
BAGC: Buffer-Aware Garbage Collection
for Flash-Based Storage Systems

Sungjin Lee, Dongkun Shin, Member, IEEE, and Jihong Kim, Member, IEEE

Abstract—NAND flash-based storage device is becoming a viable storage solution for mobile and desktop systems. Because of the

erase-before-write nature, flash-based storage devices require garbage collection that causes significant performance degradation,

incurring a large number of page migrations and block erasures. To improve I/O performance, therefore, it is important to develop an

efficient garbage collection algorithm. In this paper, we propose a novel garbage collection technique, called buffer-aware garbage

collection (BAGC), for flash-based storage devices. The BAGC improves the efficiency of two main steps of garbage collection, a block

merge step and a victim block selection step, by taking account of the contents of a buffer cache, which is typically used to enhance I/O

performance. The buffer-aware block merge (BABM) scheme eliminates unnecessary page migrations by evicting dirty data from a

buffer cache during a block merge step. The buffer-aware victim block selection (BAVBS) scheme, on the other hand, selects a victim

block so that the benefit of the buffer-aware block merge is maximized. Our experimental results show that BAGC improves I/O

performance by up to 43 percent over existing buffer-unaware schemes for various benchmarks.

Index Terms—NAND flash memory, flash translation layer (FTL), buffer management, garbage collection

Ç

1 INTRODUCTION

NAND flash memory is widely used as a storage device
replacing hard disk drives, because of its low-power

consumption, high performance, and high reliability [3].
Unlike HDDs, NAND flash memory operates differently in
two aspects. First, its “erase-before-write” architecture
requires that previous data has to be erased before new
data is written to it. Second, the unit size of an erasure
operation is not the same as that of a read or write
operation. Reads and writes are performed in a unit of a
page whose size is 2-8 KB [4], but erasure operations are
performed in a unit of a block consisting of multiple pages.

To handle these unique characteristics and to emulate
the functionality of a normal block device, a special
software layer, called a flash translation layer (FTL), is
usually employed between a file system and flash memory
[5], [6], [7], [8], [9], [10], [11], [12], [13]. In designing the FTL,
there are two kinds of important issues: address translation
and garbage collection. Because of the erase-before-write
constraint, the FTL uses an out-place update policy that
writes up-to-date data to a new free page instead of
updating the original page. For this purpose, the FTL
provides an address translation policy which maps a logical
page address to a physical page address. An out-place

update policy generates invalid pages with out-of-date data
that must be reclaimed by garbage collection later.

There are a variety of FTL schemes, including page-
level FTLs [5], [6], [7] and block-level FTLs [8], but hybrid-
level FTLs [9], [10], [11] are widely used in many flash
devices, including USB sticks [12] and solid-state drives
(SSDs) [13], [14]. The popularity of the hybrid-level FTLs is
mainly due to the fact that they enable to maintain a small
mapping table while providing good performance. In the
hybrid-level FTLs, physical blocks are grouped into log
blocks or data blocks. Log blocks are used for storing
incoming data temporarily and are managed by a page-
level mapping table. Data blocks are used as ordinary
storage space with a block-level mapping table. When all
free log blocks are exhausted, the FTL performs garbage
collection to make a free log block. This garbage collection
involves two main steps: victim block selection and block
merge. The victim block selection step finds a victim log
block with invalid pages to be reclaimed. All valid pages
in the victim log block are copied to a free block during the
block merge step. The victim log block is then erased and
becomes a new free block.

Garbage collection incurs significant overhead because it
requires many page migrations as well as block erasures.
One of the promising approaches to reduce the garbage
collection overhead is to use a buffer cache on top of
the FTL. By using a buffer cache, we can reduce a large
number of page writes to the FTL, which in turn incur
garbage collection, and can improve the sequentiality of
writes so that less migration overhead is required. Many
flash devices, thus, employ a buffer cache as one of the
essential components.

However, with a simple combination of a buffer cache
and the FTL, it is difficult to take full advantage of using a
buffer cache. In our observation, with a buffer cache, the
FTL performs unnecessary page migrations frequently that

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013 2141

. S. Lee is with the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139.
E-mail: chamdoo@csail.mit.edu.

. D. Shin is with the School of Information and CommunicationEngineering,
Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea.
E-mail: dongkun@skku.edu.

. J. Kim is with the Department of Computer Science and Engineering, Seoul
National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
E-mail: jihong@davinci.snu.ac.kr.

Manuscript received 9 Apr. 2012; revised 4 Aug. 2012; accepted 29 Aug.
2012; published online 11 Sept. 2012.
Recommended for acceptance by E. Miller.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2012-04-0259.
Digital Object Identifier no. 10.1109/TC.2012.227.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

move obsolete pages during garbage collection. This
unnecessary page migration occurs when a page in a buffer
cache is newly updated, but the FTL is not aware of its
update because the page is not actually written to the FTL.
In this case, the FTL can move out-of-date pages in flash
memory for garbage collection, incurring lots of unneces-
sary page migrations.

These useless page migrations can be avoided if a buffer
cache manager lets the FTL know which pages in flash
memory are out-of-date so that obsolete pages are not
copied during garbage collection [7], [18]. However, this
approach seriously degrades reliability of data storage. This
is because, after garbage collection, the obsolete pages are
erased in the flash memory and the up-to-date data of those
pages is kept only in a buffer cache. If a critical reliability-
affecting event (e.g., a sudden power failure) occurs, the
system cannot be recovered or roll-backed to the previous
status. Therefore, a more sophisticated strategy is required
which eliminates useless page migrations while ensuring
high data reliability.

In this paper, we propose a novel garbage collection
scheme, called buffer-aware garbage collection (BAGC).
The proposed BAGC scheme identifies and eliminates
unnecessary page migrations by means of examining the
contents of a buffer cache. Our BAGC scheme consists of
two techniques, the buffer-aware block merge (BABM)
technique and the buffer-aware victim block selection
(BAVBS) technique. BABM eliminates useless page migra-
tions by writing up-to-date pages in a buffer cache to flash
memory during block merges. By doing so, BABM not
only reduces the number of future page writes to flash
memory, but also lowers a future block merge cost, while
providing a high degree of data reliability. BAVBS chooses
a victim log block to maximize the benefit of buffer-aware
block merges. BAVBS exploits the locality of pages in a
buffer cache for a better decision in selecting a victim
block. We have evaluated the proposed BAGC scheme in
the context of several state-of-the-art FTL and buffer
management schemes using a trace-driven simulator. Our
experimental results show that BAGC improves the I/O
performance by up to 43 percent over buffer-unaware
schemes for various workloads.

This paper is organized as follows: After reviewing
previous works in Section 2, we explain the motivation of
our work in Section 3. We describe our target system
architecture in Section 4. The proposed BABM and BAVBS
schemes are described in Sections 5 and 6, respectively.
Experimental results are presented in Section 7, and
Section 8 concludes with a summary.

2 RELATED WORK

There has been a considerable amount of research on a flash
translation layer and a buffer management layer. However,
little attention has been paid to approaches that consider
two layers simultaneously.

Existing research on the FTL has focused on reducing the
garbage collection overhead with a small mapping table.
Thus, the hybrid-level FTLs have received serious attention.
The hybrid-level FTLs can be categorized into three types
depending on a block association policy: block-associative

sector translation (BAST) [9], fully associative sector
translation (FAST) [10], and set-associative sector transla-
tion (SAST) [11]. A block association policy determines how
many data blocks share a log block, but gives no
consideration to the correlation between a buffer cache
and flash memory. With regard to victim selection, both
BAST and FAST use the round-robin policy that chooses
the least recently written log block as a victim block. The
SuperBlock scheme [11], which is based on SAST, uses
the utilization-based policy that selects the block with the
fewest valid pages. However, none of them consider
the contents of a buffer cache in selecting a victim block.

There also have been a lot of studies on a buffer cache
of a flash device. The FAB scheme [15] is based on a
block-level LRU buffer management (BLRU) policy, which
evicts all pages in the same logical block to flash memory
at the same time to improve the sequentiality of writes.
FAB further improves the sequentiality of writes by
evicting the block with the largest number of dirty pages
from a buffer cache. The BPLRU scheme [16] is also based
on the BLRU policy, but it eliminates random writes to
flash memory by using the page padding technique. All
these schemes reduce the garbage collection cost by
lowering the number of writes or by improving the
sequentiality of writes, but they consider neither useless
page migrations nor victim block selection. A recently
evicted-first (REF) buffer replacement policy takes account
of log blocks to reduce the cost of block merge operations,
but it has the same limitation in that it does not consider
useless page migrations.

More recently, Li et al. [7] propose a duplication-aware
garbage collection (DA-GC) technique for a virtual memory
system with a flash device. DA-GC detects pages that reside
on both main memory and flash memory, and then
prevents them from being moved during garbage collection
to avoid useless page migrations. The ignored pages
containing duplicate data are erased from flash memory
after garbage collection, leaving only the copies in main
memory. Ji and Shin [18] propose a locality and duplication-
aware garbage collection (LDA-GC) technique, which
improves DA-GC for the hybrid-level FTLs. Similar to
BAGC, both DA-GC and LDA-GC eliminate unnecessary
page migrations. However, they are not suitable for a buffer
cache which is used as a cache for a storage device; if a
system failure occurs before duplicate data is written to
flash memory, the data is inevitably lost. BAGC removes
useless page migrations by flushing duplicate data to flash
memory. Thus, BAGC does not adversely affect reliability of
data storage.

3 MOTIVATION

We first explain the benefit of making a garbage collector
buffer-aware using a simple scenario. When a garbage
collector selects a victim log block and performs a block
merge operation, many page migrations are necessary. Our
primary observation is that many of them would be
unnecessary if a garbage collector could take into account
the contents of a buffer cache.

Fig. 1 shows an example of a block merge in the FAST
FTL [10]. The buffer cache has eight pages and two of

2142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

them, p2 and p4, are dirty pages. In the flash memory, B0

and B1 are data blocks and L0 and L1 are log blocks. Each
block is composed of four pages. Because of the updates on
the pages p0, p1, p6, and p7, the log blocks L0 and L1 have
the most recent version of these pages, thus making the
original pages in B0 and B1 invalid. If the log block L0 is
selected as a victim block, two new data blocks N0 and N1

are allocated and then the valid pages in B0, B1, L0, and L1

are moved to N0 and N1. After the page migrations, the
blocks B0, B1, and L0 are erased. This type of a block
merge is called a full merge.

To reclaim L0, there were eight page migrations.
However, p2 (in B0) and p4 (in B1) were moved uselessly
because p2 (in N0) and p4 (in N1) are invalidated soon when
the dirty pages p2 and p4 in the buffer cache are evicted to
the flash memory. If p2 and p4 in the buffer cache were
moved to N0 and N1 instead of p2 and p4 in B0 and B1, N0

and N1 have the most recent version without the useless
page migrations for p2 and p4. To decide that p2 and p4 in the
buffer cache should be moved, we need to take account of
the contents of the buffer cache. This is the main motivation
of our buffer-aware garbage collection technique.

Making garbage collection buffer-aware has two positive
impacts on FTL performance. First, it can reduce dirty page
writes to flash memory. Since dirty pages p2 and p4 are written
to the data blocks when L0 is being merged, these pages
become clean and do not need to be written to the flash
memory when they are evicted from the buffer cache.
Second, it can eliminate or delay a block merge that will occur in
the near future. If p2 and p4 are moved from B0 and B1,
instead of from the buffer cache, these pages must be written
to the log block (e.g., L1) when they are evicted from the
buffer cache. The log block L1 is merged with the
corresponding data blocks (e.g., N0 and N1) in the near
future when all the free pages in L1 are exhausted. However,
if p2 and p4 in the buffer cache are directly written to N0 and
N1 when L0 is being merged, the block merge for L1 can be
delayed with more free pages. These positive impacts of
buffer-aware garbage collection are called potential benefits
because they are obtained at a later time.

If p2 and p4 in Fig. 1 are updated in the buffer cache after
being written to flash memory, they must be rewritten to flash
memory when they are evicted from the buffer cache later. In
that case, the buffer-aware garbage collection for p2 and p4

becomes useless, limiting its positive effects on performance.
Furthermore, if buffer-aware garbage collection is often

performed for pages frequently updated in a buffer cache,
it could negatively impact performance because it causes a
lot of useless page writes to flash memory. For this reason,
buffer-aware garbage collection must be carefully performed
by considering the update probabilities of pages in a buffer
cache. This is the motivation of our buffer-aware victim block
selection technique.

In our experimental analysis, we found that 4.7-
85.4 percent of the total page migrations were useless for
various benchmark traces. On average, about 19.6 percent
of the total page migrations were unnecessary. The
performance of a storage device is thus improved greatly
if useless page migrations are eliminated effectively.

4 TARGET SYSTEM ARCHITECTURE

Fig. 2 shows an architectural overview of our target flash
device. Our target storage device interacts with a host
system through a standard interface such as SATA and
eMMC. On the storage side, the main storage processor
is connected to the flash chips through the flash bus (e.g., an
8-bit serial bus) and executes the buffer management layer
and the flash translation layer. The buffer management
layer manages the buffer cache in the storage device. In
many flash devices, the buffer cache is usually used for
write buffering [16], [19] because a write operation is much
slower than a read operation. Thus, in this work, the buffer
cache is used as a write buffer. The FTL emulates the
functionality of a normal block device, providing an
interface between the upper layer and the flash chips. The
FTL maintains a small internal buffer for use in internal
operations such as garbage collection.

The flash chip is divided into several blocks, each of
which consists of multiple pages. It has on-chip registers
that are used as temporary storage for data transfers
between the FTL buffer and the flash chip. The size of an
on-chip register is the same as that of a page. A set of pages
that share the same on-chip register is called a plane and
there are usually 2-4 planes in a chip [4].

Writing a page from the buffer cache to the flash chip
requires several data transfers. A page in the buffer cache is
first moved to the internal buffer of the FTL through a
system bus. Then, it is sent to the on-chip register of the
flash chip via the flash bus. The page data is finally written
to the target flash page. The time taken to write a page from
the buffer cache to the flash chip is (Tb þ Tt þ Tw), denoted

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2143

Fig. 1. An example of unnecessary page migrations. Fig. 2. An architectural overview of a target flash device.

by Tb!f , where Tb is the time to move a page between the
FTL and the buffer cache, Tt is the time to transfer a page
through the flash bus, and Tw is the time to write a page to
the flash chip from the on-chip register. The time taken to
read a page from the flash chip to the FTL is (Tr þ Tt), where
Tr is the time to read a page from the flash chip to the on-
chip register. Note that if there is a host read request, data
loaded into the FTL buffer is directly transferred to the host
interface because the buffer cache is used as a write buffer
[19]. Typical values of Tr, Tw, and Tt are 25, 200, and 100 �s
[4], respectively. Tb is assumed to be 0 because data is
transferred using a high-speed system bus.

A page migration also involves several data transfers.
Suppose that the page pk in Fig. 2 is moved to the page pnewk .
The page pk is first moved to the on-chip register and then is
sent to the FTL buffer. The data is returned to the on-chip
register and written to the destination page pnewk . The total
time required to move the page pk to its new location pnewk is
ðTr þ TtÞ þ ðTt þ TwÞ, which is also denoted by Tf!f . To
reduce the cost of a page migration, most flash chips
employ a specialized page copy operation, called a copy-back
operation. With a copy-back operation, the page pk loaded
in the on-chip register is directly written to the destination
page pnewk . Thus, the time taken for a page migration is
reduced to (Tr þ Tw) because data transfers between the
processor and the flash chip are eliminated. Note that a
copy-back operation can be used only when both the source
and destination pages belong to the same plane.

For the FTL to be buffer-aware, it should be able to access
the contents of a buffer cache. In our target device, the
buffer management layer and the flash translation layer run
on the same system, so it is easy to share information
between two layers. Many flash devices such as embedded
flash devices (e.g., CF cards) and solid-state drives satisfy
our target architecture.

5 BUFFER-AWARE BLOCK MERGE

The proposed BAGC scheme consists of two schemes, one
for a block merge step and the other for a victim block
selection step, respectively. The first approach is to write
data in a buffer cache to flash memory directly if a buffer
cache has data for pages that are moved during a block
merge. By doing so, useless page migrations can be
eliminated. The second one is to decide a victim block
during a victim selection step so that the potential benefits
of buffer-aware block merges is to be maximized. We first
introduce the buffer-aware block merge (BABM) scheme in
this section and then explain the buffer-aware victim block
selection scheme in Section 6.1

5.1 Buffer-Aware Block Merge Algorithm

There are two different types of block merges in the FAST
FTL: a full merge and a partial merge. We develop the buffer-
aware versions of these block merge operations.

Fig. 3 shows how a buffer-aware full merge works in
detail. Suppose that a log block Li is selected as a victim log
block. The FTL identifies a set, IDðLiÞ, of data blocks that are

involved in the block merge operation of Li. A data block,
Dj, whose updated pages are stored in Li is included in
IDðLiÞ. For example, IDðL0Þ in Fig. 1 is {B0, B1}. For each
page pk in Dj, the FTL sees if pk exists in a buffer cache. If a
buffer cache has pk and it is dirty (e.g., p2 and p4 in Fig. 1), it
means that pk in Dj is out-of-date. Copying pk in Dj to a new
data block Dnew

j is, thus, useless. To prevent useless page
migrations, the FTL writes pk in a buffer cache to pnewk in
Dnew
j , and then makes it clean. Note that if the cleaned page

pk is not updated before it is evicted from a buffer cache, a
dirty page write for pk is eliminated. If a buffer cache has pk
and it is clean (e.g., p3 in Fig. 1), the FTL writes it to flash
memory, instead of moving pk in Dj to Dnew

j , because a
buffer cache already has the up-to-date data for pk. If pk is
not in a buffer cache and is valid in Dj (e.g., p5 in Fig. 1), it is
moved from Dj to Dnew

j . However, if pk is not in a buffer
cache and is invalid in Dj (e.g., p0, p1, p6, and p7 in Fig. 1),
the FTL searches a log block Lj holding the valid version of
pk. Then, pk in Lj is moved to Dnew

j and is invalidated.
Finally, the FTL erases Dj and Li and inserts them to a free
block list.

The partial merge is the different type of a merge
operation, optimized for sequential writes [10]. In the
partial merge, only one log block, called a sequential log
block, is associated with one data block. The FTL performs
the partial merge by copying valid pages in a data block to
a sequential log block. The data block is then erased, and
the sequential log block becomes the new data block. The
difference between the partial merge and the buffer-aware
partial merge is that the FTL copies pages to the sequential
log block from a buffer cache if these pages exist in a
buffer cache.

The buffer-aware full merge is more general and has a
higher impact on FTL performance because the cost of the
full merge is much higher than that of the partial merge. In
this paper, therefore, we explain the buffer-aware full
merge in detail. A detailed description of the buffer-aware
partial merge can be found in [2].

5.2 The Effect of the Buffer-Aware Block Merge

By eliminating useless page migrations, the buffer-aware
block merge performs a block merge operation at a lower
cost than the buffer-unaware block merge. To understand
the effect of the buffer-aware block merge on performance,

2144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

1. Our description is based on the FAST FTL [10]. However, it can be
easily extended to other FTLs. For more detailed descriptions, see [2].

Fig. 3. A buffer-aware full merge algorithm.

we first compare the buffer-unaware block merge cost and
the buffer-aware block merge cost.

The buffer-unaware and buffer-aware block merge cost. In the
buffer-unaware block merge, the block merge cost is
determined by the number of pages that are moved
between flash blocks during a block merge.

Definition 1. Let IMðLiÞ be a set of flash pages that are moved
during a block merge of a log block Li and let jIMðLiÞj be the
number of pages in IMðLiÞ. If the time taken to move a single
page is Tf!f , the buffer-unaware block merge cost of Li,
denoted by CBU

mergeðLiÞ, is defined as follows:

CBU
mergeðLiÞ ¼ jIMðLiÞj � Tf!f : ð1Þ

In the example of Fig. 1, IMðL0Þ is {p0, p1, p2, p3, p4, p5, p6,
p7} and jIMðL0Þj is 8. As pointed out in Section 4, Tf!f is
ðTr þ TtÞ þ ðTt þ TwÞ.
To eliminate useless page migrations, if a buffer cache

has pages for flash pages that are moved during a block
merge, the buffer-aware block merge directly writes them to
flash memory. This not only eliminates useless page
migrations, but also reduces the number of flash read
operations because the FTL does not need to read pages that
are already stored in a buffer cache. Therefore, the buffer-
aware block merge cost is defined as follows:

Definition 2. Let IBdðLiÞ be a set of flash pages that are moved
during a block merge of Li and have dirty data in a buffer
cache. Let IBcðLiÞ be a set of flash pages that have clean data in
a buffer cache. IFðLiÞ is a set of flash pages that do not have
any data in a buffer cache. jIBdðLiÞj, jIBcðLiÞj, and jIFðLiÞj
refer to the number of pages in each set. If the time taken to
write a page to flash memory from a buffer cache is Tb!f , the
buffer-aware block merge cost of Li, denoted by CBA

mergeðLiÞ, is
defined as follows:

CBA
mergeðLiÞ ¼ ðjIBdðLiÞj þ jIBcðLiÞjÞ � Tb!f þ jIFðLiÞj � Tf!f :

ð2Þ

Tb!f is also denoted by Tb þ ðTt þ TwÞ. In the example of
Fig. 1, IBdðL0Þ and IFðL0Þ are {p2, p4} and {p0, p1, p5, p6, p7},
respectively. IBcðL0Þ is {p3}. In (1) and (2), jIFðLiÞj þ
jIBdðLiÞj þ jIBcðLiÞj is jIMðLiÞj. Therefore, CBA

mergeðLiÞ �
CBU
mergeðLiÞ because Tb!f < Tf!f . In Fig. 1, three read

operations for p2, p3, and p4 are not required with the
buffer-aware block merge.

As shown in (2), as a buffer cache has many pages for
flash pages that are moved during a block merge, the
buffer-aware block merge cost becomes smaller because
many read operations can be avoided. This is true even for
clean pages in a buffer cache. If there are clean pages in a
buffer cache for flash pages to be moved (e.g., p3 in Fig. 1),
those clean pages can be directly written to flash memory,
without additional read operations from flash memory. The
benefit of buffer-aware block merges, however, mainly
comes from dirty pages that are cleaned by buffer-aware
block merges (e.g., p2 and p4 in Fig. 1). This is because these
cleaned pages potentially reduce future dirty page writes
and future block merges.

The potential benefits of the buffer-aware block merge. The
buffer-aware block merge has two potential benefits that
reduce the future eviction cost and the future merge cost.

As discussed above, the first one comes from the reduction

in future page writes and the other one comes from the

reduction in future block merge operations.
For better understanding of the potential benefits, we

compare the behaviors of the buffer-unaware block merge

and the buffer-aware block merge using examples shown in

Fig. 4. This figure illustrates the contents of the buffer cache,

the log block Li, and the data block Dj, respectively. The

numbers in circles as well as in rectangles represent a

logical page number. The shaded circles indicate dirty

pages while the shaded rectangles represent invalid pages.

Initially, the buffer cache has four dirty pages, p0, p1, p4, and

p5. There are also four pages in the log block Li. One page p0

out of the four log block pages is invalid because the new

version of p0 is in Li. The data block Dj also has four pages,

p0, p1, p2, p3, and three pages, p0, p1, p2, are invalid because

there are new pages in the log block.

. The reduction in the future eviction cost. Suppose that
Li is merged to make free pages. Here, IBdðLiÞ is {p0,
p1}; hence, jIBdðLiÞj is 2. IBcðLiÞ is � and jIBcðLiÞj is 0.
If the buffer-unaware block merge is used as shown
in Fig. 4a, two dirty pages, p0 and p1, remain dirty in
the buffer cache, whereas they become clean with
the buffer-aware block merge as depicted in Fig. 4b.
After the block merge, the FTL obtains four new free
pages. The new log block is denoted by L0i to
differentiate it from the old one. The former data
block Dj becomes the free block and is inserted into
the free block list. Finally, the former free block
becomes the new data block Dj. Further suppose
that p0 and p1 in IBdðLiÞ are evicted from the buffer
cache by a buffer replacement policy without any
updates. In the buffer-unaware block merge, they
must be written to the new log block L0i. The eviction
cost, CBU

evictðLiÞ, of the buffer-unaware block merge is
thus jIBdðLiÞj � Tb!f , which is 2 � Tb!f in Fig. 4. On the

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2145

Fig. 4. A comparison of buffer-aware and buffer-unaware block merges.

other hand, the eviction cost, CBA
evictðLiÞ, of the buffer-

aware block merge is 0. This is because both p0 and
p1 become clean when the old log block Li is merged
and there are no further updates on them before they
are evicted from the buffer cache.2 With the buffer-
aware block merge, therefore, two page writes can
be eliminated. This benefit that comes from the
elimination of future page writes is called an eviction-
cost benefit. The eviction-cost benefit is expressed
as CBU

evictðLiÞ � CBA
evictðLiÞ, which is 2 � Tb!f in the

example of Fig. 4. Note that the number of dirty
page writes eliminated is denoted by ðCBU

evictðLiÞ �
CBA
evictðLiÞÞ=Tb!f .

. The reduction in the future merge cost. The buffer-
aware block merge requires a smaller number of
future block merges because it writes fewer pages
to log blocks over the buffer-unaware block merge.
For example, consider the case in Fig. 4 where two
pages, p4 and p5, in the buffer cache are evicted to
L0i by a buffer replacement policy. With the buffer-
unaware block merge in Fig. 4a, the FTL should
invoke a block merge operation because there are
no free pages in L0i. On the other hand, with the
buffer-aware block merge in Fig. 4b, it is not
necessary to perform a block merge because there
are still two free pages. This benefit that comes
from the reduction of future block merges is called
a merge-cost benefit.

To estimate the merge-cost benefit, the cost of a
block merge induced by a single page write is to be
estimated first. A block merge operation occurs
when free pages in an empty log block have been
entirely used up. If the number of pages per block
is Nppb, a block merge operation is invoked every
Nppb page writes to a log block. This means that if
Nppb dirty page writes are reduced, one block merge
operation is eliminated. Assuming that the average
cost of the buffer-aware block merge is given by
CBA
avg , the block merge cost eliminated by the

reduction of one dirty page write is ðCBA
avg=NppbÞ

on average. In this work, CBA
avg is calculated using a

moving average of recent block merge costs. The
number of dirty page writes reduced by the buffer-
aware block merge is ðCBU

evictðLiÞ � CBA
evictðLiÞÞ=Tb!f .

The potential merge-cost benefit of Li is, thus,
expressed as (CBU

evictðLiÞ � CBA
evictðLiÞÞ � �, where �

is ðCBA
avg=NppbÞ=Tb!f .

The following definition formalizes the potential
benefits of the buffer-aware block merge.

Definition 3. Let CBU
evictðLiÞ be the eviction cost after a log block

Li is merged with the buffer-unaware block merge and let
CBA
evictðLiÞ be the eviction cost of Li with the buffer-aware block

merge. The eviction-cost benefit and the merge-cost benefit of
Li are CBU

evictðLiÞ � CBA
evictðLiÞ and (CBU

evictðLiÞ � CBA
evictðLiÞÞ � �,

respectively. Thus, the total potential benefits of Li, denoted by
BBA
benefitðLiÞ, are defined as follows:

BBA
benefitðLiÞ ¼

�
CBU
evictðLiÞ � CBA

evictðLiÞ
�
� ð1þ �Þ: ð3Þ

Since CBU
evictðLiÞ is larger than or equal to CBA

evictðLiÞ,
BBA
benefitðLiÞ � 0. As explained in (1) and (2), CBA

mergeðLiÞ is
also smaller than or equal to CBU

mergeðLiÞ. Thus, the buffer-
aware block merge at least performs better than the buffer-
unaware block merge.

If pages cleaned by the buffer-aware block merge are
updated later, there are no potential benefits because up-
to-date data must be written to flash memory. The
potential benefits, BBA

benefitðLiÞ, are thus changed depending
on the update probability of pages in IBdðLiÞ after the
buffer-aware block merge. For example, in Fig. 4b, if p0 and
p1 in IBdðLiÞ are updated before they are evicted, CBA

evictðLiÞ
increases by 2 � Tb!f because the new version of data must
be written to flash memory. In this case, BBA

benefitðLiÞ is 0.
That is, as many pages in IBdðLiÞ are modified before they
are evicted, the potential benefits become less significant.
In Section 6, we discuss the way to maximize the potential
benefits by considering the update probability of pages in a
buffer cache.

5.3 The Effect of a Copy-Back Operation

To reduce the block merge cost, most flash chips support a
specialized page migration operation, called a copy-back
operation. As noted in Section 4, a copy-back operation
eliminates expensive data transfers between a processor
and a flash chip by using an on-chip register in a flash chip.
Note that a copy-back operation can be performed for pages
that share the same on-chip register.

With a copy-back operation, the cost of a single page
migration is reduced to Tr þ Tw (i.e., 225 �s) from Tr þ 2 �
Tt þ Tw (i.e., 425 �s). On the other hand, the cost of a single
page migration of the buffer-aware block merge is Tt þ Tw
(i.e., 300 �s) when the potential benefits, BBA

benefitðLiÞ, are
assumed to be 0. In that case, a copy-back operation
requires lower merge costs than the buffer-aware block
merge. If BBA

benefitðLiÞ is high enough, however, using the
buffer-aware block merge is a better choice. To minimize
the garbage collection overhead, therefore, we must care-
fully choose a proper operation for block merges depending
on their benefits. In this section, we analyze the effect of a
copy-back operation on the buffer-aware block merge. Our
strategy that takes advantage of both of a copy-back
operation and the buffer-aware block merge is presented
in Section 6.

We first look at the case where only a copy-back
operation is used without the buffer-aware block merge.

Definition 4. Let IMpðLiÞ be a subset of IMðLiÞ, which only
includes pages that can be copied back, and let Tp!p be the time
taken to move a page using a copy-back operation. The buffer-
unaware block merge cost of Li, denoted by CBU:CB

merge ðLiÞ, is
derived from (1) as follows:

CBU:CB
merge ðLiÞ ¼ jIMpðLiÞj � Tp!p þ ðjIMðLiÞj � jIMpðLiÞjÞ � Tf!f :

ð4Þ
Tp!p in (4) is also denoted by ðTr þ TwÞ.

In the buffer-aware block merge, all the pages that can be
copied back are moved using a copy-back operation
because of its lower cost. For the pages that have dirty

2146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

2. If there are updates on the cleaned pages, our assumption that
CBA

evictðLiÞ is equal to 0 is no longer true. We discuss this issue at the end of
this subsection.

pages in a buffer cache, however, dirty data in a buffer
cache is directly written to flash memory, so as to take
advantage of the potential benefits.

Definition 5. Let IFpðLiÞ be a subset of IFðLiÞ of a log block Li,

which only includes pages in flash memory that can be copied
back. Let IBp

cðLiÞ be a subset of IBcðLiÞ, which has clean pages

in a buffer cache and has valid pages in flash memory that can
be copied back. The buffer-aware block merge cost of Li,

denoted by CBA:CB
merge ðLiÞ, is derived from (2) as follows:

CBA:CB
merge ðLiÞ ¼

�
jIFpðLiÞj þ jIBp

cðLiÞj
�
� Tp!p

þ ðjIFðLiÞj � jIFpðLiÞjÞ � Tf!f
þ
�
jIBdðLiÞj þ jIBcðLiÞj �

��IBp
cðLiÞ

��� � Tb!f :
ð5Þ

When a copy-back operation is used, it is no longer true

that the buffer-aware block merge is always more efficient

than the buffer-unaware block merge. That is, in (4) and (5),

CBA:CB
merge ðLiÞ can be larger than CBU:CB

merge ðLiÞ. For example,

suppose that all pages to be moved during a block merge

can be copied back. (i.e., jIMðLiÞj � jIMpðLiÞj ¼ 0 in (4)).

Further suppose that all those pages have dirty pages in a

buffer cache (i.e., jIFðLiÞj ¼ jIFpðLiÞj ¼ jIBcðLiÞj ¼ jIBp
cðLiÞj ¼

0 in (5)) and there are no potential benefits (i.e.,

BBA
benefitðLiÞ ¼ 0). In this case, CBA:CB

merge ðLiÞ > CBU:CB
merge ðLiÞ be-

cause jIBdðLiÞj � Tb!f > jIMðLiÞj � Tp!p. Thus, it is better to

use the buffer-unaware block merge. However, if the

potential benefits are high enough, the buffer-aware block

merge can outperform the buffer-unaware block merge.

Suppose that the potential benefits are the maximum in the

example above (i.e., CBU
evictðLiÞ � CBA

evictðLiÞ ¼ jIBdðLiÞj � Tb!f).

The FTL takes advantage of the potential benefits, jIBdðLiÞj �
Tb!f � ð1þ �Þ according to ðCBU

evictðLiÞ � CBA
evictðLiÞÞ � ð1þ �Þ

in (3). These potential benefits are high enough to

compensate for its high block merge cost.

6 BUFFER-AWARE VICTIM BLOCK SELECTION

Selecting a victim block affects the performance of garbage
collection in a significant fashion. Many previous studies,
thus, have used a victim block selection policy to meet
various design goals [5], [6]. In buffer-aware garbage
collection, the cost of the buffer-aware block merge needs
to be taken into account in selecting a victim block. In
addition, the potential benefits of the buffer-aware block
merge and the benefit of a copy-back operation should be
considered. We first present an example that shows the
need for better victim selection and then explain buffer-
aware victim block selection in detail.

6.1 Example of Buffer-Aware Victim Selection

Consider the snapshot of the flash memory and the buffer
cache in Fig. 5. The buffer cache has four dirty pages, p0, p1,
p8, and p9. p0 and p1 are hot pages that are updated
frequently while p8 and p9 are cold pages that are not
updated before its eviction. There are two data blocks, B0

and B1, and two log blocks, L0 and L1. We assume that each
block is composed of eight pages.

Suppose that the log block L0 is selected as a victim block
and none of the pages can be moved using a copy-back
operation. The FTL copies six pages, p2; . . . ; p7, from L0 and
B0 to a new data block and copies p0 and p1 from the buffer
cache. Therefore, the cost, CBA:CB

merge ðL0Þ, of the buffer-aware
block merge of L0 becomes 6 � Tf!f þ 2 � Tb!f ¼ 6 � 425 �s þ
2 � 300 �s ¼ 3,150 �s. If the log block L1 is selected instead as
a victim block, the block merge cost, CBA:CB

merge ðL1Þ, is 3,150 �s
as well because two pages p8 and p9 are copied from the
buffer cache.

However, when L0 is chosen as a victim, moving the
pages p0 and p1 from the buffer cache to the flash memory is
wasted because they will be updated shortly and then be
written to the flash memory. Thus, the benefit of the buffer-
aware block merge, BBA

benefitðL0Þ, becomes 0. If L1 is selected
as a victim, p8 and p9 will not have to be written to the flash
memory because it will remain clean. Therefore, BBA

benefitðL1Þ
is 2 � Tb!f � ð1þ �Þ. In this case, even if the value of � is
assumed to be 0 (i.e., the potential merge-cost benefit is 0),
BBA
benefitðL1Þ is 600 �s. That is, BBA

benefitðL1Þ is at least larger
than 600 �s. This benefit is potential in that it reduces the
future write cost by eliminating the evictions of p8 and p9,
but it is possible to estimate the garbage collection cost of L1

when it is being merged by subtracting the potential
benefits from the block merge cost. Thus, the garbage
collection cost of Li can be estimated as 3,150 �s� 600 �s ¼
2,550 �s. As a result, considering the potential benefits, it is
better to choose L1 as a victim block.

The situation becomes more interesting if some pages
can be moved by a copy-back operation. For example, if
eight pages, p0; . . . ; p7, can be copied back, then the cost,
CBU:CB
merge ðL0Þ, of the buffer-unaware block merge of L0

is 8 � Tp!p ¼ 1,800 �s. Therefore, even considering the
benefit of the buffer-aware block merge, L0 is a better
choice. However, if all the pages p0; . . . ; p15 can be copied
back, then CBA:CB

merge ðL1Þ reduces to 6 � ðTp!pÞ þ 2 � ðTb!fÞ ¼
1,950 �s. Accounting for BBA

benefitðL1Þ, the cost of garbage
collection is 1,950 �s� 600 �s ¼ 1,350 �s.

This example illustrates that both the potential benefits
of the buffer-aware block and the benefit of a copy-back
operation are significant factors that determine the garbage
collection cost. Thus, we should carefully consider them in
deciding a victim log block.

6.2 Victim Log Block Selection Algorithm

In BAGC, the garbage collection cost of a log block Li is
determined by 1) the block merge cost, 2) the potential

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2147

Fig. 5. An example of victim block selection.

benefits of the buffer-aware block merge, and 3) the benefit
of a copy-back operation. Our victim selection strategy is to
choose a log block whose garbage collection cost is the
smallest among all available log blocks.

For each log block Li, we first calculate the garbage
collection costs for different types of merge operations. The
garbage collection cost, GCBAðLiÞ, of Li with the buffer-
aware block merge is defined as follows:

GCBAðLiÞ ¼ CBA:CB
merge ðLiÞ þ CeraseðLiÞ �BBA

benefitðLiÞ;
where CeraseðLiÞ ¼ ðjIDðLiÞj þ 1Þ � Te;

ð6Þ

where Te is the time taken to erase a block and Te is 1:5 ms
according to [4]. CeraseðLiÞ is the time spent to erase all
the blocks involved in garbage collection. CBA:CB

merge ðLiÞ þ
CeraseðLiÞ is the cost for reclaiming Li. This cost is
compensated by the potential benefits, BBA

benefitðLiÞ. In the
example of Fig. 5, if the pages p0; . . . ; p15 can be copied back,
GCBAðL0Þ and GCBAðL1Þ are 4,950 �s and 4,350 �s, respec-
tively, because CeraseðL0Þ ¼ CeraseðL1Þ ¼ 2 � Te ¼ 3,000 �s.

The garbage collection cost, GCBUðLiÞ, of Li with the
buffer-unaware block merge is defined as follows:

GCBUðLiÞ ¼ CBU:CB
merge ðLiÞ þ CeraseðLiÞ: ð7Þ

In Fig. 5, GCBUðL0Þ ¼ GCBUðL1Þ ¼ 4,800 �s.
For each log block Li, the block merge operation that

requires the smaller cost is chosen for garbage collection.
Therefore, the garbage collection cost, GCðLiÞ, of Li is
formally expressed as follows:

GCðLiÞ ¼ minðGCBAðLiÞ; GCBUðLiÞÞ: ð8Þ

In the example of Fig. 5, for the log block L0, the buffer-
unaware block merge requires the smallest merge cost
because GCBUðL0Þ ¼ 4,800 �s < GCBAðL0Þ ¼ 4,950 �s. On
the other hand, for the log block L1, the buffer-aware
block merge requires the smallest merge cost because
GCBAðL1Þ ¼ 4,350 �s < GCBUðL1Þ ¼ 4,800 �s. Finally, the
log block with the smallest merge cost is chosen as a victim
block. In the example of Fig. 5, L1 with the buffer-aware
block merge is the best choice.

Fig. 6 describes the buffer-aware victim block selection
algorithm. For all log blocks, GCðLiÞ is first obtained. The
total number of log blocks in the FTL is denoted by Nlb. The
FTL selects the log block with the smallest GCðLiÞ as a
victim block using (6) and (7). The FTL then performs a block
merge for the victim block using the corresponding block
merge operation. Buffer Unaware Full Merge(Li) in Fig. 6 is
the original block merge of the FAST FTL [10], except that it
uses a copy-back operation. Buffer Aware Full Merge(Li) is
the same as the algorithm in Fig. 3. Since a copy-back
operation is enabled, in lines 10 and 13 of Fig. 3, pk is copied
back to pnewk if they belong to the same plane.

To calculate the garbage collection cost, GCðLiÞ, of Li,
the potential benefits of the buffer-aware block merge as
well as the benefit of a copy-back operation should be
accurately estimated. First, to know how a copy-back
operation affects the cost of garbage collection, the values
of jIMpðLiÞj, jIFpðLiÞj, and jIBp

cðLiÞj in (4) and (5) should be
known. These values can be easily obtained by looking at

source planes where source pages are placed and destina-
tion planes where source pages will be written. Second, the
value of (CBU

evictðLiÞ � CBA
evictðLiÞ) in (3) should be estimated to

know the potential benefits of the buffer-aware block
merge. We know that CBU

evictðLiÞ is jIBdðLiÞj � Tb!f . However,
CBA
evictðLiÞ is not easily estimated because it depends on the

future update probability of pages in jIBdðLiÞj.

6.3 Locality-Aware Potential Benefit Prediction

The estimation of the potential benefits. To estimate the
potential benefits, we should know in advance how many
pages in IBdðLiÞ are updated before they are evicted from a
buffer cache. Suppose that IBdðLiÞ is divided into two
subsets, IBtbe

d ðLiÞ and IBtbu
d ðLiÞ, where IBtbe

d ðLiÞ is a set of
pages to be evicted from a buffer cache without further
updates after the buffer-aware block merge, and IBtbu

d ðLiÞ is
a set of pages to be updated and to be dirty again before
their eviction. For instance, in Fig. 5, IBtbe

d ðLiÞ ¼ fp8g and
IBtbu
d ðLiÞ ¼ fp0g.
If pages in a log block Li are mostly associated with dirty

pages in IBtbu
d ðLiÞ, the potential benefits,CBA

benefitðLiÞ, are close
to 0 because CBA

evictðLiÞ approaches CBU
evictðLiÞ. Thus, CBA

evictðLiÞ
can be written as follows:

CBA
evictðLiÞ ¼

��IBtbu
d ðLiÞ

�� � Tb!f : ð9Þ

Since jIBtbu
d ðLiÞj depends on the frequency with which each

page will be updated, the value of jIBtbu
d ðLiÞj can be

approximated as follows:

��IBtbu
d ðLiÞ

�� ’
X

pk2IBdðLiÞ

P ðUpkÞ; ð10Þ

where Upk is the event that a page pk is updated before its
eviction, and P ðUpkÞ is the probability that Upk occurs.

However, the exact value of P ðUpkÞ is not available at
garbage collection time because the future behavior of a

2148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

Fig. 6. A buffer-aware victim block selection algorithm.

buffer cache is unknown. We therefore predict P ðUpkÞ by
exploiting temporal locality of I/O references. It is probable
that a recently updated page will be updated again.
Therefore, if pk is written more frequently in recent times,
we assign a larger value to P ðUpkÞ.

Three-region LRU buffer management. To determine tem-
poral locality of each page pk, we employ a novel buffer
architecture called a three-region LRU buffer, which is
depicted in Fig. 7. The three-region LRU buffer is divided
into three regions: an initial region, a TBU (to-be-updated)
region, and a TBE (to-be-evicted) region. Each region is a
normal buffer cache, which is managed by an LRU
replacement policy. When data is first written to a buffer
cache, it is placed in the initial region. The initial region is
used to separate write-once data, which is not updated after
being written to a buffer cache, from frequently updated
data. If data is subsequently updated, it is promoted to the
TBU region. Otherwise, it is evicted to the TBE region in the
order of its arrival in the initial region. If data is updated in
the TBE region, it is promoted to the TBU region. If data is
not updated for a long time, it is evicted to TBU from TBE.

The benefit of using the three-region LRU buffer is that it
helps us to categorize pages in a buffer cache depending on
their update probabilities. For example, if a page is placed
in the TBU region, it will be updated soon. Thus, assigning
a higher update probability to that page is probable.
Through a series of experiments, we found that assigning
an extreme probability value to each region is generally
useful. That is, we assign P ðUpkÞ of 1.0 to pages in the TBU
region. All pages in the TBE region have P ðUpkÞ of 0.0. The
initial region may contain both hot and cold pages. Thus,
P ðUpkÞ for the initial region is dynamically adjusted by the
ratio of the TBU region size to a buffer cache size because it
indicates a proportion of hot pages in a buffer cache.

The size of each region has an effect on deciding
jIBtbu

d ðLiÞj. For example, if the TBU region size is much
larger than the actual number of hot pages in a buffer cache,
the TBU region holds many cold pages and all of them are
regarded as hot pages. Therefore, the value of jIBtbu

d ðLiÞj
becomes high even though there are many cold pages in the
TBU region. To avoid this problem, the three-region LRU
buffer adjusts the size of each region depending on I/O
access patterns, by considering the rate at which pages
move between three regions.

Fig. 8 shows a finite state machine (FSM) corresponding to
a page in a buffer cache. This FSM has six states (Init, TBE0,
TBE1, TBU0, TBU1, and Evicted) and two inputs (update and
evict). The update input means that a page is to be updated
in response to a write request. The evict input means that a
page is to be evicted from a region by the LRU replacement
policy. Whenever the four transitions (i.e., TBU0 ! TBE1,

TBE1 ! TBU0, TBE0 ! TBU0, and TBE0 ! Evict) of FSM occur,
the size of each region is adjusted. First, if there are
many pages whose states change from TBU0 to TBE1

(i.e., TBU0 ! TBE1), it means that there are many pages with
a low update probability in the TBU region. Thus, we need to
decrease the TBU region size, w1, and increase the TBE
region size, w2. Second, if there are many transitions from
TBE1 to TBU0 (i.e., TBE1 ! TBU0), we increase w1 and decrease
w2 because many pages with a high update probability exist
in the TBE region. Third, if there are many transitions from
TBE0 to TBU0 (i.e., TBE0 ! TBU0), it means that many pages
that had to be sent from the initial region to the TBU region
were actually sent to the TBE region. Therefore, we increase
the Initial region size, w0, and decrease w2. Finally, if many
pages are evicted from a buffer cache in the TBE0 state (i.e.,
TBE0 ! Evict), we decrease w0 and increasew2 to reduce the
time that a page stays in the initial region.

The size of each region in the three-region LRU buffer is
initially set to the same and is adjusted at page granularity
whenever the transition occurs. For example, when a page
is evicted from TBU0 to TBE1, the TBU region size decreases
by a page, whereas the TBE region size increases by a page.

6.4 Reducing Computational Complexity

Whenever the FTL selects a victim log block, it is required to
compute the value of jIBtbu

d ðLiÞj for each log block Li, so as to
estimate the potential benefits. For all the pages to be moved
during the block merge of each log block Li, BAVBS needs to
examine the region where each page is placed. To reduce the
computational overhead required for obtaining jIBtbu

d ðLiÞj,
the three-region LRU buffer is managed at the granularity of
a block, instead of a page. That is, all the pages belonging to
the same logical block stay in the same region of a buffer
cache and move together when they are promoted to or
evicted from another region. This means that all the pages in
the same logical block have the same P ðUpkÞ. Therefore, the
value of jIBtbu

d ðLiÞj can be obtained at a lower cost by using
the number of dirty pages in a buffer cache for logical blocks
(which are involved in the block merge of a log block Li) and
the regions where those logical blocks are placed. This
approach sacrifices the accuracy of detecting the update
probability of an individual page, but it reduces the
computational overhead greatly.3

If a processor and a memory module in a storage device
have limited performance, the computational overhead
could be high even if the three-region LRU buffer is
managed at the granularity of a block. To reduce this
computational overhead, we propose a limited version of

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2149

3. A more detailed analysis of the computational overhead of the three-
region LRU buffer can be found in Appendix (which is available from our
on-line supplemental material.)

Fig. 7. A three-region LRU buffer.
Fig. 8. A state transition diagram of the three-region buffer.

BAGC which examines a limited number, Nlimit
lb , of log

blocks starting from the least-recently written (LRW) log
block. The intuition behind this approach is that log blocks
close to the LRW log block tend to have a relatively low
merge cost because they are likely to have few valid pages.
Since the goal of BAVBS is to choose a victim log block with
both the low block merge cost and the high potential
benefits, it is reasonable to estimate the potential benefits of
those log blocks if it is difficult to examine all available log
blocks. There is a tradeoff between performance and
computational overhead in the limited version of BAGC.
If the value of N limit

lb is set to 1, BAVBS works like BABM
and there is a negligible overhead in choosing a victim. As
N limit
lb approaches Nlb, better performance is achieved at a

cost of computation.

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

To evaluate the performance of BAGC, we developed a
trace-driven simulator that models a flash device depicted
in Fig. 2. We compared BAGC with three buffer manage-
ment schemes, BLRU [15], [16], FAB [15], and BPLRU [16],
running on top of various FTLs, including BAST [9], FAST
[10], and SuperBlock [11]. For BAGC, the block merge and
victim selection modules were modified as described in
Sections 5 and 6. The three-region LRU buffer was managed
at the granularity of a block because the page-level buffer
management requires too much computation.

In our evaluation, a buffer cache was used as a write
buffer. Using a write buffer in a storage device inevitably
lowers data reliability because all dirty data in a buffer
cache will be lost when a power failure occurs or the system
suddenly stops working. To prevent data loss from such
exceptional events and provide a high degree of data
reliability, any dirty pages staying in a buffer cache for
more than 30 seconds were flushed to flash memory.

The flash parameters were based on Samsung’s NAND
flash memory with 64 2-KB pages in a block [4]. The page
read time, the page write time, and the block erasure time
were set to 25 �s, 200 �s, and 1.5 ms, respectively, and the
page transfer time through the flash bus was 100 �s.
The value of � was dynamically decided by taking the
average block merge cost using a moving average algo-
rithm. The value of Tb was assumed to be 0. The values of
P ðUpkÞ for the TBU and TBE regions were set to 1.0 and 0.0,

respectively. The value of P ðUpkÞ for the initial region was
dynamically adjusted as described in Section 6.3. The flash
simulator was configured with nine flash chips, each of
which is 1 GB with four planes. For evaluation with aged
devices, all blocks except for log blocks were initially filled
with valid data.

7.2 Benchmarks

Our evaluation was conducted with six benchmark pro-
grams, which are listed in Table 1. We used four well-
known benchmarks, Bonnie++, Tiobench, Postmark, and
Iozone, to assess performance under I/O intensive environ-
ments where I/O performance really matters. We also
evaluated BAGC with a real-world trace recorded from
real-user activities on a desktop PC. Finally, we used the
Mobile trace that captures the workload of a portable media
player, which is one of the representative mobile applica-
tions. Microsoft Windows XP was used for our trace
collection, and all the traces were extracted from a disk
driver using the Diskmon utility [20].

The benchmark programs have distinctive characteristics
in terms of data locality and I/O reference patterns.
Bonnie++ and Postmark are small-file-oriented and meta-
data-intensive workloads. Iozone is designed to measure
streaming performance for large files, but it also incurs
many updates to metadata and data. Therefore, they exhibit
relatively high locality. Tiobench incurs many random
writes, so it exhibits quite low locality. Mobile incurs many
sequential writes for multimedia files with small metadata
updates. PC is a real-life trace, containing many sequential
writes for large files, repetitive updates for small files, and
many random writes. PC exhibits higher locality than
Tiobench and Mobile.

7.3 Performance Analysis

In this section, we evaluate two main techniques of the
BAGC scheme, BABM and BAVBS, so as to understand
their effects on performance. We use the FAST FTL as our
default FTL scheme and employ the three-region LRU
buffer for buffer management. The buffer cache size is set to
32 MB and 512 log blocks are used. The evaluation results
with other FTL and buffer management schemes are given
in Section 7.4. To know the maximum performance that
BAGC can achieve, Nlimit

lb is set to 512. We evaluate the
limited version of BAGC in Section 7.6.

7.3.1 Overall Performance

Table 2 shows the I/O time under the different configura-
tions. The I/O time is the total amount of time taken
to perform all I/O operations, including page reads,
page writes, and block erasures. We analyze the perfor-
mance of the following three schemes: BUBM, BABM, and

2150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

TABLE 1
Descriptions of Benchmark Programs

TABLE 2
I/O Time of BUBM, BABM, and BABM+BAVBS

BABM+BAVBS. BUBM employs the buffer-unaware block
merge (BUBM) scheme and selects a victim block using the
round-robin policy [10], which is a default victim selection
policy used in the FAST FTL. BABM employs the buffer-
aware block merge scheme with the round-robin victim
selection policy. BABM+BAVBS is the same as BABM except
that it uses the buffer-aware victim block selection scheme.

It is clear from Table 2 that BABM+BAVBS shows the best
performance among all the schemes evaluated. BABM

improves performance by 12.1 percent, on average, over
BUBM. This benefit comes from the elimination of un-
necessary page migrations during block merges. BABM+-

BAVBS chooses a victim log block to maximize the benefit of
the buffer-aware block merge, so it further reduces I/O time
by 19.4 percent, on average, over BUBM.

The performance of buffer-aware garbage collection
varies from one benchmark to another. Thus, we investigate
some of the factors that might affect performance. We first
look at how many page writes are removed by eliminating
unnecessary page migrations and then explain how this
affects the garbage collection cost.

7.3.2 Reduction in Page Writes

Since a buffer cache is used as a write buffer, all the pages
that are written to a buffer cache are initially dirty. These
dirty pages can be cleaned by buffer-aware block merges. If
there are no further updates on them, they are evicted as
clean pages from a buffer cache, and thus the number of
dirty page writes is reduced. As expected, as many useless
page migrations are eliminated, more clean pages are
evicted from a buffer cache.

Table 3 compares the numbers of dirty page writes
according to three different schemes, which are denoted by
Dirty. We only consider dirty pages written to random log
blocks because they incur expensive full merges. For BABM
and BABM+BAVBS, we show the numbers of pages that
become clean by buffer-aware block merges and then be
evicted from a buffer cache without further updates. These
numbers are denoted by Clean in Table 3.

As shown in Table 3, BABM reduces the number of dirty
page writes by 11-80 percent over BUBM. BABM+BAVBS
further reduces the number of dirty page writes by 0.6-
15 percent over BABM because it eliminates more useless
page migrations, thereby increasing clean pages evicted
from a buffer cache. The increase in the number of the clean
pages with BABM+BAVBS also shows that the proposed
BAVBS technique effectively chooses a victim log block that
has cold pages in a buffer cache. In our observation, on

average, only 1.3 percent of the clean pages are updated
before being evicted from a buffer cache.

In the cases of Bonnie++ and Tiobench, dirty page writes
do not decrease as much as the increase in clean pages. This
is because many dirty pages that are to be written to a
sequential log block are changed to clean pages by buffer-
aware block merges. Thus, the number of dirty pages
written to random log blocks is not changed greatly. In the
case of Mobile, a large number of dirty pages are eliminated
by BABM and BABM+BAVBS, but its performance is not
greatly improved as shown in Table 2. In the Mobile
benchmark, almost all write requests are sent to a sequential
log block, so the garbage collection overhead is very low.
This is the reason why the effect of buffer-aware garbage
collection on performance is trivial.

7.3.3 Reduction in Garbage Collection Overhead

The buffer-aware garbage collection technique not only
reduces the number of dirty page writes to flash memory,
but also decreases the number of block merge operations.
Table 4 shows the percentage of block merge operations by
type, which are normalized to BUBM. BABM and
BABM+BAVBS eliminate lots of full merges and partial
merges that require many page migrations, whereas the
proportion of switch merges is not changed greatly.

For Bonnie++, full merge operations performed with
BABM+BAVBS are slightly increased in comparison to
those with BABM. However, the number of pages moved
during full merges is reduced to 84 percent of BABM, and
thus the garbage collection overhead is accordingly low-
ered. In the case of Mobile, full merges are not observed
with BABM and BABM+BAVBS. The Mobile benchmark
writes only a small number of pages to random log blocks,
and many of them become clean in a buffer cache by buffer-
aware partial merges. As a result, a full merge operation is
not invoked because random log blocks are not fully filled
with data.

7.3.4 Reduction in Block Erasure Operations

Fig. 9 shows the number of block erasure operations,
normalized to BUBM. BABM+BAVBS shows the smallest

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2151

TABLE 3
A Comparison of Dirty Page Writes of

BUBM, BABM, and BABM+BAVBS

This table also shows the number of pages cleaned by buffer-aware
block merges.

TABLE 4
A Percentage of Block Merges by Type, Normalized to BUBM

Fig. 9. Block erasure operations, normalized to BUBM.

erasure operations among all the schemes. This is because
BABM+BAVBS eliminates a large number of useless page
migrations during garbage collection, decreasing the num-
ber of blocks involved in block merges.

7.3.5 Impact of a Copy-Back Operation

We finally analyze the effect of a copy-back operation on
performance. Table 5 attributes the performance improve-
ment achieved by BABM+BAVBS over BUBM to the
elimination of unnecessary page migrations and the use
of a copy-back operation. We can see that a copy-back
operation improves the overall performance by 16 percent,
on average. In the cases of Bonnie++ and Mobile, there are
not many chances to exploit a copy-back operation when
moving pages, and thus the benefit of using copy-back
operations is limited.

We evaluate the performance of BABM+BAVBS when it
chooses a victim log block without consideration of the
benefit of a copy-back operation. In our observation, the
number of useless page migrations eliminated increases by
up to 5 percent because it always chooses a log block with
many dirty pages in a buffer cache. The overall perfor-
mance, however, is reduced by up to 10 percent due to a
high page transfer time.

7.4 Performance Comparisons with Existing Buffer
Management and FTL Schemes

After the evaluation of several subtechniques that compose
BAGC, we compare the performance of BAGC with three
buffer management schemes, BLRU, BPLRU, FAB running
under three FTL schemes, BAST, FAST, and SuperBlock.
The buffer cache size is set to 32 MB and 512 log blocks are
used. Nlimit

lb is set to 512.
Fig. 10 shows our evaluation results. In this figure, the

block-level LRU scheme (BLRU), the BPLRU scheme, and
the FAB scheme are referred to as BUGC(BLRU),
BUGC(BPLRU), and BUGC(FAB), respectively. All those
schemes do not use any buffer-aware techniques, so they
use the original FTL schemes. The proposed buffer-aware
garbage collection scheme is the one labeled as BAGC in

Fig. 10. For BAGC, the underlying FTL schemes are
modified to support buffer-aware block merge and
buffer-aware victim block selection operations. BAGC uses
the three-region LRU buffer scheme for buffer management
because it must know the update probabilities of pages in a
buffer cache to determine a victim log block. Note that
BAGC is the same configuration to BABM+BAVBS in
Section 7.3. The results shown in Fig. 10 are normalized
to BUGC(BPLRU). BUGC(BPLRU) always shows the same
performance for each benchmark, regardless of the under-
lying FTL algorithm, because of the page padding
technique [17].

In BAST with 512 log blocks, BAGC has 11 and
21 percent shorter I/O time than BUGC(BLRU) and
BUGC(FAB), on average, respectively. However, the
performance of BAGC is somewhat worse than that of
BUGC(BPLRU). This problem is due to the log block
thrashing problem [10], which is typically observed when
available log blocks are smaller than a working set size.
Unlike other schemes, BUGC(BPLRU) is unaffected by the
block thrashing problem because it does not utilize log
blocks for its page padding technique [16]. This is the
reason why BUGC(BPLRU) shows better performance than
BAGC. To examine what happens with enough log blocks,
we evaluate performance with 2,048 log blocks. As
expected, BAGC exhibits the best performance because
the block thrashing problem disappears; it outperforms
BUGC(BLRU), BUGC(FAB), and BUGC(BPLRU) by 20, 31,
and 23 percent, respectively. The FAST FTL is designed to
prevent the log block thrashing problem by increasing
associativity between log blocks and data blocks [10].
Therefore, with 512 log blocks, BAGC achieves 21, 40, and
43 percent shorter I/O time than BUGC(BLRU),
BUGC(BPLRU), and BUGC(FAB), on average, respectively.
Using the SuperBlock FTL, BAGC runs 11, 29,
and 6 percent faster, on average, than BUGC(BLRU),
BUGC(FAB), and BUGC(BPLRU), respectively, but the
performance improvement is less significant than the
change in BAST and FAST. This is due to the inflexibility
of victim selection in SuperBlock FTL. Unlike BAST and
FAST that choose the most cost-effective victim among all
available log blocks, SuperBlock allows us to select a
victim from a small number of log blocks (e.g., eight
blocks) within a superblock [11].

An important observation shown in Fig. 10 is that with
BAGC, FAST exhibits the best performance among all
the FTL schemes evaluated; it outperforms BAST and
SuperBlock by 19 and 37 percent, respectively, on average.
Therefore, we can conclude that the combination of the
FAST FTL and BAGC is the most effective way to minimize
the garbage collection cost.

2152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

TABLE 5
An Attribution of Performance Improvement

to Processes within BABM+BAVBS

Fig. 10. Performance comparisons of buffer management and FTL schemes. These results are normalized to BUGC+BPLRU.

7.5 The Effect of the Buffer Cache Size

Fig. 11 shows the performance of BAGC when a buffer
cache size varies from 8 to 512 MB. We use the FAST FTL
and the number of log blocks is 512. Overall, BAGC exhibits
the best performance, regardless of a buffer cache size. It
improves the effective hit ratio of writes by eliminating
some writes to flash memory, and thus its performance is
maintained when the buffer cache is small. For example, in
Postmark, BAGC achieves the write hit ratio of 2.1 percent
with the buffer cache of 8 MB, but it requires 18 percent
fewer page writes than other schemes.

BUGC(FAB) gives the worst performance on some
benchmarks (e.g., Bonnie++, Iozone, and PC) when the
size of a buffer cache is small. BUGC(FAB) selects the block
with the largest number of valid pages in a buffer cache as
a victim block. However, it often evicts blocks with high
locality, thus increasing the number of writes to flash
memory [17]. BUGC(BPLRU) performs poorly on some
benchmarks (e.g., Tiobench, Postmark, and PC) where the
utilization of a block (i.e., the number of pages belonging to
a block) evicted from a buffer cache is relatively low. Due
to its page padding technique [17], poorly utilized blocks
incur many extra I/Os to flash memory, increasing the
garbage collection overhead. Both BAGC and BLRU are free
from these side effects because they use the pure block-
level LRU policy.

In some benchmarks (e.g., including Iozone, PC, and
Mobile), the I/O performance is not greatly improved even
when the buffer cache size is relatively large. This is mainly
due to the effect of a flush policy, which writes dirty pages
staying in a buffer cache for a long time to flash memory.
This flush policy is essential to a write buffer for ensuring a
high degree of data reliability. However, with a flush
policy, hot pages must be written to flash memory, despite
of their high localities. Therefore, the impact of using a large
buffer cache on performance is less effective.

7.6 The Effect of the Number of Log Blocks
Examined

We evaluate the performance of the limited version of
BAGC while varying the number, Nlimit

lb , of log blocks
examined from 1 to 1,024. The FAST FTL is used as the FTL
scheme and 1,024 log blocks are available in the FTL. The
buffer cache is set to 32 MB. The results, shown in Fig. 12,
demonstrate that increasing Nlimit

lb generally reduces the I/O
time. For the Bonnie++, the performance saturates some-
where between 128 and 256 log blocks. The performance of
BAGC on Tiobench, Postmark, Iozone, and PC continues to
improve as Nlimit

lb increases. The performance of Mobile is
not changed much because the garbage collection overhead
itself is trivial. These results clearly indicate that it is
necessary to determine the value of Nlimit

lb with great
consideration of a characteristic of a workload.

8 CONCLUSION

We have presented a new buffer-aware garbage collection
scheme called BAGC, which combines two principal
techniques: buffer-aware block merge and buffer-aware
victim block selection. BABM improves the efficiency of a
block merge by eliminating unnecessary page migrations.
BAVBS improves I/O performance by selecting a victim
block in a way that takes account of the potential benefits of
the buffer-aware block merge. Experimental results show
that BAGC improves I/O performance by up to 43 percent
compared to existing buffer-unaware schemes.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable suggestions that greatly improved this
paper. This work was supported by the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education under Grant 2012-0006417. The ICT at Seoul
National University and IDEC provided research facilities
for this study. An earlier version of this paper was
presented at the 2008 International Workshop on Software
Support for Portable Storage [1].

REFERENCES

[1] S. Lee, D. Shin, and J. Kim, “Buffer-Aware Garbage Collection for
NAND Flash Memory-Based Storage Systems,” Proc. Int’l Work-
shop Software Support for Portable Storage, pp. 27-32, 2008.

[2] S. Lee, D. Shin, and J. Kim, “Buffer-Aware Garbage Collection
Technique for NAND Flash-Based Storage Devices,” Technical
Report TR-CARES-04-11, http://cares.snu.ac.kr/download/TR-
CARES-04-11.pdf, 2011.

LEE ET AL.: BAGC: BUFFER-AWARE GARBAGE COLLECTION FOR FLASH-BASED STORAGE SYSTEMS 2153

Fig. 11. I/O time against the buffer cache size.

Fig. 12. An evaluation of the limited version of BAGC.

[3] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A Multi-
Channel Architecture for High-Performance NAND Flash-Based
Storage System,” J. Systems Architecture, vol. 53, no. 9, pp. 644-658,
2007.

[4] “K9WBG08U1M NAND Flash Memory,” Samsung Corp., 2007.
[5] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main

Memory Storage System,” Proc. Int’l Conf. Architectural Support
for Programming Languages and Operating Systems, pp. 86-97, 1994.

[6] H.-J. Kim and S.-G. Lee, “A New Flash Memory Management for
Flash Storage System,” Proc. Computer Software and Applications
Conf., pp. 284-289, 1999.

[7] H.-L. Li, C.-L. Yang, and H.-W. Tseng, “Energy-Aware Flash
Memory Management in Virtual Memory System,” IEEE Trans.
Very Large Scale Integration Systems, vol. 16, no. 8, pp. 952-964, Aug.
2008.

[8] A. Ban, “Flash File System,” US patent 5,404,485, Washington,
D.C.: Patent and Trademark Office, Apr. 1995.

[9] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for Compact Flash Systems,”
IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May
2002.

[10] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A Log Buffer Based Flash Translation Layer Using Fully
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, pp. 1-27, 2007.

[11] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A Superblock-Based Flash
Translation Layer for NAND Flash Memory,” Proc. Int’l Conf.
Embedded Software, pp. 161-170, 2006.

[12] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives:
Measurements and Analysis,” Proc. USENIX Conf. File and Storage
Technologies, pp. 115-128, 2010.

[13] S. Boboila and P. Desnoyers, “Performance Models of Flash-Based
Solid-State Drives for Real Workloads,” Proc. Symp. Mass Storage
Systems and Technologies, pp. 1-6, 2011.

[14] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A Case
for Flash Memory SSD in Enterprise Database Applications,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 1075-1086, 2008.

[15] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: Flash-
Aware Buffer Management Policy for Portable Media Players,”
IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 485-493, May
2006.

[16] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” Proc. USENIX Conf.
File and Storage Technologies, pp. 239-252, 2008.

[17] D. Seo and D. Shin, “Recently-Evicted-First Buffer Replacement
Policy for Flash Storage Devices,” IEEE Trans. Consumer Electro-
nics, vol. 54, no. 3, pp. 1228-1235, Aug. 2008.

[18] S. Ji and D. Shin, “Locality and Duplication-Aware Garbage
Collection for Flash Memory-Based Virtual Memory Systems,”
Proc. Int’l Conf. Computer and Information Technology, pp. 1764-1771,
2010.

[19] Y.J. Seong, E.H. Nam, J.H. Yoon, H. Kim, J.-Y. Choi, S. Lee, Y.H.
Bae, J. Lee, Y. Cho, and S.L. Min, “Hydra: A Block-Mapped
Parallel Flash Memory Solid-State Disk Architecture,” IEEE Trans.
Computers, vol. 59, no. 7, pp. 905-921, July 2010.

[20] M. Russinovich, “DiskMon for Windows v2.01,” http://technet.
microsoft.com/en-us/sysinternals/bb896646.aspx, 2006.

Sungjin Lee received the BE degree in
electrical engineering from Korea University
in 2005 and the MS and PhD degrees in
computer science and engineering from the
Seoul National University in 2007 and 2013,
respectively. He is currently working as a
postdoctoral associate in the Computer
Science and Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology.
His research interests include storage systems,

operating systems, and embedded software.

Dongkun Shin received the BS degree in
computer science and statistics, the MS degree
in computer science, and the PhD degree in
computer science and engineering from Seoul
National University, Korea, in 1994, 2000, and
2004, respectively. He is currently an assistant
professor in the School of Information and
Communication Engineering, Sungkyunkwan
University (SKKU). Before joining SKKU in
2007, he was a senior engineer at Samsung

Electronics Co., Korea. His research interests include embedded
software, low-power systems, computer architecture, and real-time
systems. He is a member of the IEEE.

Jihong Kim received the BS degree in compu-
ter science and statistics from Seoul National
University (SNU), Korea, in 1986, and the MS
and PhD degrees in computer science and
engineering from the University of Washington,
Seattle, in 1988 and 1995, respectively. Before
joining SNU in 1997, he was a technical staff
member at the DSPS R&D Center of Texas
Instruments in Dallas, Texas. He is currently a
professor at the School of Computer Science

and Engineering, Seoul National University. His research interests
include embedded software, low-power systems, computer architecture,
and storage systems. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2154 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

