
462 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

Contributed Paper
Manuscript received 04/15/12
Current version published 06/22/12
Electronic version published 06/22/12. 0098 3063/12/$20.00 © 2012 IEEE

Resource-Aware Sector Translation Layer
for Resource-Sensitive NAND flash-based Storage Systems

Keonsoo Ha, Taejin Kim, Byoung Young Ahn, and Jihong Kim, Member, IEEE

Abstract — As a need for high-density storage capacity

increases on many high-end mobile devices such as
smartphones, large NAND flash-based storage systems are
more commonly used in such smart devices. For these storage
systems, however, it becomes a challenge to use large NAND
flash without incurring a large system overhead such as a
large memory requirement. We propose a novel flash
translation layer (FTL), called Resource-Aware Sector
Translation Layer (RAST), which is optimized to reduce the
memory footprint of an FTL for resource-sensitive storage
systems. RAST is based on a hybrid mapping scheme which
uses a group of blocks as a unit of mapping so that a small
mapping table can cover a large number of blocks. RAST
further saves the memory footprint by using an on-demand
metadata management scheme which brings only recently
accessed metadata into memory. RAST employs a sampling-
based wear-leveling scheme which provides competitive wear-
leveling performance with very small memory. Our
experimental results show that RAST can achieve a good
performance level for resource-constraint storage systems
with the small memory footprint. For 32 GB NAND flash
memory, RAST can achieve the write throughput of up to 57
MB/s using only 34 kB memory1.

Index Terms — NAND Flash Memory, Flash Translation
Layer, Data Structure, Mobile Storage System.

I. INTRODUCTION

As a need for high-density storage capacity increases on
high-end mobile devices such as smartphones and tablet PCs,
large-capacity mobile secondary storage systems are widely
used. For example, latest smartphones and tablet PCs employ
large NAND flash memory with a capacity of 16 GB to 64
GB. Although the storage capacity of these high-end mobile
NAND-based storage systems has dramatically increased,
their power and cost constraints have not been relaxed as
much. For example, most high-end mobile storage systems are
responsible for delivering their available maximum power
budget to mobile storage systems. The storage systems can

1 This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MEST) (No. 2011-0020426,
No. R33-10095, and No. 2011-0020514). The ICT at Seoul National
University provided research facilities for this study.

Keonsoo Ha, Taejin Kim, and Jihong Kim are with the School of Computer
Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea (e-mail:{air21c, taejin1999, jihong}
@davinci.snu.ac.kr).

Byoung Young Ahn is with Indilinx, Inc., Yatap-dong, Bundang-gu,
Seongnam-si, Gyeonggi-do 463-760, Korea (e-mail: eddie@indilinx.com)

internally optimize performance under the strict power budget.
Furthermore, since most high-end mobile devices such as
smartphones and table PCs are consumer products, these
mobile storage systems are also very cost-sensitive. Therefore,
it is important to optimize the system’s resource usage in
designing these mobile storage systems.

In NAND flash-based storage systems, as the capacity of
NAND flash memory grows, the required amount of memory
for implementing a flash translation layer (FTL) also increases.
In general, an FTL uses memory to store various metadata such
as information about a mapping table, block types, block erasure
counts, and the availability of pages in blocks. Since the size of
metadata is increasing proportionally to the capacity of NAND
flash memory, a large capacity storage system requires a large
amount of memory space in storing metadata. For example,
even in a memory-efficient mapping scheme such a block-level
mapping scheme, 32 GB NAND flash memory with the 4 kB
page size requires about 9 MB of memory to keep the required
metadata of a block mapping-based FTL. Considering most
resource-sensitive storage systems use less than 256 kB of
SRAM, 9 MB memory requirement is not acceptable for most
mobile storage systems.

One of the most commonly used methods to cope with the
large memory requirement of FTLs in resource-sensitive
storage systems is to use NAND flash memory to store the
metadata of an FTL. In this case, the performance of a storage
system is suffered significantly from frequent accesses to
NAND flash memory to read metadata. Another common
solution is to use SDRAM, which is often used as a data
buffering purpose for improving storage performance. In this
case, however, if a large portion of SDRAM is used for
storing the metadata instead of buffering data, the
performance of storage systems will be degraded significantly.
Moreover, adopting the extra memory component may be a
burden in resource-sensitive mobile storage systems in terms
of cost and energy consumption.

In this paper, we propose a novel FTL, called resource-
aware sector translation layer (RAST), which was
specifically designed for resource-sensitive storage systems.
RAST dramatically reduces the memory footprint of an FTL
by minimizing the memory usage in implementing key
functions of an FTL. RAST reduces the memory requirement
of storing a mapping table by adopting a hybrid mapping
scheme which operates at both page level and block-group
level. This large granularity mapping scheme can cover a
large number of blocks with limited memory space. RAST
further saves the memory footprint by applying an on-demand

K. Ha et al.: Resource-Aware Sector Translation Layer for Resource-Sensitive NAND flash-based Storage Systems 463

metadata management scheme which maintains only recently
accessed metadata in memory, thus requiring a very small-
sized memory. In addition to the on-demand metadata
management scheme, RAST performs the partial garbage
collection process by exploiting long idle times of mobile
storage systems in order to avoid performance degradation
from excessive garbage collection. RAST also employs a
sampling-based block allocation technique which contributes
to the wear-leveling management with limited memory
resource while minimizing the implementation overhead of a
wear-leveling technique such as unnecessary NAND flash
memory accesses.

In order to evaluate the proposed FTL, RAST, we have
implemented RAST in both a trace-driven FTL simulator and
a real platform board. We carried out experiments to evaluate
the memory requirement, the write performance, and the
wear-leveling performance of RAST. The experimental results
show that RAST uses only about 34 kB of memory for 32 GB
NAND flash memory-based storage systems. In terms of
performance, RAST achieves write throughput up to about 57
MB/s with sequential write requests. Finally, the experimental
results show that RAST has wear-leveling performance which
is comparable to other existing memory-intensive wear-
leveling schemes.

The rest of this paper is organized as follows. In Section II, we
show that it is important for resource-sensitive storage systems to
reduce the memory footprint of an FTL. In Section III, we
review previous works related to memory usage in FTLs. We
describe our proposed FTL, RAST, in Section IV. Section V
shows the experimental results, and we conclude in Section VI.

II. FTL MEMORY REQUIREMENTS

FTLs use metadata to support its main functions such as
address translation, free block allocation, wear-leveling
management, and garbage collection. Typical metadata are
maintained using a mapping table, a page status table, a block
status table, and erasure count table. The mapping table
contains translation information between a logical block
address used in a host system and corresponding physical
address in NAND flash memory. The page status table keeps
track of information on the page availability. Before an FTL
writes the requested data to a page, the status of the page in
the page status table is checked by the FTL to find out
whether the page has been written by previously requested
data or not. The block status table indicates the current status
of blocks. A block can be in one of four states: free, clean,
dirty, or dead. This block state information is used when an
FTL allocates a free block and performs a garbage collection
process. The block erasure count table stores the number of
performed erase operations of each block. This erasure count
information is also necessary to perform wear-leveling
management.

Although the size of the metadata necessary for an FTL
implementation will be a function of various factors such as
the total flash capacity, the mapping policy, and the wear-

leveling management scheme, it is generally true that the
larger NAND flash memory is, the higher FTL memory
footprint is. TABLE I shows how the memory requirements of
an FTL with various mapping units are used. We assume that
32 GB NAND flash memory is used with the 512 kB block
size and the 4 kB page size. In TABLE I, a block group
consists of four blocks. Nentry indicates the number of entries
in a mapping table, and SMapping, SPage, SBlock, and SErasure denote
the required memory footprint for storing the mapping table,
the status of pages, the status of blocks, and erasure counts of
blocks, respectively. In the case of a mapping table, as the size
of a mapping unit is getting larger, the required memory
footprint becomes smaller.

TABLE I

MEMORY REQUIREMENTS FOR STORING METADATA OF FTLS

Mapping
Unit

Nentry
Memory Requirements (kB)

SMapping SPage SBlock SErasure Total

Page 8 M 32,768 0 256 256 33,280
Block 64 k 256 8,192 256 256 8,960
Block
Group

16 k 64 8,192 16 16 8,288

Although the required memory footprint for storing a

mapping table can be reduced by increasing the mapping
granularity, however, the total required memory footprint is
not decreased as much as the size of a mapping table is
reduced. This is mainly because, unlike a page-level mapping
table, a mapping table using a bigger mapping unit which is
larger than a page does not maintain information about the
availability of each page. Therefore, FTLs using a bigger
mapping unit need to manage page status in extra memory.
Because of the large-sized metadata, even an FTL using a
block group as a mapping unit requires at least about 8 MB of
memory. Since most resource-sensitive storage systems have a
very small-sized SRAM whose size is ranging from 32 kB to
256 kB, the large memory requirement can be a burden in
such storage systems.

Unfortunately, an FTL requiring large-sized memory
cannot perform well under a limited memory constraint of
resource-sensitive storage systems. In performing address
translation, performance of an FTL decreases if the whole
mapping table cannot be loaded into SRAM. In this case, only
some parts of the mapping table can be loaded into SRAM
and the rest of the mapping table must be stored in either
SDRAM or NAND flash memory. SDRAM can be adopted in
a mobile storage system as an option for a data buffering
purpose if there is a need for improved performance. If
SDRAM stores some portion of the mapping table, it is
difficult to expect performance improvement by data buffering
because available SDRAM space for data buffering decreases.

On the other hand, if the address information of the
requested data has been stored in NAND flash memory, an
FTL reads the NAND flash memory so that the address
information can be loaded into memory. Although this
approach is effective to reduce the required memory, the
frequent accesses to NAND flash memory decrease the

464 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

performance of a storage system. In particular, as the mapping
unit gets smaller, an FTL is likely to read NAND flash
memory more frequently. The reason is that as a mapping unit
gets smaller, the range of addresses covered by a single
mapping entry becomes narrower, so it is more likely that a
requested address does not exists in the same size of memory.
For this reason, the existing page-level mapping-based FTL
using this on-demand approach [1] is not suitable for
resource-sensitive storage systems.

Besides address translation, the tight memory resource
budget may cause performance degradation in wear-leveling
management. The basic approach of a wear-leveling algorithm
is to allocate the youngest block with the minimum erasure
counts when an FTL requires a free block. In this approach,
the FTL has to keep track of erasure counts of all the blocks in
memory. Although the required memory footprint for storing
the erasure counts information is much smaller than that of a
mapping table, 512 kB of memory requirement for keeping
the information on erasure count of all blocks cannot be
acceptable for the mobile storage systems. Similar to the data
block mapping table, since the absence of the erasure counts
information in memory causes extra accesses to NAND flash
memory, the method which maintains erasure counts of all
blocks and finds the youngest block among them is not
suitable for such storage systems. From the discussions, above,
it is clean that an FTL employed in resource-sensitive mobile
storage systems should be designed carefully to satisfy
performance requirement under a given resource constraint.

III. RELATED WORKS

The memory requirement of an FTL has been regarded as a
critical constraint in designing NAND flash memory-based
storage systems. The page-level mapping scheme is an ideal
solution in terms of performance if there is no limitation in
resource usage. Although this scheme efficiently utilizes
blocks within the flash, it requires a large mapping table to be
stored in memory. As the size of NAND flash memory
increases, the amount of required memory becomes a system
burden. In addition to the translation information, other
metadata also need memory space to be stored. Therefore, it is
impractical to implement the page-level mapping scheme in
mobile systems because of limited system resources.

As an alternative for systems with a limited resource
environment, the block-level mapping scheme has been used,
which reduces the size of a mapping table by a factor of the
number of pages per block. However, since requested data
must be stored in a particular page within each block, this
block-mapping scheme cannot efficiently use a block, thus
increasing required blocks for storing data. As a result, the
block-level mapping scheme invokes frequent garbage
collection processes, and the performance overhead by the
garbage collection can dramatically decrease the performance
of storage systems. Moreover, although the required data size
decreases compared to the page-level mapping, the whole
mapping table may not be small enough to be stored in
memory if a target storage system has a small-sized memory.

In order to overcome the disadvantages of these mapping
schemes, the hybrid mapping schemes based on both page-
level and block-level mapping schemes have been proposed
[2]-[4]. This hybrid mapping scheme uses a page-level
mapping table only for updated data and a block-level
mapping table for other data. Since the hybrid mapping
scheme can place a given data in any offset within a block
where the page-level mapping table covers, it can avoid
excessive garbage collection overhead. Moreover, this scheme
reduces the required memory footprint for storing mapping
information by adopting a block-level mapping scheme.
However, like the above mapping schemes, if the target
system does not have enough memory space to keep both the
mapping tables in the hybrid-mapping scheme, the scheme
cannot be applied to the resource-sensitive systems.

As an enhanced page-level mapping scheme, an on-demand
based page-level FTL (DFTL) [1] has been proposed. This
scheme enables the page-level mapping scheme to be
implementable with the limited memory by loading only
requested mapping table entries in the memory. The FTL
assumes that a high temporal locality exists in requested
addresses. Thus, NAND flash memory may suffer from
performance degradation by frequent read accesses if the
temporal locality of the translated addresses is low. Moreover,
since the scheme is based on the page-level mapping scheme,
an entry covers only one address, thus limiting the range
covered by loaded memory entries. As a result, DFTL is
vulnerable to performance degradation when a sequential-
dominant workload exists.

u-FTL [5] also reduces the required memory footprint for
storing metadata of an FTL. This FTL implements a mapping
table with a tree data structure called u-FTL which consists of
mapping entries whose sizes can be varied. Since each
mapping entry can translate the consecutive addresses of a
sequential workload, u-FTL can reduce the size of a mapping
table. However, since the size of this FTL is dependent on the
workload pattern, the number of entries can reach that of a
page-level mapping table under completely random workloads.
Therefore, u-FTL is not implementable as well in the
resource-scarce storage systems because the worst case, in
terms of the required memory footprint, may occur.

Besides a mapping table, maintaining block erasure count
information in memory is another challenging problem in
mobile storage systems. If there is no block erasure
information when a free block is requested by an FTL, a
NAND flash memory must be accessed in order to find the
youngest block. Since the whole block status information is
too large to be stored in memory, a sampling-based block
selection technique has been suggested [6]. This scheme holds
a small number of candidate blocks and sorts them according
to performed erasure counts. The candidate free blocks are
randomly selected among free blocks. After allocating the
youngest free block among the candidate blocks, some parts
of the candidate blocks are replaced with newly selected free
blocks. This scheme can reduce the amount of required
memory for maintaining the certain number of free blocks.
However, the selection based on a random function causes
several extra NAND flash memory read operations if the

K. Ha et al.: Resource-Aware Sector Translation Layer for Resource-Sensitive NAND flash-based Storage Systems 465

block erasure count information is scattered in various pages.
As a result, the response time of a NAND flash memory
operation is extended corresponding to the status of metadata
in NAND flash memory.

IV. RAST: RESOURCE-AWARE SECTOR TRANSLATION

LAYER

We thus propose a novel FTL, namely RAST, which is
designed for resource-sensitive NAND flash-based storage
systems. Fig. 1 shows an overview of the target storage
system. Its layout is similar to a typical solid state drive
(SSD), which has multi-channel architecture, but the resource
of the target storage system is not as abundant as an SSD. This
target storage system consists of a NAND flash memory array,
a processor, SRAM, and mobile SDRAM. The NAND flash
memory array in the storage system is organized with four
channels and four ways which can be operated in parallel.
This storage communicates with an external host system
through an interface.

Fig. 1. An architectural overview of our target storage

RAST is a hybrid mapping-based FTL which uses page-

level mapping scheme and block-group level mapping scheme
for log blocks and data blocks, respectively. Fig. 2 shows the
layout of memory and NAND flash memory of RAST. The
memory is divided into three regions to store the log block
mapping table, the data block mapping table, and the blocks
status table. The data block mapping table stores mapping
information as well as information about the availability of
each page. The availability information is checked, in turn,
after a requested address is translated using the data block
mapping table. The block status table maintains both the status
of block and the block erasure counts because they are used
together during a garbage collection process.

Fig. 2. The layout of memory and NAND flash memory of RAST

On the other hand, NAND flash memory consists of three
types of blocks such as log blocks, data blocks, and metadata
blocks. Like existing hybrid mapping-based FTLs, updated
data are stored in a log block. Besides an update request, since
NAND flash memory has a restriction that the pages in a
block must be written sequentially, a write request which
violates the sequential write restriction is also written to a log
block. The original mapping information of written data in the
lob block is maintained in a page-level mapping table. With
the exception of the two cases, other write requests are written
to data blocks. A metadata block stores metadata of RAST.
Since a metadata block also does not allow in-place update of
data, RAST conducts a garbage collection process for the
metadata blocks if there is no free page in the metadata block.

A. Large Granularity-based Hybrid Mapping Scheme
 As shown in TABLE I, the most effective way to reduce the
required memory footprint is to employ a large mapping unit
in a mapping table. In order to reduce the memory footprint,
RAST uses a group of blocks as a mapping unit to map data
blocks. The blocks located in the same offset in each channel
are grouped into a block group. In Fig. 1, the blocks which are
located in n-th offset of flash chips 0, 1, 2, and 3 are grouped
into one block-group N. RAST can cover the addresses of the
pages in the four blocks with just one logical block-group
number, whereas existing hybrid mapping-based FTLs require
four logical block numbers to map the same four blocks.

Considering I/O characteristics in mobile devices, it is
reasonable for RAST to use a block group as a mapping unit.
Since a mapping scheme based on a large granularity has a bad
performance under the random write request, the performance
of RAST may be suffered seriously from the random write
requests. However, since most applications in mobile systems
handle multimedia-rich applications and the multimedia
applications access sequentially files and infrequently update
files [7], RAST can save the required memory footprint without
serious performance degradation. Although there are some
random write requests which write previously written data again
or violate sequential write restriction, log blocks can serve the
random write requests without performance degradation if there
is enough space to store new data in log blocks. In RAST, log
blocks as large as possible are allocated for avoiding frequent
garbage collection processes.

B. Partial Garage Collection Technique
The behavior of garbage collection process in RAST is

similar to that of FTL using fully-associative sector
translation (FAST) [4]. Since a log block in a channel stores
the data allocated to the same channel, the data in the log
block are migrated to data blocks in the same channel during
garbage collection processes. Since it may take a long time to
complete all migrations without a pause in this approach,
RAST utilizes long idle times of mobile systems for
conducting garbage collection. In order to investigate a
portion of idle time among the total execution time, we
developed a custom mobile workload generation environment
based on the representative usage scenario of mobile
applications such as the personal information management
system (PIMS), the short message service (SMS), and the

466 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

media players [8]. From our observations, many mobile
systems are likely to have a long idle time, and the average
idle time accounts for about 89% of the total execution time.

RAST carries out a partial garbage collection process when
a long idle time is detected. If there is a longer idle time than a
preset threshold, RAST copies part of data in a log block,
which are associated with only one data block, to a new data
block group. RAST distributes the overheads of garbage
collection by conducting the partial garbage collection process
across multiple times. In order to decrease the number of
occurrences of partial garbage collection processes, the partial
garbage collection process is performed if above 50% of log
blocks are filled with data.

C. On-Demand Metadata Management Scheme

Although RAST reduces the amount of required memory by
improving mapping tables, it is not still affordable for a
resource-sensitive storage system to keep all metadata in its
small-sized memory. Instead of maintaining the metadata in
memory, RAST manages the metadata excluding a log block
mapping table by using an on-demand approach. Since data
stored in a log block are likely to be accessed again compared to
other data, the log block mapping table always stays in memory.
As a result, some parts of block group level mapping table and
the whole page-level mapping table are loaded on memory.

In the case of the data block mapping table, RAST keeps
only some parts of mapping entries in the data block mapping
table in memory. By limiting the number of mapping entries
in memory, RAST has an upper bound of memory usage. Fig.
3 shows a snapshot of the on-demand management scheme in
RAST. Each mapping entry in the data block mapping table
has a logical block-group number, a physical block-group
number, and a page status bitmap. A logical block group
number is computed by dividing a logical block address from
a file system by the number of pages in a block group. On the
other hand, a bit in the page status bitmap is set to one if the
page associated with the bit is written. The bits in a bitmap are
set to zero when the block associated with the bitmap is erased.

Fig. 3. A snapshot of the on-demand metadata management scheme.

As shown in Fig. 3, the mapping table entries loaded in

memory forms a linked list of tracks according to recency of
access. When a request arrives, RAST searches the linked list
to find the mapping table entry which covers the requested
logical block address. If it is a hit in the linked list, RAST

utilizes the entry for address translation of the currently
requested data. In the opposite case, RAST reads metadata
blocks to load the requested mapping table entry into memory.
At this moment, if there is not enough space in the memory to
load new mapping entry, the mapping table entry located in
the tail of the linked list is evicted to a metadata block. This
evicted entry will be loaded again when a requested logical
block-group address is covered by the evicted mapping entry.

As well as the data block mapping table, the rest of
metadata are also managed by an on-demand approach.
Compared to mapping table, a very small amount of memory
is required to present information about the status of blocks
and block erasure counts. This means that a page can store a
wide range of metadata excluding the mapping tables. In
Table 1, a block-group mapping scheme requires only 32 kB
for storing them if 32 GB NAND flash memory is used. In
this case, they are stored in only 8 pages in a metadata block,
and each page can present the blocks status and erasure counts
of 4096 block groups. Since each page can cover the metadata
of a large number of blocks, RAST maintains only the
information in a page among the several pages, and manages
them with an on-demand approach.

D. Sampling-Based Wear-Leveling Management Scheme

RAST induces block groups to be erased evenly by allocating
a free block group in the sequence of a physical block-group
number. As time goes by, however, the gap between the erasure
counts of the oldest and the youngest block groups grows. In
order to minimize the difference of the erasure counts, RAST
maintains a sample of the physical addresses of relatively young
block groups in an extra queue and gives a high priority to the
young block groups in the sample when allocating a free block
group. In order to find young block groups, RAST compares the
erasure counts between the currently erased block group and the
oldest block group whenever a block group is erased. Note that
the erasure count of the oldest physical block group is maintained
in RAST. If the gap of erasure counts of them is greater than a
preset threshold, the erased block group is classified as a young
block group. Since the young block group has to be allocated in
the near future, RAST inserts a physical block-group number of
the young block group into an extra queue, and the block groups
in the queue are allocated prior to other block groups.

Fig. 4. An example of selecting a young block group to perform wear-
leveling management in RAST.

K. Ha et al.: Resource-Aware Sector Translation Layer for Resource-Sensitive NAND flash-based Storage Systems 467

Fig. 4 shows a snapshot of young block-group selection.
RAST keeps a pointer which points to a block-group number
which is to be allocated in next allocation. When RAST
allocates a free block group, if the sample queue is not empty,
the block group in the queue is allocated, and it is removed
from the queue. In Fig. 4, the block group 101 is allocated. If
the queue is empty at that moment, the pointer takes a step
forward after the pointed block group is allocated. By
allocating block groups evenly and keeping young block
groups separately, RAST performs efficient wear-leveling
management.

V. EXPERIMENTS

A. Experimental Environment

In order to evaluate RAST, we implemented it in both a
trace-driven FTL simulator and an SSD prototype board.
The prototype board was used to evaluate the memory
footprint and performance of RAST, whereas wear-leveling
performance was evaluated in the trace-driven FTL
simulator. Fig. 5 shows a snapshot of the prototype board
which has an embedded processor, 96 kB of SRAM, and 64
MB of SDRAM. In order to evaluate in a resource-sensitive
storage system, SDRAM less than 1 MB and the whole
SRAM were used for our experiments. We used 32 GB
NAND flash memory array which consists of 16 MLC
NAND flash memory chips. The size of a block is 512 kB,
and each block has 128 pages. Experiments were performed
using Iometer and an in-house I/O generator which can
change workload characteristics such as the working set size
and the access patterns.

\

Fig. 5. A snapshot of the prototype board used for our experiments.

B. Memory Requirement of RAST on the Real Platform

In order to judge the memory requirement of RAST, we
used a cross-compiler which can generate the breakdown
of memory usage of a compiled binary. Since RAST uses
only static memory allocation, we could figure out the
total memory requirement for metadata and code,
respectively. Fig. 6 shows the breakdown of the memory
usage of RAST. RAST requires only about 34 kB of

memory which is as small as it can work with only small-
sized SRAM. The memory footprint for a page mapping
table accounts for 40% of the total amount of memory.
Meanwhile, regions for a data block mapping table and
the block status information in RAST take up only 32% of
the required memory footprint. Since these regions are
managed by using an on-demand scheme, the size of those
memory regions can be changed according to system
parameters.

Fig. 6. The breakdown of memory usage of RAST.

C. Performance Evaluation

In order to investigate the potential maximum
performance of RAST, we ran Iometer in a raw device,
which had not been formatted with a file system. Iometer
has generated 4 kB write requests for one minute without a
break in various patterns from sequential to random ones.
TABLE II shows the write throughput and average IOPS of
RAST with the different access patterns. The result shows
that RAST write performance achieves up to 57 MB/s with
sequential write requests, whereas it has weak performance
with random write requests. Since RAST exploits inherent
parallelism of the flash array, it has a competitive write
performance with a sequential pattern. On the other hands,
RAST has a very bad performance for random write requests
because random write requests are likely to violate
restrictions of NAND flash memory such as the sequential
write restriction and in-place update. Since these data
requests quickly consume free pages in log blocks, garbage
collection processes happen without a break, thus decreasing
performance rapidly.

TABLE II

WRITE THROUGHPUT AND IOPS OF RAST

Pattern Type
Average

Throughput (MB/s)
Average IOPS

Sequential 57.1 14,616
Random 0.8 176

We generated random write requests to the target board

with the in-house I/O generator in order to investigate the
effectiveness of random write requests on performance of
RAST. Fig. 7 shows the write throughput and the number
of performed garbage collection processes with various
working set sizes of random write requests. The x-axis
presents the working set sizes of random write requests.
The left y-axis gives the write throughput, whereas the right
y-axis indicates the number of performed garbage
collection processes. In terms of the write throughput, as

468 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

the working set size is larger, the write throughput
decreases from about 6 MB/s to less than 1 MB/s. On the
other hand, the number of performed garbage collection
processes describes the reason by showing it increases
according to the working set size. Given that RAST uses
only 8 MB of log blocks, the results mean that RAST can
archive write throughput up to about 6 MB/s with random
write request if the working set size is less than the that of
log blocks.

Fig. 7. The write throughput and the number of performed garbage
collection processes with various working set sizes of random write requests.

In order to evaluate the effectiveness of the partial
garbage collection technique of RAST, we measured both
the average response time and the maximum response time
with different idle times. Iometer has generated 4 MB
random write requests with various time intervals ranging
from 0 to 10 seconds. This time interval provides an idle
time to RAST. TABLE III shows the response times of
RAST with different idle times. From the idle time 0 to 7,
both the average response time and the maximum response
time are far longer than those of the idle time 10 seconds.
These results mean that if idle time is as long as about 10
seconds, RAST can avoid a response time delay by
excessive garbage collection processes.

 TABLE III
RESPONSE TIMES OF RAST WITH DIFFERENT IDLE TIMES

Idle Time
(second)

0 5 7 10

Average
Response
Time (ms)

8.51 9.89 8.17 1.94

Maximum
Response
Time (ms)

9121.42 9426.54 9404.20 251.08

D. Wear-Leveling Performance Scheme

In order to evaluate wear-leveling performance scheme of
RAST, we performed experiments in the trace-driven FTL
simulator with a disk access trace collected from a running
desktop PC for a month [9]. In order to induce block groups to
be erased frequently, the size of NAND flash memory is set to
512 MB and the input trace is repeatedly given to the simulator.

Fig. 8. The maximum erasure count with different wear-leveling schemes

Fig. 8 shows the erasure counts of the oldest block group in
NAND flash memory with different wear-leveling schemes.
The x-axis and the y-axis present the number of write request
and the erasure counts of the oldest block group. Since our
proposed technique makes a sample of young block groups,
the scheme is denoted as YB Sample. On the other hand, Full
Search and RB Sample [6] denote existing wear-leveling
schemes used for comparisons. Full Search finds the oldest
block groups among all block groups, whereas RB Sample
scheme selects the youngest block group in a sample of
randomly selected blocks. The results show that YB Sample
has similar wear-leveling performance compared to other
techniques. Since Full Search maintains erasure counts of all
blocks, this approach cannot used for resource-sensitive
storage system. In the case of RB Sample, it uses the same
size of memory as that of YB Sample, but it accesses to
NAND flash memory more frequently than YB Sample
because it randomly selects some block groups for making a
block group sample. In our experiment, YB Sample and RB
Sample reads NAND flash memory on average 0.26 and 3.14
times, respectively, when allocating a free block group. These
results mean that RAST performs competitive wear-leveling
management without serious performance degradation.

VI. CONCLUSION

We have proposed a novel resource-aware FTL, RAST.
The proposed RAST FTL minimizes the memory footprint for
address translation, metadata management, and wear-leveling
management so that a large capacity NAND flash-based
mobile storage systems can perform well while satisfying cost
and power constraints. For reducing the required memory, our
proposed FTL applies a hybrid mapping scheme with a large
granularity mapping for data blocks. In addition to the
mapping scheme, RAST keeps only recently accessed
metadata into memory to reduce the memory footprint. Finally,
RAST provides competitive wear-leveling performance with
limited memory resource which is comparable to other wear
leveler. Experimental results show that RAST can operate
with a very small amount of memory without serious
performance loss. Although the current version of RAST
performs reasonably well, there still is a room for
improvement. For example, since RAST uses a block group as
a mapping unit, the overhead of a garbage collection process

K. Ha et al.: Resource-Aware Sector Translation Layer for Resource-Sensitive NAND flash-based Storage Systems 469

is very high. In order to reduce the overhead, we plan to
employ the advanced data separation techniques such as hot
cold separation techniques [10] and program context-based
data separation technique [11].

REFERENCES
[1] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer

employing demand-based selective caching of page-level address
mappings,” in Proceedings of the 14th international conference on
Architectural support for programming languages and operating
systems, pp. 229-240, March 2009.

[2] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compact flash systems,” IEEE Transactions on
Consumer Electronics, v. 48 n. 2, pp. 366–375, May 2002.

[3] S. Lee, D. Shin, Y. –J. Kim, and J Kim, “LAST: locality-aware sector
translation for NAND flash memory-based storage systems,” ACM
SIGOPS Operating Systems Review, v.42 n.6, pp. 36-42, October 2008.

[4] S.-W. Lee, D. –J. Park, T. -S. Chung, D. –H. Lee, S. Park, and H. –J.
Song, “A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Transactions on Embedded Computing
Systems, v. 6 n. 3, pp.18-es, July 2007.

[5] Y. -G. Lee, D. Jung, D. Kang, and J. -S. Kim, “µ-FTL: A memory-
efficient flash translation layer supporting multiple mapping
granularities,” in Proceedings of the 8th ACM international conference
on Embedded software, pp. 21-30, October 2008.

[6] B. Debnath, S. Krishnan, W. Xiaoy, D. J. Lilja, and D. H. C. Du,
“Sampling-based garbage collection metadata management scheme for
flash-based storage,” in Proceedings of the 27th IEEE Conference on
Mass Storage Systems and Technologies, pp.1-6, May 2011.

[7] H. Kim, Y. Won, and S. Kang, “Embedded NAND flash file system for
mobile multimedia devices,” IEEE Transactions on Consumer
Electronics, v. 55, n. 2, pp. 545-552, May 2009.

[8] H. Verkasalo and H. Hämmäinen, “Handset-based monitoring of mobile
subscribers,” in Proceedings of Helsinki Mobility Roundtable, v. 6 n. 50,
June 2006.

[9] L. -P. Chang and T. -W. Kuo, “An adaptive striping architecture for
flash memory storage systems of embedded systems,” in Proceedings of
the 8th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 187-196, September 2002.

[10] J. -W. Hsieh, L. -P. Chang, and T. -W. Kuo, “Efficient on-line
identification of hot data for flash-memory management,” in
Proceedings of the 20th ACM symposium on Applied computing, pp.
334-339, March 2005.

[11] K. Ha and J. Kim, “A program context-aware data separation technique
for reducing garbage collection overhead in NAND flash memory,” in
Proceeding of the 7th IEEE International Workshop on Storage Network
Architecture and Parallel I/O, May 2011.

BIOGRAPHIES

Keonsoo Ha received the B.E. degree in information and
communication engineering from Sungkyunkwan
University, Korea, in 2005. He is currently working
toward the Ph.D. degree at Seoul National University. His
research interests include storage systems, operating
system, and embedded system software.

Taejin Kim received the B.E. degree in computer
engineering from Sungkyunkwan University, Korea, in
2010, and the M.E. degree in computer science and
engineering from Seoul National University, Korea, in
2012. He is currently working toward the Ph.D. degree at
Seoul National University. His research interests include
storage systems and hardware design.

Byoung Young Ahn received the B.E. degree in
computer engineering from Seoul National University,
Korea, in 1999. He is a firmware engineer in Indilinx Inc.
From 2000 to 2005, he was a software engineer in
NCSoft Co., Seoul, Korea. From 2005 to 2008 prior to
coming to Indilinx, he worked at Memory Division in
Samsung Electronics as a lead programmer for core FTL.

His research interests include file systems and software for storage systems.

Jihong Kim (M’00) received the B.S. degree in computer
science and statistics from Seoul National University,
Seoul, Korea, in 1986, and the M.S. and Ph.D. degrees in
computer science and engineering from the University of
Washington, Seattle, WA, in 1988 and 1995, respectively.
Before joining SNU in 1997, he was a Member of
Technical Staff in the DSPS R&D Center of Texas

Instruments in Dallas, Texas. He is currently a Professor in the School of
Computer Science and Engineering, Seoul National University. His research
interests include embedded software, low-power systems, computer
architecture, and storage systems.

