of
accesses to each cache block depends on how frequently it
is replaced during runtime. Although a memory block has
been accessed a large number of times during runtime, its
cache block can be accessed only a few times before the
replacement. When this replication is not disallowed to enter
the TOS state because the corresponding memory address
is accessed frequently in the past, it loses a chance to be
turned off, although it does not affect performance. In this
context, it is necessary to predict how frequently each block is
accessed and how much it degrades performance. However, it
requires a complex prediction mechanism, whereas RALM can
sufficiently reduce energy consumption with a small hardware
overhead while keeping performance.

3) Sensitivity Studies:
a) Effect of cache size: Fig. 14(a) and (b) shows the

normalized energy consumption and execution time, respec-
tively, when using 256-KB private L2 caches. When using
the 256-KB cache, RALM_TH4, RALM_TH16, RALM_64,
RALM_256, RALM_NSEL, and RALM reduce energy con-
sumption by 6.1%, 8.3%, 9.6%, 11.2%, 13.3%, and 12.0%,
respectively, on average compared to DECAY. The amount of
energy reduction decreases in a small cache. Cache blocks
are frequently replaced in the small cache and thus decreas-
ing turn-off time. However, similar to a 512-KB cache, the
energy reduction increases as the threshold value becomes
larger. Although FMM, OCEAN, RADIX, and FFT show
the almost 2% of the energy reduction over DECAY, most
of the benchmarks except for them show a larger energy
reduction over DECAY. In particular, by using RALM_NSEL,
a larger number of cache blocks with migratory sharing pat-
terns in WATER, BARNES, RAYTRACE, and RADIOSITY,
contribute significantly to reducing energy consumption by
up to 17.5%, 24.0%, 27.9%, and 23.3%, respectively, over
DECAY. In this cache size, RALM can also reduce energy
consumption as well as keep performance by dynamically
changing the threshold value for access counter. It reduces the
threshold value as close to four for BARNES while keeping the
threshold value as the maximum value for other benchmarks.
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Fig. 15. Normalized energy consumption and execution time with a
32-KB L1 cache. (a) Normalized energy consumption. (b) Normalized exe-
cution time.

The size of an L1 cache can affect the energy reduction
and performance of the RALM technique because the data
are kept in the L1 cache even when their corresponding cache
blocks in a private L2 cache are turned off. Therefore, the
larger L1 cache can reduce the performance degradation of
RALM by reducing extra cache misses. Fig. 15(a) and (b)
shows the normalized energy consumption and the execution
time, respectively, when a 32-KB L1 cache is used. The
performance degradation of RALM_NSEL is less than when
a 16-KB L1 cache is used. RALM_NSEL reduces energy
consumption by 45.6% and 44.0% on average, respectively,
compared to the baseline and the DECAY techniques, while
degrading the respective performances by 7.2% and 5.8% for
MPGdec and BARNES, compared to the DECAY technique.
For all benchmarks, RALM can reduce energy consumption
by 20.0% while keeping the performance degradation ratio
below 5.0%.

b) Effect of false sharing and prefetching: False sharing
can affect the performance and energy reduction of the RALM
technique. Since the proposed technique is applied to the unit
of a cache block, the data which are not shared by multiple
cores can be turned off if false sharing occurs. This can cause
performance degradation if the data is reused after entering
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Fig. 16. Normalized energy consumption and execution time with 128-byte
cache blocks. (a) Normalized energy consumption. (b) Normalized execution
time.

the TOS states. Especially, false sharing usually increases
with the size of a cache block. We evaluated the RALM
technique when larger cache blocks are used. The larger cache
blocks can improve performance with high locality but incur
false sharing which degrades the performance of RALM.
Fig. 16(a) and (b) shows the normalized energy consumption
and the execution time, respectively, when the size of a cache
block is 128 bytes. As can be seen in the figures, the perfor-
mance degradation of RALM_NSEL is by up to 13.8% and
12.9% for MPGdec and BARNES, respectively, which is larger
than RALM_NSEL with 64-byte cache blocks. However, the
RALM technique reduces energy consumption by 40.8% and
19.6% on average, compared to the baseline technique and the
DECAY technique, respectively, while keeping the maximum
performance degradation at 5.9% for BARNES. It can be
achieved by dynamically turning off replications, depending
on the behaviors of executed programs and their phases.

Prefetching can also reduce the amount of energy reduction
when any leakage management technique is applied using the
cache decay technique. That is because the cache blocks turned
off by the cache decay technique should be turned on in order
to store the prefetched data. Even though the total amount
of energy reduction by turning off cache blocks decreases
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when prefetching is employed, the proposed technique can also
efficiently reduce energy consumption more than the original
cache decay technique because it can turn them off earlier.
However, a reasonable study on the effect of prefetching is
out of the scope of this paper.

VI. CONCLUSION

We proposed a RALM technique, which is based on
a power-efficient private L2 cache organization for CMPs.
The proposed technique turns off replications immediately
after another on-chip cache makes a copy of it. Turning
off replications reduces leakage energy consumption without
significant performance loss because the cost of an extra miss
only requires an on-chip access, which is much faster than
the off-chip access, and many replications were invalidated
after making their copies in other caches. In order to avoid
significant performance degradation caused by turning off
frequently accessed replications, the proposed RALM tech-
nique dynamically controls the number of TOS cache blocks
during the runtime. To turn off the replication efficiently
without much hardware overhead, we slightly modified an
original MESI cache coherence protocol. The experimental
results showed that RALM reduces energy consumption by
42.9% and 19.4% compared to the baseline technique and the
DECAY technique, respectively, on average without significant
performance degradation.

In this paper, we only assumed the CMP architecture in
which each processor was connected by a shared bus and cache
coherence was maintained by a snoop-based MESI protocol.
However, as the number of processors in CMPs increases, the
shared bus with the snoop-based cache coherence protocol has
a limitation in scalability. Therefore, in the future, we plan
to propose a leakage management technique based on more
complex interconnects with a directory-based cache coherence
protocol.
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