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Abstract—Data deduplication is an effective solution 
in improving the lifetime of flash-based solid-state 
drives (SSDs) by preventing redundant data from 
being written to flash memory. Existing deduplication 
techniques for SSDs, however, fail to fully eliminate 
potential redundant data because of their coarse-
grained granularity. In this paper, a fine-grained 
deduplication technique for SSDs, called FineDedup, 
is proposed to improve the likelihood of eliminating 
redundant data. FineDedup also resolves technical 
difficulties caused by its finer granularity, i.e., 
increased memory requirement and read response 
time. The results show that FineDedup reduces the 
amount of written data by up to 24% over existing 
techniques with negligible.    
 
Index Terms—NAND flash memory, solid state disks, 
data deduplication, lifespan, reliability    

I. INTRODUCTION 

As the price-per-byte of NAND flash memory is 
rapidly decreasing, NAND flash-based solid-state drives 
(SSDs) are emerging as attractive solutions for various 
consumer products such as laptops, smart phones and 
smart pads. However, as NAND flash memory 
technology scales down to 20-nm and below, storing data 
reliably in NAND flash memory is one of key design 

challenges of NAND flash-based storage systems. For 
example, the number of program/erase (P/E) cycles 
allowed for each block is significantly reduced in recent 
triple-level cell (TLC) NAND technology. While older 
5x-nm single-level cell (SLC) NAND flash memory can 
support about 10 K P/E cycles, recent 2x-nm TLC 
NAND flash memory can barely support about 1 K P/E 
cycles [1, 2]. Particularly, the reduction in the number of 
P/E cycles of NAND flash memory seriously limits the 
overall lifetime of flash-based SSDs, making it difficult 
for SSDs to be used in write-intensive applications. 

In order to extend the lifetime of flash-based SSDs, 
data deduplication techniques have been used in recent 
SSDs because they are effective in reducing the amount 
of data written to flash memory by preventing duplicate 
data from being written again [3-6]. As a result, only 
non-duplicate data, i.e., unique data, are stored in SSDs, 
thus effectively decreasing the total amount of data 
written to SSDs. In most deduplication schemes 
proposed for SSDs, the unit of data deduplication is the 
same as the flash page size which is usually 4 KB or 8 
KB. Using a page as a deduplication unit seems to be 
reasonable because the unit of a read or write operation 
of flash memory is also a page. However, this page-based 
deduplication technique misses many chances of 
eliminating duplicate data, especially when two pages are 
almost identical. For example, in the experimental 
analysis of an existing 4 KB page-based deduplication 
technique, it is observed that up to 34% mostly identical 
data. If the unit of deduplication were smaller than 4 KB, 
about 23% more data could be identified as duplicate 
data. Furthermore, it is expected that the effectiveness of 
the page-based deduplication technique would get even 
worse in future NAND flash memory as the page size of 
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flash memory is expected to increase to a bigger size 
such as 8 KB or 16 KB [1, 2]. 

This paper proposes a fine-grained deduplication 
technique for flash-based SSDs, called FineDedup. It is 
different from other existing deduplication techniques in 
that it increases the likelihood of finding duplicates by 
using a finer deduplication unit which is smaller than a 
single page (e.g., one fourth of a single page). With a 
smaller deduplication unit, many data segments within a 
page can be detected as a duplicate one, so the amount of 
data written to flash memory can be reduced regardless 
of a physical page size. To the best of our knowledge, 
this is the first work that uses the fine-grained approach 
for device-level deduplication. 

In order to effectively incorporate fine-grained 
deduplication into flash-based SSDs, two key technical 
issues must be addressed properly. First, fine-grained 
deduplication requires a larger memory space than a 
coarse-grained one because it needs to keep more 
metadata in memory to find small-size duplicate data. 
Second, in fine-grained deduplication, unique data 
segments from partially duplicated pages can be scattered 
across several physical pages, which may seriously 
degrade the overall read performance. The proposed 
FineDedup technique is designed to take full advantage 
of fine-grained deduplication with small memory 
overhead as well as a low read performance penalty. The 
evaluation results show that FineDedup prolongs the 
lifetime of SSDs by up to 24% over page-based 
deduplication while requiring a negligible memory space 
increase. This improvement comes with a less than 5% 
read performance penalty over page-based deduplication. 

The rest of the paper is organized as follows. Section 
II briefly reviews the existing deduplication techniques 
for SSDs. The main motivation of FineDedup is 
presented in Section III. The proposed FineDedup 
technique is described in detail in Section IV, and then its 
effectiveness is evaluated using real-world traces in 
Section V. Finally, Section VI concludes with a summary. 

II. RELATED WORKS 

Because of the "erase-before-write" nature of NAND 
flash memory, flash storage devices employ a flash 
translation layer (FTL) that supports address mapping, 
garbage collection, and wear-leveling algorithms. These 

firmware algorithms incur a lot of extra write/erase 
operations, seriously shortening the overall lifetime of a 
storage device. For this reason, a large number of studies 
have been focused on reducing such extra operations to 
improve the storage lifetime. However, considering the 
decreasing lifetime of recent high-density NAND flash 
memory such as TLC NAND flash memory [1, 2], more 
aggressive lifetime management solutions are required.  

Data deduplication techniques, which are originally 
developed for backup systems, are regarded as one of the 
promising approaches for extending the storage lifetime 
because of their ability that reduces the amount of write 
traffic sent to a storage device. In deduplication 
techniques, a chunk is used as a unit of identification and 
elimination of duplicate data. Depending on their 
chunking strategies, deduplication techniques can be 
categorized into two types, fixed-size deduplication and 
variable-size deduplication. Fixed-size deduplication 
divides an input data stream into fixed-size chunks (e.g., 
pages) [3-6]. Then, it decides if each chunk data is 
duplicated and prevents duplicate chunks from being 
rewritten to flash memory. Unlike fixed-size 
deduplication, the chunk size of variable-size 
deduplication is not fixed. Instead, it decides a cut point 
between chunks using a content-defined chunking (CDC) 
algorithm which divides the data stream according to the 
contents. 

In general, variable-size deduplication techniques can 
identify more data as duplicate data than the fixed-size 
deduplication technique. Since variable-size 
deduplication adaptively changes the size of chunks by 
analyzing the contents of input stream, duplicate data are 
more effectively found regardless of their locations. 
There are several works that exploit variable-size 
deduplication for system-level research [7, 8]. For SSD-
level deduplication, however, fixed-size deduplication is 
commonly used because of the following practical 
reasons. 

First, the CDC algorithm often requires relatively high 
computational power and a large amount of memory 
space. Thus, variable-size deduplication is not 
appropriate to be employed at the level of storage devices 
where computing and memory resources are constrained. 
Second, the size of remaining unique data after 
deduplication may vary in variable-size deduplication. 
When writing those data, a complicated scheme for data 
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size management is required to form sub-page data 
chunks to fit in a flash page size, preventing an internal 
fragmentation. For those reasons, most existing 
deduplication techniques for SSDs employ fixed-size 
deduplication, which is relatively simple and does not 
require a significant amount of hardware resources. 

There are several existing studies for fixed-size 
deduplication for SSDs. F. Chen [3] proposed CAFTL to 
enhance the endurance of SSDs with a set of acceleration 
techniques to reduce runtime overhead. W. Li [4] also 
proposed CA-SSD to improve the reliability of SSDs by 
exploiting the value locality, which implies that certain 
data items are likely to be accessed preferentially. In 
these studies, authors focused on the feasibility of 
deduplication at SSD level and proved its effectiveness 
rather than improving deduplication itself. 

Recently, several deduplication techniques for flash-
based storage are proposed. Z. Chen [5] proposed 
OrderMergeDedup which orders and merges the 
deduplication metadata with data writes to realize failure-
consistent storage with deduplication. G. Narasimhan [6] 
proposed CacheDedup which integrates deduplication 
with caching architecture to address limited endurance of 
flash caching by managing data writes and deduplication 
metadata together, and proposing duplication-aware 
cache replacement algorithms. These studies focus on 
systematic approach such as block layer or flash caching. 
However, this study improves the effect of deduplication 
in the device-specific domain, so the approach of this 
study is quite different. 

Similar to the existing deduplication techniques, the 
proposed FineDedup technique is also based on fixed-
size deduplication. Using a smaller deduplication unit, 
however, FineDedup improves the likelihood of 
eliminating duplicate data. This approach can 
complement the limitation of existing fixed-size 
deduplication techniques, which exhibit a relatively low 
amount of removed writes in comparison with variable-
size deduplication.  

III. MOTIVATIONS 

Existing deduplication techniques for SSDs use a 
single page as a chunk for data deduplication [3-6]. The 
write-requested page is identified whether the contents of 
the page have already been written and is written to flash 

memory only if there is no existing duplicate page. When 
a write-requested page is the exact duplicate of a 
previously written page, the requested page is not written 
to flash memory; only the corresponding entry for a 
mapping table (between the logical address and physical 
address) is updated. On the other hand, if there is no 
existing page duplicate in flash memory whose contents 
are the same as those of requested one, the requested 
page has to be written to flash memory. However, even 
for these unique pages, if their redundancy is checked at 
a sub-page level, say at a quarter of the page size, many 
sub-pages of these unique pages can be identified as 
redundant data. In existing techniques based on page-
level deduplication, therefore, many duplicate data are 
written to flash memory even though the same data 
chunks have already been written. 

In order to better understand the effect of fine-grained 
deduplication on the amount of identified duplicate data, 
how many more chunks can be identified as redundant is 
analyzed when the chunk size gets smaller than a single 
page. For the evaluation, five I/O traces, PC, Sensor, 
Synth, Install, and Update are used. They are explained 
in Section V. In the evaluation, the page size was 4 KB 
and the chunk size was set to 1 KB. Fig. 1 shows the 
percentage of the page writes from host, classified by 
their partial duplicate patterns. It is denoted that a page is 
an n/4-duplicate page when n chunks of the page are 
duplicate chunks. A 4/4-duplicate page is a duplicate 
page at the page level. In the existing page-based 
deduplication, only 4/4-duplicate pages can be identified 
as a duplicate page. As shown in Fig. 1, 4/4-duplicate 
pages account for only 8% - 28% of total requested pages. 
For partially duplicate pages, i.e., 1/4-, 2/4- and 3/4-

 

Fig. 1. The percentage of pages according to their partial 
duplicate patterns. 
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duplicate pages, the page-based deduplication technique 
is useless. As shown in Fig. 1, pages with 1-3 duplicate 
chunks account for 14% - 34%. This means that many 
duplicate data are unnecessarily written to flash memory 
due to the large chunk size. 

It is also investigated that the amount of data that can 
be eliminated by data deduplication while varying the 
chunk sizes from 256 B to 8 KB. As shown in Fig. 2, 
when the chunk size is 1 KB, the amount of data written 
to flash memory is reduced by 33% over when the chunk 
size is 4 KB. In particular, when the size of a chunk is 8 
KB (i.e., when the physical page size is assumed to be 8 
KB), only 10% of requested data are eliminated by data 
deduplication. This effectively shows that, as the size of 
a page increases, the overall deduplication ratio, i.e., the 
percentage of identified duplicate writes, decreases 
significantly. Since the physical page size of NAND 
flash memory is expected to increase as the 
semiconductor process is scaled down [1, 2], it is 
expected that the deduplication ratio of the existing 
deduplication technique will be significantly decreased in 
near future. In order to resolve this problem, the 
deduplication chunk size of deduplication techniques 
needs to be smaller than a page size. As depicted in Fig. 
2, the deduplication ratio is saturated when the chunk 
size is 1 KB. Thus, it is used as a default chunk size in 
the rest of this paper. 

IV. FINE-GRAINED DEDUPLICATION 

In this section, the proposed FineDedup technique is 
described in detail. The overall architecture of 
FineDedup is explained first and how FineDedup handles 
read and write requests is described in Section IV.1. In 
Section IV.2 and IV.3, it is introduced that a read 

performance penalty and memory overheads caused by 
FineDedup, respectively, and how these problems can be 
resolved in FineDedup is explained. 

 
1. Overall Architecture of FineDedup 

 
Fig. 3 shows an overall architecture of FineDedup with 

its main components. Upon the arrival of a write request, 
FineDedup stores requested data temporarily in an on-
device buffer. When the requested data are evicted from 
the buffer, FineDedup divides the data into several 
chunks which is smaller than a page size.  

For each chunk, FineDedup computes a fingerprint, 
using a collision-resistant hash function. In this work, an 
MD6 hash function [9], which is one of the well-known 
cryptographic hash function is used. A fingerprint is used 
as a unique ID that represents the contents of a chunk. 
FineDedup has to compute more fingerprints than the 
existing deduplication schemes because of its small 
chunk size. To reduce the hash calculation time, 
FineDedup uses multiple hardware-assisted hash engines 
for parallel hash calculations. In Fig 3, for example, 4 
hardware accelerators are used for fingerprinting. In the 
FPGA (ML605) implementation of the MD6 hash 
function, it took about 10 μs to compute a fingerprint 
using a hardware accelerator. Thanks to the multiple 
hardware hash functions, the fingerprinting can be 
executed in parallel, so the elapsed time for calculating 
fingerprinting is maintained the same even when the 
number of chunks increases. Furthermore, the execution 
time and the hardware resources can be reduced further if 
the hash function is implemented by ASIC logics. 
Considering that NAND flash memory has a long write 
latency (e.g., 1.2 ms) and such latency is avoided 
whenever duplicate data is found, the time overhead of 
computing fingerprints can be considered negligible. For 
the read request handling, FTL finds the physical page 
location of the requested logical address by referencing 

 

Fig. 2. The amount of written data under varying chunk sizes in 
PC workload. 
 

 

Fig. 3. An overview of the proposed FineDedup technique. 
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the mapping table so the fingerprinting does not affect 
the read request.  

After fingerprinting, each fingerprint is looked up in 
the dedup table which maintains the fingerprints of the 
unique chunks previously written to flash memory. Each 
entry of the dedup table is composed of a key-value pair, 
(fingerprint, location), where the location indicates a 
physical address in which the unique chunk is stored. 

If the same fingerprint is found, it is not necessary to 
write the chunk data because the same chunk is already 
stored in flash memory. Instead, FineDedup updates the 
mapping table so that the corresponding mapping entry 
points to the unique chunk previously written. Note that 
searching fingerprints quickly is out of focus in this work. 
If necessary, any optimization process similar to existing 
deduplication techniques for quick search can be also 
applied to this work [3]. 

Unlike existing page-based deduplication techniques, 
FineDedup handles all the data in the unit of a chunk. For 
this reason, FineDedup must maintain a chunk-level 
mapping table that maps a logical chunk address to a 
physical chunk in flash memory. Because of its finer 
mapping granularity, the chunk-level mapping table is 
much larger than the existing page-level mapping table. 
To reduce the memory space for maintaining the chunk-
level mapping table, FineDedup uses a demand-based 
hybrid mapping strategy, which is described in Section 
IV.3 in detail.   

If there is no matched fingerprint in the dedup table, 
FineDedup stores the chunk data in a chunk buffer 
temporarily. This temporary buffering is necessary 
because the unit of I/O operations of flash memory is a 
single page. The chunk buffer stores the incoming chunk 
data until there are four chunks, and evicts them to flash 
memory at once. FineDedup then updates the mapping 
table so that the corresponding mapping entries indicate 
newly written chunks. The new fingerprints of the 
evicted chunks are finally inserted into the dedup table 
with their physical location. 

When a read request arrives, FineDedup reads all the 
chunks that belong to the requested page from flash 
memory, and then transfers the read data to the host 
system. In FineDedup, four chunks in the same logical 
page can be scattered across different physical pages. In 
that case, multiple read operations are required to form 
the original page data, which in turn significantly 

increases the overall read response time.  
 

2. Read Overhead Management 
 
As mentioned previously, FineDedup may increase the 

read response time significantly. The main cause of the 
read performance degradation is data fragmentation 
which occurs when data chunks belonging to the same 
logical page are broken up into several physical pages. 

Fig. 4 illustrates why data fragmentation occurs in 
FineDedup. There are two page write requests, Req 1 and 
Req 2, in Fig. 4. Req 1 consists of four chunks, ‘A’, ‘B’, 
‘C’, and ‘D’, and Req 2 is also composed of four chunks, 
‘E’, ‘F’, ‘G’, and ‘H’. Since ‘A’ and ‘B’ of Req 1 are 
duplicate chunks, only ‘C’ and ‘D’ need to be written to 
flash memory. Thus, writes for two chunks ‘A’ and ‘B’ 
can be reduced. Suppose that there is a read request for 
the page written by Req 1 after the chunks of Req 1 are 
written to flash memory. In that case, FineDedup has to 
read three pages, i.e., page 1, page 2, and page 3, from 
flash memory to form the requested data. The read 
performance penalty can also occur even when there are 
no duplicate chunks in the requested page. For example, 
in Fig. 4, Req 2 has no duplicate chunks in flash memory, 
thus all the chunks belonging to Req 2 being written to 
flash memory. Because a single page write requires four 
data chunks, ‘E’ and ‘F’ of Req 2 are written to page 3 
together with ‘C’ and ‘D’, and ‘G’ and ‘H’ will be written 
to page 4 with other data chunks, as shown in Fig. 4. 
Thus, when the data written by Req 2 are read later, both 
page 3 and page 4 must be read from the flash memory. 

One of the feasible approaches that mitigate the read 
performance overhead is to employ a chunk read buffer. 
It is observed that the access frequencies of unique 
chunks are greatly skewed; that is, a small number of 
popular chunks account for a large fraction of the total 
accesses to unique chunks in flash memory. For example, 
according to the analysis under real-world workloads, top 

 

Fig. 4. Data fragmentation caused by FineDedup. 
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10% of the unique chunks serve almost 70% of the total 
data read by a host system. By keeping frequently 
accessed chunks in a chunk read buffer, therefore, 
FineDedup can reduce a large number of page read 
operations sent to flash memory. 

On the other hands, it is also observed that about 39% 
of read requests to unique pages actually require two 
page read operations. In order to further reduce this read 
performance penalty, FineDedup uses a chunk packing 
scheme. The key idea of this scheme is to group chunks 
belonging to the same logical page in the chunk buffer 
and then write them to the same physical page together. 

Fig. 5 shows an example of the chunk packing scheme 
when three page write requests, Req 1, Req 2, and Req 3, 
are consecutively issued from a host system. Req 1 
contains two duplicate chunks ‘A’ and ‘B’ and two 
unique chunks ‘C’ and ‘D’. As expected, only ‘C’ and ‘D’ 
out of four chunks are sent to the chunk buffer. The next 
request Req 2 does not have any duplicate chunks, so all 
of them are moved to the chunk buffer. As depicted in 
Fig. 5, the chunks ‘E’, ‘F’, ‘G’, and ‘H’ belong to the 
same logical page and form single page data. Thus, 
FineDedup writes them to flash memory together, 
leaving the chunks ‘C’ and ‘D’ in the chunk buffer. When 
Req 3 is issued with two more unique chunks ‘I’ and ‘J’, 
‘C’ and ‘D’ along with ‘I’ and ‘J’ are written to flash 
memory. All those chunks can be written to the same 
physical page together because every chunk of each 
request is not broken up into two pages. 

Note that the main objective of this scheme is to 
prevent chunks of a unique request to be scattered across 
multiple pages avoiding unnecessary data fragmentation. 
In order to directly insert an incoming unique request to 
chunk buffer, page-sized free space should be managed 
to be always available in the buffer. When there is no free 
space for the next request without any suitable chunks of 

requests to form a single page, the chunks of a partially 
duplicate request should be broken up into two pages. 
Most partially duplicated requests, however, are 3/4-
Duplicate pages as shown in Fig. 1, which means there 
are many requests of one unique chunk in the chunk 
buffer. Therefore, it is expected that most requests will be 
written to the same page even when the size of the chunk 
buffer is not large since it is not quite difficult to find an 
appropriate chunk to fit a flash page. It has been 
observed that the effectiveness of the chunk buffer does 
not significantly increase when its size is more than 8 KB 
which is twice larger than that of a flash page. The size of 
the chunk buffer was thus set to 8 KB for the evaluation. 
In the above example, if it is assumed that the chunk 
buffer can contain 8 chunks and Req 3 has three unique 
chunks, only two chunks of Req 3 will be written along 
with existing chunks, ‘C’ and ‘D’, leaving the other 
chunk in chunk buffer. A large chunk buffer provides 
more chance to avoid the request scattering. 

Remaining data in the chunk buffer could be lost when 
a power failure occurs. Recent SSDs have a large DRAM 
cache (e.g., 256 - 512 MB) and use it as a device buffer. 
Moreover, they support internal cache power protection 
through the use of supercapacitors to flush out 
information in DRAM to flash memory at the event of 
power failure. In order to keep the reliability in 
FineDedup, the remaining data in the chunk buffer can be 
stored to flash memory during power protection 
procedure as well as the mapping information of the 
written page. In conclusion for chunk buffer design, there 
is a trade-off between potential read performance and 
reliability depending on the chunk buffer size. The size 
of the chunk buffer, hence, should be determined 
according to the characteristics of workloads. 

 
3. Memory Overhead Management 

 
As mentioned in Section IV.1, FineDedup handles 

requested data in the unit of a chunk. Therefore, 
FineDedup must maintain a chunk-level mapping table 
that maps a logical chunk address to a physical chunk 
address in flash memory. Since the size of a chunk is 
smaller than that of a page, a chunk-level mapping table 
is much larger than the page-level mapping table. For 
example, if the page size is 4 KB and the chunk size is 1 
KB, the size of a chunk-level mapping table is four times 

 

Fig. 5. A packing scheme in the chunk buffer. 
 



654 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF … 

 

larger than that of a page-level mapping table. 
In order to reduce the amount of memory space 

required for a mapping table, FineDedup employs a 
hybrid mapping table which is composed of two types of 
mapping tables: a page-level mapping table and a chunk-
level mapping table. As depicted in Fig. 1, fully duplicate 
pages (4/4 duplicate) and unique pages still account for a 
considerable proportion of the total written pages. For 
these pages, the page-level mapping is more appropriate 
because they can be directly mapped to corresponding 
pages in flash memory. The chunk-level mapping is 
required only for partially duplicate pages. 

Fig. 6 shows the overall architecture of the hybrid 
mapping table used in FineDedup. The primary mapping 
table (PMT) is maintained in the page level while the 
secondary mapping table (SMT) is maintained in the 
chunk level. The entry of the PMT is either a physical 
page address (PPA in Fig. 6) in flash memory or an index 
of the SMT (chunk address (CA) in Fig. 6).  

If the chunk-level mapping is not necessary for a 
requested page, for example, unique page or fully 
duplicate page, the corresponding entry of the PMT 
directly points to the physical address of the newly 
written page or existing unique page in flash memory, 
respectively. On the other hand, if a partially duplicate 
page is requested for writing, FineDedup allocates a new 
entry in the SMT. As depicted in Fig. 6, each entry of 
SMT is composed of four fields, each of which points to 
the physical chunk address in flash memory. FineDedup 
then updates the new entry so that each field points to the 
physical chunk address. The corresponding entry of the 
PMT indicates the newly allocated entry of the SMT. 

Using the hybrid mapping table, FineDedup can 
reduce the amount of memory space for keeping the 
mapping table. However, the problem of this hybrid 
mapping approach is that the size of the mapping table 

can greatly vary according to the characteristics of 
workloads. For example, if some workloads have many 
partially duplicate pages, the size of the SMT gets too big. 
On the other hand, if workloads mostly have unique 
pages or duplicate pages, it can be very small. Thus, the 
hybrid mapping table cannot be directly adopted in real 
SSD devices whose DRAM size is usually fixed. To 
overcome such a limitation, FineDedup adopts a 
demand-based mapping strategy in which the entire 
chunk-level mapping table is stored in flash memory 
while caching only a fixed number of popular entries in 
DRAM memory. The Cached PMT and Cached SMT in 
Fig. 6 represent the cached versions of the PMT and 
SMT, respectively. 

It has been known that the demand-based mapping 
requires extra page read and write operations during the 
address translation [10]. For instance, if a mapping entry 
for a chunk to be read is not found in the in-memory 
mapping table, that entry must be read from flash 
memory while evicting a victim mapping entry to flash 
memory. The temporal locality present in workload, 
however, helps keep the number of extra operations small. 
The mapping information of requests issued in similar 
times will be stored in the same flash page. Once a 
mapping page is loaded in memory, hence, most requests 
issued in similar times are serviced from the mappings in 
memory. 

V. EXPERIMENTAL RESULTS 

In this section, it is described that the experimental 
settings and explained the benchmarks used for the 
evaluation in detail. Then the effect of the proposed 
FineDedup technique is assessed on the SSD lifetime. 
Finally, it is analyzed that the read performance penalty 
and the memory overhead caused by FineDedup. 

 
1. Experimental Settings 

 
In order to evaluate the effectiveness of FineDedup, 

the experiments are performed using a trace-driven 
simulator with the I/O traces collected under various 
applications. The trace-driven simulator modeled the 
basic operations of NAND flash memory, such as page 
read, page write and block erase operations, and included 
several flash firmware algorithms, such as garbage 

 

Fig. 6. An overview of the demand-based hybrid mapping 
table. 
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collection and wear-leveling. The proposed FineDedup 
technique and the existing deduplication techniques were 
also implemented in the simulator. For trace collection, 
the Linux kernel 2.6.32 is modified and I/O traces are 
collected at the level of a block device driver. All the I/O 
traces include detailed information about the I/O 
commands sent to a storage device (e.g., the type of 
requests, logical block addresses (LBA), the size of 
requests, etc.) as well as the contents of the data sent to 
or read from a storage device. The I/O traces are recoded 
while running various real-world applications. The 
detailed descriptions of these I/O traces are summarized 
in Table 1. 

 
2. Effectiveness of FineDedup 

 
As FineDedup exploits the duplicated chunks smaller 

than a page, the effectiveness of FineDedup is 
determined by the ratio of duplicated chunks of the 
workloads. In this section, it is described that how much 
duplicated data are eliminated by the FineDedup 
compared to the existing scheme.  

Fig. 7 shows the amount of data written to flash 
memory by FineDedup over the existing scheme. The 
results shown in Fig. 7 are normalized to RAW_req, 
which represents the total amount of data written to flash 
memory without data deduplication. It is assumed that 
the existing page-based deduplication technique as a 
baseline case. The baseline is denoted by BL_4KB for a 4 
KB flash page and BL_8KB for an 8 KB flash page. 
FineDedup technique is denoted by FD_4KB and 
FD_8KB for a 4 KB flash page and an 8 KB flash page, 
respectively. The chunk size in FineDedup is set to 1 KB 
for a 4 KB flash page and 2 KB for an 8 KB flash page. 

In order to see the effectiveness of FineDedup with 
various chunk sizes, the chunk size for an 8 KB flash 
page is set as 2 KB. In addition, by selecting 1 KB and 2 
KB as the chunk size for 4 KB and 8 KB page, 
respectively, the number of chunks per page is the same 
for each case, which results the same number of 
fingerprints calculations. 

As shown in Fig. 7, the effectiveness of deduplication 
techniques is highly workload-dependent. The amount of 
data eliminated by the deduplication technique notably 
increases when FineDedup is applied in most of the 
traces except M-media. When the chunk size is set as one 
fourth of the flash page size, FineDedup removes on 
average 16% more duplicate data over BL_4KB for a 4 
KB flash page. Particularly, FineDedup saves 24% flash 
writes over BL_4KB. For an 8 KB flash page, it removes 
more duplicate data, on average by 23% over the existing 
technique. For PC, FineDedup saves 37% flash writes 
over BL_8K. 

As expected, the benefit of FineDedup mainly derives 
from the decreased chunk size because it increases the 
probability of finding and eliminating duplicate data. 
Especially, PC trace shows a large number of update 
requests with little different data, so FineDedup can 
effectively identify unchanged data as duplicate while 
existing deduplication technique regards them as unique 
data. For the M-media trace, it is extremely difficult to 
find duplicate data because the data were already highly 
compressed. Thus, both the existing deduplication 
techniques and FineDedup are not effective in reducing 
the amount of data written to flash memory. 

 
3. Read Overhead Evaluation 

 
As explained in Section IV.2, fine-grained chunking in 

FineDedup may increase read response time. In this work, 

Table 1. A summary of traces used for the evaluations 

Trace Description Writes Reads 

PC Web surfing, emailing and 
editing document, etc. 3.1 GB 40 MB 

Sensor Storing semiconductor 
fabrication sensor data 2.6 GB 66 KB 

Synth Synthesizing hardware modules 2.5 GB 70 MB 

Install Installing & executing programs 
(office, DB) 4.9 GB 119 MB 

Update Updating & downloading 
software packages 3.5 GB 103 MB 

M-media Downloading & playing 
multimedia files 3.2 GB 36 MB 

 
 

 

Fig. 7. The amount of written data under various schemes. 
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the number of read operations was used as the metric of 
the read overhead. In terms of the response time, the 
number of read operations can be regarded as the worst 
case response time since it cannot reflect parallelism.  

Fig. 8 shows the normalized number of page read 
operations compared with the number of read requests in 
the workloads. RAW_Req indicates the number of 
original page read requests. BL refers to the number of 
page read operations of the baseline FineDedup without 
employing proposed optimization schemes. BL+PS, 
BL+RB and BL+PS+RB indicate the number of page 
reads of FineDedup with the proposed packing scheme, 
the chunk read buffer, and both, respectively. The size of 
the chunk read buffer was set to 8 MB and the chunk 
buffer size was set to 200 KB. RAW_RB indicates the 
number of page reads when RAW_Req has an additional 
8 MB read buffer, which is the same size as BL+RB, and 
it is managed by the LRU policy. As shown in Fig. 8, 
employing the chunk read buffer is more effective than 
the packing scheme for reducing additional page read 
operations in most workloads. This is because the 
packing scheme is only effective for the requests 
containing no duplicate chunks whereas the chunk read 
buffer can absorb most of the read requests to frequently 
accessed chunks. FineDedup with both the packing 
scheme and chunk read buffer incurs on average less than 
5% of additional read operations over the existing 
deduplication technique.  

Compared with the baseline policy with the 8 MB read 
buffer (i.e., RAW_RB), FineDedup reads about 10% more 
pages which are still small enough. One interesting 
observation here is that there is only 6% improvement 
after adding the 8 MB buffer to RAW_Req. This 
performance gain is quite marginal compared with huge 
improvement in FineDedup – FineDedup exhibits 25% 
better performance with the same amount of DRAM. In 

our observation, this is because FineDedup deduplicates 
the contents in DRAM, and thus provides larger effective 
DRAM capacity. The detailed analysis is given in 
Section V.6. 
 
4. Memory Overhead Evaluation 

 
As explained in Section IV.3, chunk level mapping 

table requires large memory space to handle partially 
duplicate pages. In FineDedup, the demand-based hybrid 
mapping table is proposed to reduce the required 
memory size for a mapping table without performance 
degradations. 

In Fig. 9, the effectiveness of the proposed mapping 
table is evaluated in terms of the hit ratio and the amount 
of additional written data with various memory sizes for 
the cache. Since the demand-based PMT of the hybrid 
mapping table in FineDeup is the same approach as the 
DFTL [10], which is a well-known demand-based 
scheme to exploit the page-level mapping, the overhead 
of PMT can be estimated from the overhead of DFTL. 
Thus, in order to focus on the overhead of the SMT, it is 
assumed that DFTL is employed as the baseline mapping 
scheme in the evaluation. 

Fig. 9(a) shows the hit ratio of the cached SMT. With a 

 

Fig. 8. The number of page read operations. 
 

 

Fig. 9. The effectiveness of the demand-based hybrid mapping 
table in FineDedup with various cache sizes. 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 657 

 

120 KB cache, more than 95% of the mapping table 
accesses are absorbed. In addition, Fig. 9(b) shows extra 
written data caused by the evicted page entries from the 
SMT cache. Since mapping table accesses occur in the 
middle of read/write operations, it is important to reduce 
the amount of written data from evicted page entries in 
terms of read/write performance. Similar to the hit ratio, 
the overhead by the eviction becomes almost negligible 
when the cache size is set to 120 KB under most 
workloads. 

Note that the memory overhead in the M-media trace 
is not as significant as the other traces when the cache 
size is very small as shown in Fig. 9, although all of them 
have a similar number of read requests. It is mainly 
because the former traces do not benefit from the fine-
grained chunking scheme. Since most of data in the M-
media trace contains unique data, chunk-level mapping 
table is used only for small amount of data. As a result, 
FineDedup does not incur a significant memory overhead 
even when the fine-grained chunking method is not 
effective. 

While achieving the low overheads on read 
performance and memory space as described in Section 
V.3 and this section, FineDedup requires only about 10 
MB more memory space in total which is 2% of memory 
space for high-end SSDs, i.e., 512 MB. 

 
5. Evaluation of the Effectiveness of Cached Mapping 
Table for Mixed Workloads 

 
The effectiveness of the cached mapping table is 

evaluated for mixed workloads. Fig. 10 shows the 
normalized amount of additionally written data due to the 
mapping table eviction. The mixed traces are composed 

by accumulating individual traces in the order of PC, 
Synth, Sensor, Install, and Update. For example, mixed 
workload 4 is composed with PC, Synth, Sensor, and 
Install. 

Although, the cached mapping table is not effective as 
the number of traces is increased, the performance 
degradation rate is smaller than the number of workload 
increasing rate. Moreover, mapping table caching will be 
effective when the caching memory is big enough to 
contain the working set of each trace. In the evaluation, 
the required memory space for the cached mapping table 
is about 1MB for the mixed workload. Considering that 
commercial SSDs have hundreds of GBs of DRAM, the 
memory overhead of a few MB is not large. 

 
6. Evaluation of the Effectiveness of the Chunk Read 
Buffer  

 
The effectiveness of the chunk read buffer between the 

baseline policy and FineDedup is evaluated. Fig. 11 
shows the amount of page reads for the baseline policy 
and FineDedup with and without the read buffer. The 
read buffer absorbs about 8% read requests of RAW_req, 
whereas the read requests are reduced by about 25% with 
the read buffer for FineDedup on average. Based on the 
analysis, the higher effectiveness of the read buffer in 
FineDedup is because of the increased memory 
utilization by deduplication. The read buffer in the 
baseline policy can absorb read requests for pages that 
have already been read. Chunk read buffer in FineDedup, 
however, can also absorb the read requests for 
deduplicated pages pointed by the hybrid mapping table. 
Therefore, with the same read buffer size, more read 
requests can be absorbed in FineDedup. 

 

Fig. 10. The amount of extra written data due to mapping table 
eviction for the mixed workload. 
 

 

Fig. 11. The number of page reads with and without read 
buffer. 
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VI. CONCLUSIONS 

In this paper, a fine-grained deduplication technique 
for flash-based SSDs is proposed. By using a fine-
grained deduplication unit, the proposed FineDedup 
technique increases the amount of data eliminated by 
data deduplication by up to 24% over the existing page-
based deduplication technique, extending the SSD 
lifetime by the same amount. FineDedup inevitably 
increases the overall read response time because of data 
fragmentation. By employing a chunk read buffer and a 
chunk packing scheme, however, the read performance 
overhead is limited to less than 10% in comparison with 
the existing deduplication technique. To reduce the 
memory space required for a chunk-level mapping table, 
FineDedup adopts a hybrid mapping scheme. The 
evaluation results show that FineDedup is effective in 
improving the SSD lifetime, requiring only about 2% 
more memory space of a high-end SSD. 
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