안드로이드 응용 프로그램의 런칭시간 실시간 측정 도구 구현

김학봉, 임제헌, 김지홍 서울대학교 컴퓨터공학부 e-mail:{haknalgae, brownrabbit, jihong}@davinci.snu.ac.kr

Development of a Tool for Measuring the Launching Time of Android Applications in Real-time

Hakbong Kim, Jehun Lim, Jihong Kim
*Dept. of Computer Science and Engineering, Seoul National University

요 약

응용 프로그램의 런칭시간에 관한 많은 연구를 통해 런칭시간이 길수록 사용자가 불편을 느낀다는 것이 확인되었으며, 이에 런칭시간을 최적화하는 다양한 연구가 있어왔다. 이런 연구의 일환으로 본 논문에서는 응용 프로그램의 런칭시간을 실시간으로 측정하는 도구를 개발했다. 이 도구는 안드로이드 프레임워크 내에 존재하며 응용 프로그램이 화면에 모두 그려지는 순간을 런칭의 끝으로 보고 런칭시간을 실시간으로 측정한다. 이 도구는 안드로이드 시스템의 응용 프로그램 런칭시간 최적화 기법에 사용될 수 있다. 또한 이 도구를 이용하여 모바일 시스템에서 "미리 읽기"(prefetching) 기법이 안드로이드 시스템에서 얼마나 효과가 있을지를 확인하기 위한 실험을 수했하였다. 실험 결과, "마리 읽기" 기법은 안드로이드 시스템에서 효과가 작은 것을 확인하였다.

▶ Keyword : 런칭타임(launching time), 안드로이드(android), 측정 도구(measurement tool)

1. 서 론

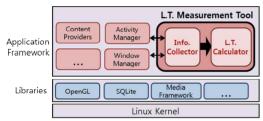
응용 프로그램의 런칭시간은 사용자의 만족에 큰 영향을 주기 때문에 이를 줄이고자 하는 다양한 연구가 있었다. 하지만 모바일 환경에의 런칭시간 최적화 관련 연구는 아직 없는 상황이다.

이전 연구에서 호스트 컴퓨터를 이용하여 런칭시간을 측정하는 도구를 개발하였다.^[1] 하지만 시스템이 자 체적으로 런칭시간을 측정하고 최적화를 할 수 있어 야만 상용 디바이스에도 이를 적용할 수 있기 때문에 실시간으로 런칭시간을 측정하는 도구가 필요하다. 이에 본 연구는 안드로이드 응용 프로그램의 런칭시 간을 실시간으로 측정하는 도구를 개발하였다.

또한 이 도구를 이용하여 런칭시간을 어떻게 최적화해야 하는지를 탐색하였다. 런칭시간을 줄이는 대표

적인 방법 중 "미리 읽기"(prefetching) 이 있는데 이 방법을 적용하였을 때 얼마나 런칭시간을 줄일 수 있는지를 실험을 통하여 알아보고, 실험결과가 가지는 의미에 대해서 논의하였다.

Ⅱ. 관련 연구


1. 모바일 디바이스에서의 런칭시간 측정^[1]

이 연구에서는 호스트 컴퓨터와 안드로이드 디바이스가 연결된 환경에서 런칭시간을 측정하는 도구를 개발하였다. 언급했듯이 이 도구는 호스트컴퓨터가 필요하기 때문에 런칭시간 최적화에는 사용될 수 없다.

Ⅲ. 본 론

1. 도구의 구현

이 도구의 구조는 그림 1. 과 같다. 이 도구는 안드로 이드 내의 프레임워크(Framework) 계층에 존재하며 Information Collector, Launching Time Calculator 두 개의 모듈로 구성되어 있다. Information Collector 는 프레임워크 내의 다른 모듈들과 통신하여 언제 사용자가 응용 프로그램을 실행하고, 터치하고, 종료하는 지 등의 대한 정보를 수집한다. 또한 이도구는 런칭된 응용 프로그램이 모두 화면에 그려졌을 때를 런칭이 끝나는 시간으로 기준을 삼기 때문에, UI(User Interface) 가 그려지는 정보도 수집한다. 수집한 정보를 바탕으로 Launching Time Calculator 가 런칭이 되고 있는 응용 프로그램에 해당되는 정보만을 필터릿하여 런칭시간을 계산한다.

Android-based System

그림 1. 실시간 런칭시간 측정도구의 구조 Fig 1. An overview of the tool

이 도구가 제대로 런칭시간을 재는지를 확인해 본 결과, 사용자가 응용 프로그램이 완전히 런칭되기 전에 응용 프로그램을 사용하는 경우를 제외하면 런칭시간을 정확히 측정하는 것을 확인하였다.

2. 모바일에서의 런칭시간 최적화 방향 탐색

모바일 환경에서 어떤 기법을 사용하는 것이 런칭시 간을 줄이는데 효과가 있는지 알아보기 위한 실험을 수행하였다.

2.1 배경지식

실험에 앞서 응용 프로그램의 런칭을 분류하는 기준을 설명하고자 한다. 일반적으로 런칭을 cold start, warm start 이렇게 2가지로 분류한다. cold start 는 응용 프로그램이 런칭될 때 필요한 모든 페이지가 메모리에 없는 경우에 런칭이 되는 상황을 의미하며, 이 때가 가장 런칭시간이 긴 경우가 된다. warm start 는 필요한 모든 페이지가 메모리에 있는 경우 런칭이 되는 상황을 의미한다. "미리 읽기"를 하면 cold start 가 될 수 있는 상황을 warm start 로 바꿀 수 있기 때문에 런칭시간을 감소시킬 수 있다.

2.2 실험 목적 및 결과

실험은 "미리 읽기"의 효과를 알아보는 실험으로 cold start 와 warm start 일 때의 런칭시간을 구하여 얼마나 차이가 있는지를 알아보았다. cold start

와 warm start 의 차이가 클수록 "미리 읽기"의 효과가 큰 것이다.

20개의 응용 프로그램에 대하여 cold start 와 warm start를 각각 측정하여 평균을 낸 결과를 그림 2. 에서 보여준다.

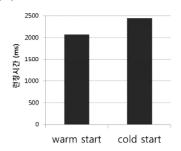


그림 2. cold start 와 warm start 의 런칭시간 Fig 2. The launching time of cold start and warm start

2.3 실험 결과 분석

그림 2. 를 보면 cold start 와 warm start 의 차이가 20% 미만인 것을 볼 수 있다. 이렇게 차이가 많이 나지 않는 이유를 2가지로 볼 수 있다. 첫째, 메모리에 필요한 페이지를 로드하는 시간보다 다른 작업이 상대적으로 훨씬 오래 걸린다. 둘째, 완벽한 cold start를 만들 수가 없다. cold start를 재현하기 위해 메모리를 비우는 리눅스 명령어를 이용한다. 안드로이 드 시스템 특성상 프로그램 간 공유하는 라이브러리가 많은데, 공유 페이지는 이 명령어에 의해 쫓겨나지 않기 때문에 완벽한 cold start를 재현할 수 없는 것이다. 하지만 이 실험에서 측정한 cold start 런칭시간이 실제 시스템에서의 최악수행시간이라고 볼 수 있다. 왜냐하면 공유 페이지의 경우, 웬만해서는 실제사용 중에 쫓겨나지 않기 때문이다.

IV. 결 론

본 논문에서는 안드로이드 응용 프로그램의 런칭시간을 실시간으로 측정하는 도구를 개발하였고, 이 도구를 이용한 실험을 통해 "미리 읽기"기법이 안드로이드 시스템에서는 효과가 작은 것을 볼 수 있었다.

참고문헌

[1] Jehun Lim, Hakbong Kim, Wook Song, and Jihong Kim, "LTmeter: An App Launching Time Analyzer for Personal Smart Devices," In *Proceeding of the 6th* International Conference on Ubiquitous Information Technologies & Applications, 2011