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Abstract

We describe dynamic voltage scaling (DVS) algorithms for real-time systems with both periodic

and aperiodic tasks. Although many DVS algorithms have been developed for real-time systems with

periodic tasks, none of them can be used for the system with both periodic and aperiodic tasks because

of arbitrary temporal behaviors of aperiodic tasks. We propose an off-line DVS algorithm and on-

line DVS algorithms that are based on existing DVS algorithms. The proposed algorithms utilize the

execution behaviors of scheduling server for aperiodic tasks. Experimental results show that the proposed

algorithms reduce the energy consumption by 25% and 18% under the RM scheduling policy and the

EDF scheduling policy, respectively.

I. INTRODUCTION

Dynamic voltage scaling (DVS) [3] is one of the most effective approaches in reducing the

power consumption of real-time systems. When the required performance of the target system

is lower than the maximum performance, supply voltage and clock speed can be dynamically

reduced to the lowest possible extent that ensures a proper operation of the system. Recently,

many voltage scheduling algorithms have been proposed for hard real-time systems [9], [2], [8],

[5]. All of these algorithms assume that the system consists of periodic hard real-time tasks only

and the task release times are known a priori. For periodic tasks, these algorithms assign the

proper speed to each task dynamically while guaranteeing all their deadlines. Since the arrival

time, the worst case execution time (WCET), and the deadline of each periodic task are known,

DVS algorithms can determine how much slack times are generated due to the early completion

of a task and how much the speeds of next tasks can be scaled down.

However, many practical real-time applications require aperiodic tasks as well as periodic

tasks. For example, consider multimedia applications (e.g., MP3 or MPEG player) in which

audio or video data is decoded periodically maintaining consistent output rates. These systems

continue accepting user inputs that need prompt responses (e.g., volume control, playback control
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or playlist editing). While the decoding tasks are periodic tasks, the tasks to service user inputs

are aperiodic tasks. While periodic tasks are time-driven with hard deadlines, aperiodic tasks are

usually event-driven (i.e., activated at arbitrary times) with soft deadlines (or best-effort tasks).

Generally, the arrival process is Poisson process with parameter � and the service process is

exponential process with parameter �. In this paper, we call a system with periodic and aperiodic

tasks as a mixed task system.

In mixed task systems, there are two design objectives. The first objective is to guarantee the

schedulability of all periodic tasks under worst-case execution scenarios. That is, aperiodic tasks

should not prevent periodic tasks from completing before their deadlines. The second objective

is that aperiodic tasks should have “good” average response times. To satisfy these objectives,

many scheduling algorithms based on the “server” concept had been proposed [12], [10], [11],

[1].

In this paper, we introduce the third design objective for the energy consumption in the mixed

task system. That is, the third objective is to minimize the total energy consumption due to

both periodic tasks and aperiodic tasks. Although the existing DVS algorithms can be effective

for optimizing the energy consumption of periodic tasks, they cannot be used for mixed task

systems. The arbitrary behaviors of aperiodic tasks prevent the DVS algorithms from identifying

the slack times. Therefore, it is necessary to modify the existing DVS algorithms to be applicable

to mixed task systems with aperiodic tasks.

In this paper, we propose DVS algorithms that guarantee the first objective (i.e., timing

constraints of periodic tasks) while making the best effort of satisfying the third objective (i.e.,

low energy) with a reasonable performance bound on the second objective (i.e., good average

response time). First, we describe an off-line static voltage scaling algorithm which considers

the expected workload of aperiodic tasks. Second, we present on-line dynamic voltage scaling

algorithms by modifying existing on-line voltage scaling algorithms for a periodic task set.

The modified DVS algorithms utilize the execution behaviors of each scheduling server for

aperiodic tasks to apply the key ideas of the existing DVS algorithms such as [9], [2]. The task

schedules generated by the proposed DVS algorithms can reduce the energy consumption by

18%�25% over the task schedules which execute all tasks at full speed and power down at

idle intervals (i.e., the power-down mode). To the best of our knowledge, our work is the first

attempt to develop on-line DVS algorithms for the mixed task set.
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The rest of this paper is organized as follows. In Section II, we summarize the related works

on aperiodic task scheduling and the recent efforts to integrate dynamic voltage scheduling into

aperiodic task scheduling. The proposed static DVS algorithm is described in Section III while

the dynamic DVS algorithms are presented in Section IV. In Section V, the experimental results

are discussed. Section VI concludes with a summary and future works.

II. RELATED WORKS

In this section, we review the main approaches for scheduling a mixture of aperiodic tasks

and periodic hard real-time tasks.

The easiest way to prevent aperiodic tasks from interfering with periodic hard real-time tasks

is to schedule them as background tasks. In this approach, aperiodic tasks are scheduled and

executed only at times when there is no periodic task ready for execution. Though this method

guarantees the schedulability of periodic task, the execution of aperiodic tasks may be delayed

and their response times are prolonged unnecessarily.

Another approach is to use a dedicated scheduling server which handles aperiodic tasks. The

server is characterized by an ordered pair ���� ���, where �� is the maximum budget and �� is

the period of the server. The simplest server is the Polling Server (PS). PS is ready for execution

periodically at integer multiplies of �� and is scheduled together with periodic tasks in the system

according to the given priority-driven algorithm. Once PS is activated, it executes any pending

aperiodic requests within the limit of its budget ��. If no aperiodic requests are pending, PS

immediately suspends its execution until the start of its next period. Since PS is exactly same

to a periodic task which has the period �� and the worst case execution time (WCET) ��, we

can test the schedulability of the system using the traditional RM or EDF schedulability test.

The Deferrable Server (DS) [12] was introduced to solve the poor performance of background

scheduling and PS. Unlike PS, DS can service an aperiodic request at any time as long as the

budget is not exhausted. Though this feature of DS provides better performance than that of PS,

a lower priority task could miss its deadline even if the task set seemed to be schedulable by

the schedulability test because DS can defer its execution. To solve this problem, the Sporadic

Server (SS) [10] was proposed. SS ensures that each SS with period �� and budget �� never

demands more processor time than the periodic task (��� ��) in any time interval. Consequently,

we can treat a SS exactly like the periodic task (��� ��) when we check for the schedulability
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of the system.

Though there are the modified DS and SS algorithms for EDF scheduling, DS and SS are

mainly used for RM scheduling due to the complexity of the modified algorithms. For EDF

scheduling, the Total Bandwidth Server (TBS) [11] is more suitable. TBS is characterized by ��

which is the utilization of TBS. When an aperiodic task arrives, TBS assigns a deadline to the

task such that the utilization of the aperiodic task is equal to ��. Since TBS assigns the deadline

using the WCET of the aperiodic task, there can be overrun when the real execution time is

longer than the WCET. (This situation could occur for aperiodic tasks.) Recently, the Constant

Bandwidth Server (CBS) [1] was proposed to solve the overrun problem of TBS.

A different approach for scheduling aperiodic tasks is the Slack Stealing technique [7]. It steals

all available slack from periodic tasks and gives it to aperiodic tasks. Though it provides better

performance than the server approaches, i.e., minimizes response times of aperiodic requests, its

complexity is very high. In addition, since the main idea of the slack stealing is to give as much

as possible time to aperiodic tasks executing periodic tasks at full speed, the slack stealing is

improper to be integrated with DVS algorithms. So, we concentrate on the server techniques in

this paper.

Despite of many researches on aperiodic task scheduling, there have been few studies to adapt

the DVS technique to aperiodic task scheduling. A recent work by W. Yuan and K. Nahrstedt [13]

proposed a DVS algorithm for soft real-time multimedia and best-effort applications. They

handled only the constant bandwidth server. The target of their algorithm is aperiodic task

systems, not mixed task systems.

Y. Doh et al. [4] also investigated the problem of allocating both energy and utilization

for mixed task sets. They used the total bandwidth server and considered the static scheduling

problem only. Given the energy budget, their algorithm finds voltage settings for both periodic and

aperiodic tasks such that all periodic tasks are completed before their deadlines and all aperiodic

tasks can attain the minimal response times. While their algorithm is an off-line static speed

assignment algorithm under the EDF scheduling policy, our work in this paper considers both

static and dynamic algorithms under both RM and EDF scheduling policies. Another difference

is that we concentrate on minimizing the energy consumption under the constraint on the average

response time.
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III. STATIC SCHEDULING FOR MIXED TASK SETS

Pillai and Shin [8] proposed the static voltage scheduling algorithms for periodic tasks using

the RM and EDF schedulability tests. Their static scheduling algorithm finds a clock speed of

periodic tasks for a hard real-time system. The clock speed is set statically, and is not changed

unless the task set is changed. For the mixed task set using a scheduling server, Pillai’s static

scheduling algorithms can also be used with the utilization of the scheduling server. For example,

in EDF scheduling using TBS, if the worst case utilization of periodic tasks is 0.3 and the

utilization of TBS is 0.4 at 100 MHz clock speed, the static scheduling algorithm determines

the clock speed as 70 ��� (� ��� ��� � ��	� 	 �	
�).

However, the scheduling server for aperiodic tasks generally occupies a large utilization

compared with the workload of aperiodic tasks to provide a good responsiveness. If the real

utilization of aperiodic tasks is 0.2 rather than 0.4, it is better to use a lower clock speed for

periodic tasks and a higher clock speed for aperiodic tasks than 70 MHz. This is because TBS has

many idle intervals. However, we cannot use the clock speed 50 MHz (� ��� ��� � ��	�	�	��)

because it can produce deadline misses when the real utilization of aperiodic task is larger than

0.2.

Therefore, in static voltage scheduling, we should consider both the expected workload and the

schedulability condition. Our static voltage scheduling algorithm selects the operating speed 
�

of periodic tasks and the operating speed 
� of scheduling server for aperiodic tasks, respectively.


� and 
� is the relative speed values normalized by the maximum clock speed. 
� and 
� should

allow a real-time scheduler to meet all the deadlines for a given periodic task set minimizing the

total energy consumption. Consequently, the problem of the static scheduling can be formulated

as follows:

Static Speed Assignment Problem

Given ��� ��� �� and ��

find �� and �� such that

� � �� � � � ��� � � � ��� is minimized

subject to
��

��
�

��

��
� ���� and � � ��� �� � ��

where �� is the worst case utilization of periodic task set, �� is the server utilization, � is
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the average workload ratio of periodic tasks, and � is the average workload of aperiodic tasks

(� � �
�). � is a metric reflecting energy consumption1. ����, which is the least upper bound

of schedulable utilization, is 1 at the EDF scheduling and ������ � �� for � tasks at the RM

scheduling2, respectively. Using the Lagrange transform, we can get a following optimal solution

for 
� and 
�.

�� �
�

����

�
�� � ��

�

�
�

�� � �

�
� �� �

�

����

�
��

�

�
�� � �

�
� ��

�

Under the assumption that we can know the exact � and � values, we can get the optimal static

speeds for periodic and aperiodic tasks. Table I shows the experimental results of the optimal

static speed assignment. The results show the reduction of energy consumption and response

time varying �� with fixed values of ��, � and �. Aperiodic tasks are assumed to be serviced by

the total bandwidth server. We assumed that if the system is idle it enters into the power-down

mode. We compared our optimal speed assignment method (OPT) with Pillai’s uniform speed

assignment method (UNI) which assigns the same speed to both periodic tasks and aperiodic

tasks making the total utilization as ����. The optimal speed assignment method reduced the

energy consumption and the average response time up to 11% and 26%, respectively. Since the

scheduling server gets a higher speed than the speed for periodic tasks when � � �, the optimal

speed assignment reduces the average response time as well as the energy consumption.

From the result, we can see if a higher �� is used, the average response time of aperiodic tasks

decreases and total energy consumption increases. Since two objectives of the response time and

the energy consumption conflict with each other, it is recommended to use the constraint on

the response time. We can determine the minimum value of �� which satisfies the constraint

minimizing the energy consumption. For example, if we have the constraint that the average

response time should be lower than 1 msec, then we can select 0.2 for the server utilization

from the results in Table I.

1Assuming the supply voltage and clock speed are proportional in DVS, the energy consumption is represented to be

proportional to the square of clock speed.

2When a deferrable server is used, the utilization bound is 0.6518 [12].
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�� Energy consumption (mJ) Response time (msec)

UNI OPT Reduction(%) UNI OPT Reduction(%)

0.15 52.02 50.35 3 1.65 1.38 16

0.20 60.73 54.50 10 1.00 0.75 26

0.25 65.81 58.81 11 0.94 0.75 20

0.30 71.19 63.41 11 0.89 0.75 16

0.35 76.66 72.32 6 0.84 0.75 11

0.40 87.28 77.86 11 0.79 0.75 5

�� � ���, � � ����, � � ����
TABLE I

STATIC SPEED ASSIGNMENT FOR TOTAL BANDWIDTH SERVER.

IV. DYNAMIC SCHEDULING FOR MIXED TASK SETS

A. Problem Formulation

We assume that a mixed task system � consists of � periodic tasks, ��� � � � � ��, and an

aperiodic task, �. The aperiodic task � is serviced by a scheduling server �. The scheduling

server � is characterized by an ordered pair ���� ���. During the execution of aperiodic tasks,

the budget of � is consumed. We use �� to denote the remaining budget of �. The budget �� is

set to �� at each replenishment time. � is scheduled together with periodic tasks in the system

according to the given priority-driven algorithm. Once � is activated, it executes any pending

aperiodic requests within the limit of its budget ��. We denote the release (arrival) time, the start

time, and the completion time of � as ����, ���� and ����, respectively.

A periodic task �� is specified by ����� ���� where ��� and ��� are the worst-case execution

cycles (WCEC) and the period of ��, respectively. We assume that periodic tasks have relative

deadlines equal to their periods. The �-th instance of �� and the �-th instance of � are denoted

by ��	
 and ��, respectively. We assume that the aperiodic task instances ��� � � � � �� are executed

during the hyper period � of periodic tasks. We denote the operating speed of a periodic task

�� (an aperiodic task ��) as 
���� (
����). We assume that the operating speeds are the values

between 0 and 1.

If an aperiodic task �� can be serviced without any interference by periodic tasks or another

aperiodic tasks, the response time of the aperiodic task �� is �����

���� where ����� and
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���� are the number of execution cycles and the clock speed of ��, respectively. However, the

execution of the aperiodic task �� is delayed due to the following factors:

1) Budget delay: �� should wait until the next replenishment time if �� of the scheduling

server � is 0. We define the budget delay formally as the sum of time intervals between

����� and ����� of an aperiodic task �� where �� � �.

2) Queueing delay: �� should wait until the completion time of the aperiodic tasks released

before ��. We define the queueing delay formally as the sum of time intervals between

����� and ���� of an aperiodic task �� where �� � �.

3) Preemption delay: �� should wait until the completion time of the periodic tasks which

have higher priorities than the priority of �. We define the preemption delay formally as

the sum of time intervals between ���� and ����� of an aperiodic task �� where �� � �

and �� is not executed.

We denote the delays due to the budget, queueing and preemption as �����, �����, and �����,

respectively. Then, the response time of �� can be represented as

�����	����� � 
���� � ����� � ������ (1)

If the response time of �� is � in the non-DVS scheme, the response time will be increased

to � 	 by a DVS algorithm because 
����, �����, ����� and ����� are changed. We call the

increase  in the response time as the response time delay.

Our objective is to minimize the total energy consumption of both periodic and aperiodic tasks

using a DVS algorithm while satisfying the timing constraints of periodic tasks and bounding the

response time delay. Therefore, the problem of dynamic speed assignment problem for mixed

task systems (DSAMTS) can be formulated as follows:

Dynamic Speed Assignment Problem

Given � � �
�� � � � � 
�� ��� � and Æ�

find ��
����� � � � � ��
���	
�� and ������ � � � � ����� such that

� �

��

���

�	
���


��

��
��
� �

��

���

����� is minimized

subject to ��� �� ��
��
� � � � ��� and �������� � Æ�
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where 
���	
�, ����	
�, and ����	
� are the clock speed, the energy consumption and the completion

time of the task instance ��	
, respectively. ����� denotes the energy consumption of the aperiodic

task instance ��.  ���� represents the response time delay of ��.

In this paper, we propose the DVS algorithms which provide solutions for the DSAMTS

problem when Æ � �����. We plan to develop the DVS algorithms for the DSAMTS problem

with an arbitrary value of Æ as a future work.

Existing on-line DVS algorithms such as [9], [2], [8], [5] are not directly applicable for the

DSAMTS problem. As discussed in [6], most existing heuristics are based on three techniques:

(1) stretching-to-NTA, (2) priority-based slack-stealing, and (3) utilization updating. For example,

consider the stretching-to-NTA technique. As shown in Figure 1, it stretches the execution time

of the periodic task ready for execution to the next arrival time of a periodic task when there

is no another periodic task in ready queue. To use the stretching-to-NTA technique for a mixed

task system, we should know the next arrival time of an aperiodic task as well as a periodic

task. Though the arrival times of periodic tasks can be easily computed using their periods,

we cannot know the arrival times of aperiodic tasks since they arrive at arbitrary times. If we

ignore the arrival of aperiodic tasks, there will be a deadline miss of periodic hard real-time task

when an aperiodic task arrives before the next arrival time of a periodic task. Consequently, the

stretching-to-NTA technique should assign the full speed to all tasks in the mixed task system.

NTA
(next task arrival time)

slack interval

speed

1.0 NTA
(next task arrival time)

speed

0.5
�

�

Fig. 1. The stretching-to-NTA algorithm.

To use the priority-based slack-stealing method or the utilization updating method, we should

be able to identify a slack time due to aperiodic tasks as well as periodic tasks. The slack time of

a periodic task can easily be defined as the difference between the WCET and the real execution

time of the task. However, for the slack time from aperiodic tasks, we should be concerned about

the scheduling server rather than aperiodic tasks because the utilization of scheduling server is
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related with the schedulability condition.

Therefore, we need to modify on-line DVS algorithms to utilize the characteristics of schedul-

ing servers. In this paper, we handle deferrable server [12] and sporadic server [10] for the fixed-

priority scheduling policy, and total bandwidth server [11] and constant bandwidth server [1] for

the dynamic-priority scheduling policy.

B. Scheduling Algorithms in Fixed-Priority Systems

For fixed-priority systems, we assume the RM scheduling policy. Figure 2(a) shows the task

schedule with a deferrable server. There are two periodic tasks, �� � ��� �� and �� � ��� 
�,

and one DS � ��� 
�. Each periodic task and the DS is scheduled by the RM scheduler. The

utilization of DS is 0.25 (� 
�

��
� �

�
). DS preserves its budget if no requests are pending when

released. An aperiodic request can be serviced at any time (at server’s priority) as long as the

budget of DS is not exhausted (e.g., task ��). If the budget is exhausted, aperiodic tasks should

wait until the next replenishment time. For example, though the task �� arrived at the time of

19, it is serviced at the time of 20.

Although we cannot know the arrival times of aperiodic tasks, the stretching-to-NTA method

can be used if we utilize the execution behavior of DS. There are two cases the current ready

task can be stretched:

� Rule for aperiodic task: If there is no periodic task in the ready queue, execute an aperiodic

task at the speed of ��
�!"��#�$�%�� �� where #�$, % and � are the next arrival time

of a periodic task, the next replenishment time and the current time, respectively.

� Rule for periodic task: If there is only one periodic task in the ready queue and �� is 0,

stretch the periodic task to !"��#�$�%�. This is because the arriving aperiodic task is

delayed until the next replenishment time if �� is 0. If �� � �, we cannot scale down the

speed of the periodic task even though there is only one periodic task in the ready queue.

Using these two rules, we modified existing on-line DVS algorithms. Figure 2(b) shows the

task schedule using the lppsRM/DS algorithm which is the modified version of lppsRM [9]

for DS. lppsRM uses the stretching-to-NTA method. The aperiodic tasks �� and �� are stretched

to the next arrival times of periodic tasks (5 and 15) because there is no periodic task in ready

queue. The periodic tasks ��	�, ��	�, and the latter part of ��	� are stretched to !"��#�$�%�

because �� is 0. We cannot stretch the tasks ��	� and ��	� because �� is larger than 0. Though
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� �� � �
5 10 15 20 25 30

8 16 24

2 6 12 16 19 24 26 30

budget

speed

speed

1

1

1

DS=(1,4)

��=(1,5)

��=(2,8)

��	� ��	� ��	� ��	� ��	� ��	�

��	� ��	� ��	� ��	�

�� �� �� �� ��

(a) DS without DVS

� � � �
5 10 15 20 25 30

8 16 24

2 6 12 16 19 24 26 30

budget

speed

speed

1

1

1

��DS=(1,4)

��=(1,5)

��=(2,8)

��	� ��	� ��	� ��	� ��	� ��	�

��	� ��	� ��	� ��	�

�� �� �� �� ��

(b) lppsRM/DS

Fig. 2. Task schedules with a deferrable server.

there is no deadline miss even if �� is stretched to 5, we limit the stretching bound by the

replenishment time to bound the delay of response time of aperiodic tasks. Using this policy,

we can guarantee that the maximum increase of the average response time is �� ���.

Figure 3(a) shows the task schedule using a sporadic server SS, assuming the same task set.

The budget of SS, ��, is set to �� at time 0. If an aperiodic task is executed during the time

[��� ��], �� is reduced by ��� �� until the time ��. The budget �� is replenished by the amount of

�� � �� at the time �� 	 ��. SS preserves its budget �� if no requests are pending when released.

An aperiodic request can be serviced at any time (at server’s priority) as long as the budget

of SS is not exhausted (e.g., task ��). If the budget is exhausted, aperiodic tasks should wait

until the next replenishment time. For example, though the task �� arrived at the time 19, it is

serviced at the time 20. Figure 3(b) shows the task schedule using the lppsRM/SS algorithm

which is the modified version of lppsRM [9] for SS.

Definition 1: The replenishment time ����� is the last replenishment time among the replen-

ishment times which is earlier than the completion time of ��, �����.

Lemma 1: The last replenishment times of ��, ���� �, are same in both lppsRM/DS (or

lppsRM/SS) and DS (or SS).

Proof The last replenishment time ���� � is determined by the replenishment rule, the server
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(a) SS without DVS
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��SS=(1,4)
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��	� ��	� ��	� ��	� ��	� ��	�

��	� ��	� ��	� ��	�
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(b) lppsRM/SS

+1 +1 +1 +1 +1��� �
5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

1

1

1

� �SS=(1,4)

��=(1,5)

��=(2,8)

��	� ��	� ��	� ��	� ��	� ��	�

��	� ��	� ��	� ��	�

�� �� �� �� ��

(c) lppsRM/SS-SE

Fig. 3. Task schedules with a sporadic server.

budget ��, the server period ��, the release times of aperiodic tasks and the execution cycles of

aperiodic tasks. However, none of them is changed by lppsRM/DS (or lppsRM/SS). So, we

can conclude that the last replenishment times are same in both algorithms.

Lemma 2: The tasks (and the remaining execution cycles) to be executed after the last

replenishment time ����� are same in both lppsRM/DS (or lppsRM/SS) and DS (or SS).

Proof By the stretching rules of lppsRM/DS (or lppsRM/SS) which does not stretch tasks

over the replenishment time, the tasks executed between the replenishment time are not changed.

By Lemma 1, the last replenishment time is not changed. Therefore, this lemma is true.

Theorem 1: By the lppsRM/DS and lppsRM/SS algorithms,  ���� � ����� for all ��.
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Proof We prove that the completion time of �� in lppsRM/DS (or lppsRM/SS), ������, is

smaller than �����	����� when �� is completed at ����� in DS (or SS). We prove the theorem

for two cases.

case 1 ����� � �����.

In this case, there is no queueing delay after ���� � because �� is already started. The budget

delay after ����� is also 0 by the definition of ���� �. Since �� � � between ���� � and �����

(or ������), all periodic tasks are executed at the full speed by the stretching rule for periodic

tasks. So, the preemption delay after �����, �����, in DS (or SS) is same to the preemption

delay �
����� in lppsRM/DS (or lppsRM/SS) by Lemma 2. The remaining execution cycles

of ��, �������� are also same in both algorithms by Lemma 2. We can know that �������� is not

larger than the budget of the scheduling server by the definition of ���� �, i.e., �������� � ��.

We can also know the time interval ���!"��%�#�$�� is smaller than or equal to �� when ��

is resumed at � after ���� � because ���� � � � and % � ���� � � ��. Therefore, we can show

that ������� ����� � �� ��� as follows:

����� � �������� 	 ������ ���� �

������ � �������� � �!"��%�#�$�� ��
�� 	 �
������ ���� �

������� ����� � �������� � �!"��%�#�$�� ��
�� � ��������

� ��������
�� � ��!"��%�#�$�� ������

� ��!"��%�#�$�� ������

� ��� ����

case 2 ����� � ���� �.

In this case, we can treat all aperiodic tasks ���
� � � � � ����� �� which are completed after ���� �

as one aperiodic task ���
	��� 	� which has the execution cycles of �����
	��� 	�� �
��

����
 �����.

Then, the proof is same to the case 1.

Consequently, we can conclude that  ���� � ����� for all �� scheduled by the lppsRM/DS

and lppsRM/SS algorithm. �
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Though we can reduce the energy consumption by lppsRM/SS algorithm, the algorithm

can show poor performance when the workload of aperiodic tasks is small. In this case, since

the budget �� is larger than 0 at most of scheduling points, we cannot use the stretching rule

for periodic task. Extremely, when there is no aperiodic request, there is nothing to do for the

DVS algorithm. Therefore, we need a more advanced DVS algorithm which can be applicable

to the mixed task system with a low aperiodic workload. For this purpose, we propose a new

slack estimation method, bandwidth-based slack-stealing, which identifies the maximum slack

time for a periodic task considering the bandwidth of scheduling server. Figure 3(c) shows

the lppsRM/SS-SE algorithm, which is based on lppsRM/SS but uses the bandwidth-based

slack-stealing method. When �� is larger than 0 and there is only one periodic task in the ready

queue, the slack estimation method calculates the maximum available time before the arrival

time of next periodic task.

Figure 4 shows the bandwidth-based slack-stealing method. In Figure 4, �� is the period of � ,

� is the current time, #�$ is the next periodic task arrival time and % is the next replenishment

time of SS. We should consider two different cases depending on the priority of SS. Figure 4(a)

shows the case when �� � ��. In this case, the maximum blocking time by aperiodic tasks before

the next task arrival time (#�$) should be identified. Figure 4(b) shows the case when �� & ��.

In this case, the task � is stretched to !"��%�#�$� � ��. Although there is no deadline miss

even when the periodic task � is completed after %, the proposed DVS algorithm is designed to

bound the response time delay. Under this policy, the preemption delay is increased but we can

guarantee that  ���� � �� � �� for all �� because �� is not delayed above the replenishment

time %.

����
�

%

� #�$

��

��

������
��

���

!"��#�$ �% � ������
��

���� ���

% 	 ������
��

���

(a) �� � ��

�
�

%

� #�$

��

��

(b) �� � ��

Fig. 4. Bandwidth-based slack stealing in lppsRM/SS-SE.
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From Figure 4, the maximum available time �$� of a task � can be calculated as follows:

	
 ��� � ��� ��� � 
��� �� �� � �

����

��
��� ��	��
����� �


����

��
���� ���

	
 ��� � ��� ��� � �	����
���� �� ��

In Figure 3(c), the periodic tasks ��	�, ��	� and ��	� are stretched by the bandwidth-based

slack-stealing method. For example, at the time 5, the task ��	� has the available time 2 (�

#�$� �� �� � 
� �� �). A side effect of the bandwidth-based slack-stealing method is that

aperiodic tasks tend to be executed at full speed. Due to the side effect, the DVS algorithm using

the bandwidth-based slack-stealing method generates better average response times.

C. Scheduling Algorithms in Dynamic-Priority Systems

For dynamic-priority systems, we assume the EDF scheduling policy. Figure 5(a) shows the

task schedule with a TBS. There are two periodic tasks, �� � ��� 
� and �� � ��� ���, and

one TBS with �� � �	�. �� is the utilization of TBS. If �� 	 �� � �, the periodic tasks

are schedulable. When an aperiodic task �� arrives, TBS sets the deadline of �� to '���� �

!()������� '������� 	 �
��, where �, ����� and '���� is the WCEC, the release time, and

the deadline of ��, respectively. For example, when an aperiodic task ��, whose WCEC is 2,

arrives at 6, TBS sets ��’s deadline to 11 (� !()��� �� 	 �
�	�). When a task �� arrives at 14,

it preempts the task ��	� because ��’s deadline is 18 and ��	�’s deadline is 24.

With TBS, we can employ a stretching rule for aperiodic tasks similar to the stretching rule

used in lppsRM/DS. An aperiodic task �� can be stretched to !"��'����� #�$�. (Note that

'���� is used instead of % in lppsRM/DS.) However, we cannot employ the stretching rule for

periodic task used lppsRM/DS because TBS is not controlled by the budget. Instead, we can

make use of the fact that TBS sustains the utilization of aperiodic tasks as ��. If we can endure

a little degradation of aperiodic task response time, we can delay an aperiodic task �� until

'��� when �� & '���. This delay does not affect the utilization of TBS and does not cause the

deadline miss of periodic task. Delaying an aperiodic task until '��� is identical with assuming

the earliest arrival time of the aperiodic task �� as '���.

Figure 5(b) shows the task schedule using the lppsEDF/TBS algorithm which is a modified

version of lppsEDF [9] using the stretching-to-NTA method. For example, the remaining part



16

�
�
�
�
��
��
��
��

8 16 24

UTBS = 0.5

1 =(2,8)

2 =(3,12)

speed

1

1

1

speed

speed

�

�
��	� ��	� ��	�

��	� ��	�

'���� '���� '���� '����

�� �� �� ��

(a) TBS without DVS

�� ����
8 16 24

UTBS = 0.5

1 =(2,8)

2 =(3,12)

earliest arrival time of
the next aperiodic task

earliest arrival time of
the next aperiodic task

1

1

1

speed

speed

speed

�

�
��	� ��	� ��	�

��	� ��	�

'���� '���� '���� '����

�� �� �� ��

(b) lppsEDF/TBS

8 16 24

TBS

1

2

inter -slack inter -slack

intra
slack inter -slack

12 24

3 6 14 16� ��
8 16 24

U = 0.5

1 =(2,8)

2 =(3,12)

(1.5)
12 24

3 6 14 16

(1.0)(1.0)
(1.5) (1)

���
1

1

1

speed

speed

speed

�

�

�

�
��	� ��	� ��	�

��	� ��	�

'����'���� '����'���� '����'���� '����'����

���� ���� ���� ����

(c) DRA/TBS

Fig. 5. Task schedules with a total bandwidth server.

of the task ��	� at the time of 4 can be stretched to '� � �. When an aperiodic task �� arrives at

the time of 6, it preempts ��	� because its priority (i.e., deadline) is higher than ��	� but produces

no deadline miss. If the priority of ��	� is higher than ��, the start of �� will be delayed until 7.

Unfortunately, we cannot bound the maximum response time delay in lppsEDF/TBS because

it is not controlled by the budget.

To use the priority-based slack-stealing method for TBS, we should identify the slack times

of TBS. There are two types of slack times available when TBS is used:
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� Inter-slack: If an interval [��� ��] in TBS is not overlapped with any active interval of

aperiodic tasks [��� '�], there is ��� � ��� � �� amount of slack time. This is because the

total utilization does not exceed 1 even if an aperiodic task with the execution time of

��� � ��� � �� is executed during the interval [��� ��].

� Intra-slack: When an aperiodic task, whose WCET is �, consumes only the time of �,

there is �� � �� amount of slack time.

Figure 5(c) shows the task schedule using the DRA/TBS algorithm which is the modified version

of DRA [2] using the priority-based slack-stealing. Originally, in the DRA algorithm, when a task

� is to be executed, the slack times due to the early completions of tasks which have the higher

priorities than the priority of � are computed and the speed of � is determined using the slack

times. The DRA/TBS algorithm uses the same technique except that it considers the inter-slack

as well as the intra-slack of TBS.

For example, in Figure 5(c), when a task ��	� is scheduled at the time of 1, there is a slack

time 1.5 (1 from the early completion of ��	� and 0.5 from the inter-slack of TBS during the

time interval [0,1]). Using the slack time, the task ��	� is scheduled with the speed of 0.67

(=3/(3+1.5)). When the task �� is completed consuming only the 1 time unit, the intra-slack

1.0 is transferred to the remaining part of the task ��	� lowering its clock speed. Using the

DRA/TBS algorithm, we can get a better energy efficiency than that of the lppsEDF/TBS

algorithm because DRA/TBS exploits more slack times.

Figure 6(a) shows the task schedule using a constant bandwidth server CBS, assuming two

periodic tasks, �� � ��� 
� and �� � ��� ���, and one CBS =(2,4). The maximum utilization of

CBS (��) is �	��� �

�. If ��	�� � �, where �� is the maximum utilization of periodic tasks,

the task set is schedulable.

At each instant, a CBS deadline '� is associated with CBS. At the beginning '� � �. Each

served aperiodic task �� is assigned a dynamic deadline equal to the current server deadline

'�. Whenever a served task executes, the budget �� is decreased by the same amount. When

�� � �, the server budget is replenished to the maximum value �� and a new server deadline

is generated as '��� � '� 	 ��. A CBS is said to be active at time � if there are pending jobs;

that is, if there exists a served task �� such that ����� � � & �����, where ����� and ����� are

the arrival time and the completion time of the task ��. A CBS is said to be idle at time � if it

is not active. When a task �� arrives and the server is active the request is enqueued in a queue
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Fig. 6. Task schedules with a constant bandwidth server.

of pending jobs according to a given (arbitrary) non-preemptive discipline (e.g., FIFO).

When an aperiodic task �� arrives at ����� and the server is idle (when CBS does not service

aperiodic tasks), if �� � �'� � �������� the server generates a new deadline '��� � ����� 	 ��

and �� is replenished to the maximum value ��, otherwise the task is served with the last server

deadline '� using the current budget. When a job finishes, the next pending job, if any, is served

using the current budget and deadline. If there are no pending jobs, the server becomes idle. At

any instant, a job is assigned the last deadline generated by the server.

For example, when an aperiodic task �� arrives at time 3, CBS sets its deadline '� to 7

(� ����� 	 �� � � 	 
) and �� uses the deadline. When an aperiodic task �� arrives at time 6,

CBS sets ��’s deadline to 10 (� ����� 	 �� � � 	 
) and �� is replenished to 2 because �� � �

is greater than �'� � �������� � ��� ���	� � �	�. When a task �� arrives at 14, CBS sets ��’s

deadline to 18 and �� preempts the task ��	�. When an aperiodic task �� arrives at 15, CBS sets

��’s deadline to 18 (� '�) because �� � � is smaller than �'�� �������� � ��
� ����	� � �	�.

When �� � � at time 16, CBS changes ��’s deadline to a new deadline '� � '� 	 �� � �� and

�� is replenished to 2. In this manner, CBS maintains its bandwidth under ��.
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For CBS, we cannot employ the stretching rule for periodic tasks used for DS and SS because

there are no finite intervals of time in which the budget is equal to zero. But, we can modify

the stretching rule like lppsEDF/TBS.

To use the priority-based slack-stealing [6] method for CBS, we should identify the slack times

of CBS. We can estimate the slack time using the workload-based slack-estimation method. When

the workload of CBS is lower than ��, we can identify slack times.

Figure 7 shows the workload-based slack-estimation algorithm for CBS. The algorithm uses

four variables, release, ������, ����� and �������. The release is a flag variable to know whether an

aperiodic task is released. The ������� contains the number of execution cycles of the completed

aperiodic tasks. When an aperiodic task is completed, �����, which is the number of idle cycles

required to make the workload of CBS to be same to ��, is calculated. During the idle period,

the ����� is decreased. When ����� becomes to 0, the workload of CBS is equal to ��. If the idle

interval of CBS continues, the workload of CBS becomes to be smaller than �� and ������ is

increased. The ������ can be used for periodic tasks to stretch the execution time.

Initiation:
release=F; ������ � �; ����� � �; ������� � �;

upon aperiodic task release:
release = T;

upon aperiodic task completion:
����� += ������� � ��� ��� 	 ��;
release = F; ������� � �;

during aperiodic task execution(�):
increase ������� by �;

during CBS idle(�):
if ( release��F and ����� �� �) increase ������ by � � ��;
else decrease ����� by �;

Fig. 7. Workload-based slack estimation in CBS.

Figure 6(b) shows the task schedule using the DRA/CBS algorithm which is modified from

the DRA algorithm [2]. In Figure 6(b), the time intervals, where ������ � �, are marked with

arrow lines. For example, when a task ��	� is scheduled at time 1, there is a slack time 1.5 (1

from the early completion of ��	� and 0.5 from CBS during the time interval [0,1]). Using the

slack time, the task ��	� is scheduled with the speed of 0.67 (=3/(3+1.5)). When the task ��	� is

preempted at time 3, the slack time 1.0 from CBS is transferred to the remaining part of ��	�.

DRA/CBS generally increases the preemption delay of aperiodic task. However, we can
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guarantee that  ���� � �� ��� for all ��.

Lemma 3: The deadline '�� assigned by DRA/CBS algorithm is same to the deadline '�

assigned by CBS algorithm.

Proof There are two cases when a new deadline is assigned in CBS. First, when all the budget

is consumed (�� � �), a new deadline '��� � '� 	 �� is generated. Since �� is same in both

DRA/CBS and CBS, '��� and '���� are also same. Second, when the CBS server is inactive and

�� � �'����������, a new deadline '��� � �����	�� is assigned. The new deadline assignment

occurs to sustain the utilization of CBS below ��. Since DRA algorithm transfers only the unused

slack times of higher-priority task to low-priority task, there is no change of the utilization of

CBS at �����. Therefore, '� and '�� for all � are same.

Lemma 4: The aperiodic tasks (and the remaining execution cycles) to be executed after the

last replenishment time ���� � are same in both CBS and DRA/CBS.

Proof CBS/DRA does not change the replenishment rule of scheduling server. The budget of

CBS is only consumed by aperiodic tasks. Therefore, the amount of executed aperiodic tasks

before ����� is not changed.

Theorem 2: By the DRA/CBS algorithm,  ���� � �� ��� for all ��.

Proof When we denote the completion times of �� in DRA and DRA/CBS as ����� and ������

respectively, we should show ������� ����� � �� ���. We prove the theorem for two cases.

case 1 During the execution of ��, there is no replenishment of the budget of CBS.

In this case, we can know the execution cycle of ��, �����, is smaller than ��. By the Lemma

3, ������ � '����� � '����. From the deadline assignment rule, '����� ����� � ��. Therefore,

we can show ������� ����� � �� ��� as follows:

������� ����� � '����� �����

� '����� ������ 	 ������

� �'����� ������� �����

� �� � �����

� �� ���
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case 2 During the execution of ��, there is one or more replenishments of the budget of CBS.

From the Lemma 4, we can know that the remaining execution cycles of �� before the last

replenishment time, ��������, are same in both DRA and DRA/CBS. Therefore, we can treat the

remaining part of �� as another aperiodic task which has the execution cycles of ��������. Then,

we can prove the case 2 with the proof for case 1.

V. EXPERIMENTAL RESULTS

We have evaluated the performance of our DVS algorithms for scheduling servers using

simulations. The execution time of each periodic task instance was randomly drawn from a

Gaussian distribution in the range of [BCET, WCET] where BCET is the best case execution

time. In the experiments, BCET is assumed to be 10% of WCET.

The interarrival times and service times of aperiodic tasks were generated from the exponential

distribution using the parameters � and � where �
� is the mean interarrival time and �
� is

the mean service time. Then, the workload of aperiodic tasks can be represented by � � �
�.

If there is no interference between aperiodic tasks and periodic tasks, the average response time

of aperiodic tasks is given by ��� ���� from the M/M/1 queueing model.

Varying the server utilization �� and the workload of aperiodic tasks � under a fixed utilization

�� of periodic tasks, we observed the energy consumption of the total system and the average

response time of aperiodic tasks. We present only the experimental results where �� is controlled

by changing the value of �� with a fixed �� value and � is controlled by a varying � with a

fixed � value.

The periodic task set has three tasks with �� � �	� and four tasks with �� � �	
 in

the experiments of fixed-priority systems and dynamic-priority systems, respectively. For all

experiments including the non-DVS scheme, both periodic tasks and aperiodic tasks were given

an initial clock speed 
� � ��� 	���
�
��, where 
� is the maximum clock speed and �� is

the upper bound of the schedulable utilization (1 in the EDF policy and ������� �� for � tasks

in the RM policy). During run time, the speed is further reduced by on-line DVS algorithms

exploiting the slack times.

First, we observed how the server utilization (��) is related with the energy consumption

and the average response time. Figure 8(a) shows the energy consumptions of the power-down
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method, lppsRM/SS-SE and ccRM/SS-SE when a sporadic server is used. ccRM [8] also use

the stretching-to-NTA method. ccRM/SS-SE uses the bandwidth-based slack-stealing method

additionally. For the workload of aperiodic tasks (�), 0.1 was used. As �� increases, the energy

consumption also increases because the initial clock speed 
� increases.

Figure 8(b) shows how the average response time of aperiodic tasks changes. As �� increases,

the response time decreases, converging on the average response time of M/M/1 because the

number of interferences by periodic tasks is reduced. lppsRM/SS-SE and ccRM/SS-SE do

not significantly increase the response time. This is because the response time delays due to the

DVS algorithms are smaller than �� ���.

From these results, we can observe that the server utilization should be carefully selected to

satisfy the response time requirement. For example, assume that � is 0.05 and SS is used for

aperiodic task scheduling. If the average response time should be less than 2 msec, the server

utilization 0.2 is the best choice because it minimizes the energy consumption while satisfying

the response time constraint.
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Fig. 8. Experimental results using a sporadic server (� � ����).

Figure 9(a) shows the energy consumptions of the ccRM/SS algorithm and the ccRM/SS-

SE algorithm normalized by that of the power-down method. We also evaluated the modified

version of ccRM/SS-SE called ccRM/SS-SD. The ccRM/SS-SD algorithm uses a different

slack distribution method. When slack times are identified, ccRM/SS-SD gives the slack times

to only periodic tasks. Therefore, aperiodic tasks are always executed at the initial clock speed


�. ccRM/SS-SD is good for a better response time.

The difference between the energy savings of ccRM/SS and ccRM/SS-SE decreases as �



23

increases. This is because there are more chances for SS to have the zero budget when � is

large. As �� increases, ccRM/SS-SE shows a larger energy saving compared with ccRM/SS

because ccRM/SS-SE performs well in the low aperiodic workload (over ��). The ccRM/SS

and ccRM/SS-SE reduced the energy consumption on average by 9% and 25% over the power-

down method, respectively.

As shown in Figure 9(b), ccRM/SS and ccRM/SS-SE increase the response time on average

by 8% and 6% over the power-down method, respectively. Due to the side effect on aperiodic

tasks explained at Section IV, ccRM/SS-SE shows better average response times. ccRM/SS-

SD shows almost the same response time to that of power-down method because the execution

speed of aperiodic task is always 
� and the preemption delay is not increased except the case

when �� is larger than the periods of periodic tasks. However, it shows better energy performances

than ccRM/SS.
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Fig. 9. Experimental results using a sporadic server.

Figures 10(a) and (b) are the experimental results of deferrable server. They show similar

results with the results of sporadic server.

For CBS, we observed the performances of lppsEDF/CBS, lppsEDF/CBS-SD, DRA/CBS

and DRA/CBS-SD. lppsEDF/CBS-SD and DRA/CBS-SD assigns all aperiodic tasks the initial

clock speed 
�. Figure 11(a) shows the energy consumption by each algorithm normalized by

that of power-down method. The energy reductions are not significantly changed as � changes.

This is because DRA/CBS does not utilize the zero budget of server as ccRM/SS. The average

energy reductions by DRA/CBS and DRA/CBS-SD are 18%. Since most of slack times are
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Fig. 10. Experimental results using a deferrable server.

generated by CBS and used by periodic tasks, DRA/CBS and DRA/CBS-SD show similar energy

performances.

DRA/CBS increased the average response time on average by 16%. As �� decreases (��

increases)3, the response time increases because the maximum response time delay is �� ���.

However, the response time delay of aperiodic task is still smaller than �����. lppsEDF/CBS

shows long response times because it does not bound the maximum response time delay. Since

DRA/CBS-SD is similar to DRA/CBS in energy performances despite of its good response times,

we can know that it is better to give slack times only to periodic tasks when the short response

times are required.
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Fig. 11. Experimental results using a constant bandwidth server.

3Note that we varied �� to change ��.
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Fig. 12. Experimental results using a total bandwidth server.

Figures 12(a) and (b) are the experimental results of total bandwidth server. They show similar

results with the results of constant bandwidth server.

VI. CONCLUSIONS

We have proposed DVS algorithms for mixed task systems which have both periodic and

aperiodic tasks. We presented the slack estimation methods for the scheduling servers. Existing

on-line DVS algorithms, which cannot be used for mixed task systems, were modified to

use the proposed slack estimation methods. The modified DVS algorithms reduced the energy

consumption by 18�25% over the power-down method. We also showed the effects of the slack

distribution methods on the energy and the response time.

Our work in this paper can be extended in several directions. Though the proposed algorithm

only guarantees that the response time delay is smaller than �� � ��, it will be more useful if

we can control the maximum response time delay with an arbitrary Æ value. Furthermore, it will

be interesting to use the DVS algorithm to utilize the temporal locality of aperiodic requests.

When the aperiodic requests are sparse, we could use a larger Æ value for a more energy-efficient

schedule.
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