
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.4.648 ISSN(Online) 2233-4866

Manuscript received Dec. 27, 2016; accepted Aug. 27, 2017
1 Dept. of Computer Science and Engineering, Seoul National Univeristy,
1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
2 Dept. of Information and Communication Engineering, DGIST, 333
Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu,
42988, Korea
E-mail : sungjin.lee@dgist.ac.kr

FineDedup: A Fine-grained Deduplication Technique for
Extending Lifetime of Flash-based SSDs

Taejin Kim1, Sungjin Lee2*, and Jihong Kim1

Abstract—Data deduplication is an effective solution
in improving the lifetime of flash-based solid-state
drives (SSDs) by preventing redundant data from
being written to flash memory. Existing deduplication
techniques for SSDs, however, fail to fully eliminate
potential redundant data because of their coarse-
grained granularity. In this paper, a fine-grained
deduplication technique for SSDs, called FineDedup,
is proposed to improve the likelihood of eliminating
redundant data. FineDedup also resolves technical
difficulties caused by its finer granularity, i.e.,
increased memory requirement and read response
time. The results show that FineDedup reduces the
amount of written data by up to 24% over existing
techniques with negligible.

Index Terms—NAND flash memory, solid state disks,
data deduplication, lifespan, reliability

I. INTRODUCTION

As the price-per-byte of NAND flash memory is
rapidly decreasing, NAND flash-based solid-state drives
(SSDs) are emerging as attractive solutions for various
consumer products such as laptops, smart phones and
smart pads. However, as NAND flash memory
technology scales down to 20-nm and below, storing data
reliably in NAND flash memory is one of key design

challenges of NAND flash-based storage systems. For
example, the number of program/erase (P/E) cycles
allowed for each block is significantly reduced in recent
triple-level cell (TLC) NAND technology. While older
5x-nm single-level cell (SLC) NAND flash memory can
support about 10 K P/E cycles, recent 2x-nm TLC
NAND flash memory can barely support about 1 K P/E
cycles [1, 2]. Particularly, the reduction in the number of
P/E cycles of NAND flash memory seriously limits the
overall lifetime of flash-based SSDs, making it difficult
for SSDs to be used in write-intensive applications.

In order to extend the lifetime of flash-based SSDs,
data deduplication techniques have been used in recent
SSDs because they are effective in reducing the amount
of data written to flash memory by preventing duplicate
data from being written again [3-6]. As a result, only
non-duplicate data, i.e., unique data, are stored in SSDs,
thus effectively decreasing the total amount of data
written to SSDs. In most deduplication schemes
proposed for SSDs, the unit of data deduplication is the
same as the flash page size which is usually 4 KB or 8
KB. Using a page as a deduplication unit seems to be
reasonable because the unit of a read or write operation
of flash memory is also a page. However, this page-based
deduplication technique misses many chances of
eliminating duplicate data, especially when two pages are
almost identical. For example, in the experimental
analysis of an existing 4 KB page-based deduplication
technique, it is observed that up to 34% mostly identical
data. If the unit of deduplication were smaller than 4 KB,
about 23% more data could be identified as duplicate
data. Furthermore, it is expected that the effectiveness of
the page-based deduplication technique would get even
worse in future NAND flash memory as the page size of

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 649

flash memory is expected to increase to a bigger size
such as 8 KB or 16 KB [1, 2].

This paper proposes a fine-grained deduplication
technique for flash-based SSDs, called FineDedup. It is
different from other existing deduplication techniques in
that it increases the likelihood of finding duplicates by
using a finer deduplication unit which is smaller than a
single page (e.g., one fourth of a single page). With a
smaller deduplication unit, many data segments within a
page can be detected as a duplicate one, so the amount of
data written to flash memory can be reduced regardless
of a physical page size. To the best of our knowledge,
this is the first work that uses the fine-grained approach
for device-level deduplication.

In order to effectively incorporate fine-grained
deduplication into flash-based SSDs, two key technical
issues must be addressed properly. First, fine-grained
deduplication requires a larger memory space than a
coarse-grained one because it needs to keep more
metadata in memory to find small-size duplicate data.
Second, in fine-grained deduplication, unique data
segments from partially duplicated pages can be scattered
across several physical pages, which may seriously
degrade the overall read performance. The proposed
FineDedup technique is designed to take full advantage
of fine-grained deduplication with small memory
overhead as well as a low read performance penalty. The
evaluation results show that FineDedup prolongs the
lifetime of SSDs by up to 24% over page-based
deduplication while requiring a negligible memory space
increase. This improvement comes with a less than 5%
read performance penalty over page-based deduplication.

The rest of the paper is organized as follows. Section
II briefly reviews the existing deduplication techniques
for SSDs. The main motivation of FineDedup is
presented in Section III. The proposed FineDedup
technique is described in detail in Section IV, and then its
effectiveness is evaluated using real-world traces in
Section V. Finally, Section VI concludes with a summary.

II. RELATED WORKS

Because of the "erase-before-write" nature of NAND
flash memory, flash storage devices employ a flash
translation layer (FTL) that supports address mapping,
garbage collection, and wear-leveling algorithms. These

firmware algorithms incur a lot of extra write/erase
operations, seriously shortening the overall lifetime of a
storage device. For this reason, a large number of studies
have been focused on reducing such extra operations to
improve the storage lifetime. However, considering the
decreasing lifetime of recent high-density NAND flash
memory such as TLC NAND flash memory [1, 2], more
aggressive lifetime management solutions are required.

Data deduplication techniques, which are originally
developed for backup systems, are regarded as one of the
promising approaches for extending the storage lifetime
because of their ability that reduces the amount of write
traffic sent to a storage device. In deduplication
techniques, a chunk is used as a unit of identification and
elimination of duplicate data. Depending on their
chunking strategies, deduplication techniques can be
categorized into two types, fixed-size deduplication and
variable-size deduplication. Fixed-size deduplication
divides an input data stream into fixed-size chunks (e.g.,
pages) [3-6]. Then, it decides if each chunk data is
duplicated and prevents duplicate chunks from being
rewritten to flash memory. Unlike fixed-size
deduplication, the chunk size of variable-size
deduplication is not fixed. Instead, it decides a cut point
between chunks using a content-defined chunking (CDC)
algorithm which divides the data stream according to the
contents.

In general, variable-size deduplication techniques can
identify more data as duplicate data than the fixed-size
deduplication technique. Since variable-size
deduplication adaptively changes the size of chunks by
analyzing the contents of input stream, duplicate data are
more effectively found regardless of their locations.
There are several works that exploit variable-size
deduplication for system-level research [7, 8]. For SSD-
level deduplication, however, fixed-size deduplication is
commonly used because of the following practical
reasons.

First, the CDC algorithm often requires relatively high
computational power and a large amount of memory
space. Thus, variable-size deduplication is not
appropriate to be employed at the level of storage devices
where computing and memory resources are constrained.
Second, the size of remaining unique data after
deduplication may vary in variable-size deduplication.
When writing those data, a complicated scheme for data

650 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF …

size management is required to form sub-page data
chunks to fit in a flash page size, preventing an internal
fragmentation. For those reasons, most existing
deduplication techniques for SSDs employ fixed-size
deduplication, which is relatively simple and does not
require a significant amount of hardware resources.

There are several existing studies for fixed-size
deduplication for SSDs. F. Chen [3] proposed CAFTL to
enhance the endurance of SSDs with a set of acceleration
techniques to reduce runtime overhead. W. Li [4] also
proposed CA-SSD to improve the reliability of SSDs by
exploiting the value locality, which implies that certain
data items are likely to be accessed preferentially. In
these studies, authors focused on the feasibility of
deduplication at SSD level and proved its effectiveness
rather than improving deduplication itself.

Recently, several deduplication techniques for flash-
based storage are proposed. Z. Chen [5] proposed
OrderMergeDedup which orders and merges the
deduplication metadata with data writes to realize failure-
consistent storage with deduplication. G. Narasimhan [6]
proposed CacheDedup which integrates deduplication
with caching architecture to address limited endurance of
flash caching by managing data writes and deduplication
metadata together, and proposing duplication-aware
cache replacement algorithms. These studies focus on
systematic approach such as block layer or flash caching.
However, this study improves the effect of deduplication
in the device-specific domain, so the approach of this
study is quite different.

Similar to the existing deduplication techniques, the
proposed FineDedup technique is also based on fixed-
size deduplication. Using a smaller deduplication unit,
however, FineDedup improves the likelihood of
eliminating duplicate data. This approach can
complement the limitation of existing fixed-size
deduplication techniques, which exhibit a relatively low
amount of removed writes in comparison with variable-
size deduplication.

III. MOTIVATIONS

Existing deduplication techniques for SSDs use a
single page as a chunk for data deduplication [3-6]. The
write-requested page is identified whether the contents of
the page have already been written and is written to flash

memory only if there is no existing duplicate page. When
a write-requested page is the exact duplicate of a
previously written page, the requested page is not written
to flash memory; only the corresponding entry for a
mapping table (between the logical address and physical
address) is updated. On the other hand, if there is no
existing page duplicate in flash memory whose contents
are the same as those of requested one, the requested
page has to be written to flash memory. However, even
for these unique pages, if their redundancy is checked at
a sub-page level, say at a quarter of the page size, many
sub-pages of these unique pages can be identified as
redundant data. In existing techniques based on page-
level deduplication, therefore, many duplicate data are
written to flash memory even though the same data
chunks have already been written.

In order to better understand the effect of fine-grained
deduplication on the amount of identified duplicate data,
how many more chunks can be identified as redundant is
analyzed when the chunk size gets smaller than a single
page. For the evaluation, five I/O traces, PC, Sensor,
Synth, Install, and Update are used. They are explained
in Section V. In the evaluation, the page size was 4 KB
and the chunk size was set to 1 KB. Fig. 1 shows the
percentage of the page writes from host, classified by
their partial duplicate patterns. It is denoted that a page is
an n/4-duplicate page when n chunks of the page are
duplicate chunks. A 4/4-duplicate page is a duplicate
page at the page level. In the existing page-based
deduplication, only 4/4-duplicate pages can be identified
as a duplicate page. As shown in Fig. 1, 4/4-duplicate
pages account for only 8% - 28% of total requested pages.
For partially duplicate pages, i.e., 1/4-, 2/4- and 3/4-

Fig. 1. The percentage of pages according to their partial
duplicate patterns.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 651

duplicate pages, the page-based deduplication technique
is useless. As shown in Fig. 1, pages with 1-3 duplicate
chunks account for 14% - 34%. This means that many
duplicate data are unnecessarily written to flash memory
due to the large chunk size.

It is also investigated that the amount of data that can
be eliminated by data deduplication while varying the
chunk sizes from 256 B to 8 KB. As shown in Fig. 2,
when the chunk size is 1 KB, the amount of data written
to flash memory is reduced by 33% over when the chunk
size is 4 KB. In particular, when the size of a chunk is 8
KB (i.e., when the physical page size is assumed to be 8
KB), only 10% of requested data are eliminated by data
deduplication. This effectively shows that, as the size of
a page increases, the overall deduplication ratio, i.e., the
percentage of identified duplicate writes, decreases
significantly. Since the physical page size of NAND
flash memory is expected to increase as the
semiconductor process is scaled down [1, 2], it is
expected that the deduplication ratio of the existing
deduplication technique will be significantly decreased in
near future. In order to resolve this problem, the
deduplication chunk size of deduplication techniques
needs to be smaller than a page size. As depicted in Fig.
2, the deduplication ratio is saturated when the chunk
size is 1 KB. Thus, it is used as a default chunk size in
the rest of this paper.

IV. FINE-GRAINED DEDUPLICATION

In this section, the proposed FineDedup technique is
described in detail. The overall architecture of
FineDedup is explained first and how FineDedup handles
read and write requests is described in Section IV.1. In
Section IV.2 and IV.3, it is introduced that a read

performance penalty and memory overheads caused by
FineDedup, respectively, and how these problems can be
resolved in FineDedup is explained.

1. Overall Architecture of FineDedup

Fig. 3 shows an overall architecture of FineDedup with

its main components. Upon the arrival of a write request,
FineDedup stores requested data temporarily in an on-
device buffer. When the requested data are evicted from
the buffer, FineDedup divides the data into several
chunks which is smaller than a page size.

For each chunk, FineDedup computes a fingerprint,
using a collision-resistant hash function. In this work, an
MD6 hash function [9], which is one of the well-known
cryptographic hash function is used. A fingerprint is used
as a unique ID that represents the contents of a chunk.
FineDedup has to compute more fingerprints than the
existing deduplication schemes because of its small
chunk size. To reduce the hash calculation time,
FineDedup uses multiple hardware-assisted hash engines
for parallel hash calculations. In Fig 3, for example, 4
hardware accelerators are used for fingerprinting. In the
FPGA (ML605) implementation of the MD6 hash
function, it took about 10 μs to compute a fingerprint
using a hardware accelerator. Thanks to the multiple
hardware hash functions, the fingerprinting can be
executed in parallel, so the elapsed time for calculating
fingerprinting is maintained the same even when the
number of chunks increases. Furthermore, the execution
time and the hardware resources can be reduced further if
the hash function is implemented by ASIC logics.
Considering that NAND flash memory has a long write
latency (e.g., 1.2 ms) and such latency is avoided
whenever duplicate data is found, the time overhead of
computing fingerprints can be considered negligible. For
the read request handling, FTL finds the physical page
location of the requested logical address by referencing

Fig. 2. The amount of written data under varying chunk sizes in
PC workload.

Fig. 3. An overview of the proposed FineDedup technique.

652 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF …

the mapping table so the fingerprinting does not affect
the read request.

After fingerprinting, each fingerprint is looked up in
the dedup table which maintains the fingerprints of the
unique chunks previously written to flash memory. Each
entry of the dedup table is composed of a key-value pair,
(fingerprint, location), where the location indicates a
physical address in which the unique chunk is stored.

If the same fingerprint is found, it is not necessary to
write the chunk data because the same chunk is already
stored in flash memory. Instead, FineDedup updates the
mapping table so that the corresponding mapping entry
points to the unique chunk previously written. Note that
searching fingerprints quickly is out of focus in this work.
If necessary, any optimization process similar to existing
deduplication techniques for quick search can be also
applied to this work [3].

Unlike existing page-based deduplication techniques,
FineDedup handles all the data in the unit of a chunk. For
this reason, FineDedup must maintain a chunk-level
mapping table that maps a logical chunk address to a
physical chunk in flash memory. Because of its finer
mapping granularity, the chunk-level mapping table is
much larger than the existing page-level mapping table.
To reduce the memory space for maintaining the chunk-
level mapping table, FineDedup uses a demand-based
hybrid mapping strategy, which is described in Section
IV.3 in detail.

If there is no matched fingerprint in the dedup table,
FineDedup stores the chunk data in a chunk buffer
temporarily. This temporary buffering is necessary
because the unit of I/O operations of flash memory is a
single page. The chunk buffer stores the incoming chunk
data until there are four chunks, and evicts them to flash
memory at once. FineDedup then updates the mapping
table so that the corresponding mapping entries indicate
newly written chunks. The new fingerprints of the
evicted chunks are finally inserted into the dedup table
with their physical location.

When a read request arrives, FineDedup reads all the
chunks that belong to the requested page from flash
memory, and then transfers the read data to the host
system. In FineDedup, four chunks in the same logical
page can be scattered across different physical pages. In
that case, multiple read operations are required to form
the original page data, which in turn significantly

increases the overall read response time.

2. Read Overhead Management

As mentioned previously, FineDedup may increase the

read response time significantly. The main cause of the
read performance degradation is data fragmentation
which occurs when data chunks belonging to the same
logical page are broken up into several physical pages.

Fig. 4 illustrates why data fragmentation occurs in
FineDedup. There are two page write requests, Req 1 and
Req 2, in Fig. 4. Req 1 consists of four chunks, ‘A’, ‘B’,
‘C’, and ‘D’, and Req 2 is also composed of four chunks,
‘E’, ‘F’, ‘G’, and ‘H’. Since ‘A’ and ‘B’ of Req 1 are
duplicate chunks, only ‘C’ and ‘D’ need to be written to
flash memory. Thus, writes for two chunks ‘A’ and ‘B’
can be reduced. Suppose that there is a read request for
the page written by Req 1 after the chunks of Req 1 are
written to flash memory. In that case, FineDedup has to
read three pages, i.e., page 1, page 2, and page 3, from
flash memory to form the requested data. The read
performance penalty can also occur even when there are
no duplicate chunks in the requested page. For example,
in Fig. 4, Req 2 has no duplicate chunks in flash memory,
thus all the chunks belonging to Req 2 being written to
flash memory. Because a single page write requires four
data chunks, ‘E’ and ‘F’ of Req 2 are written to page 3
together with ‘C’ and ‘D’, and ‘G’ and ‘H’ will be written
to page 4 with other data chunks, as shown in Fig. 4.
Thus, when the data written by Req 2 are read later, both
page 3 and page 4 must be read from the flash memory.

One of the feasible approaches that mitigate the read
performance overhead is to employ a chunk read buffer.
It is observed that the access frequencies of unique
chunks are greatly skewed; that is, a small number of
popular chunks account for a large fraction of the total
accesses to unique chunks in flash memory. For example,
according to the analysis under real-world workloads, top

Fig. 4. Data fragmentation caused by FineDedup.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 653

10% of the unique chunks serve almost 70% of the total
data read by a host system. By keeping frequently
accessed chunks in a chunk read buffer, therefore,
FineDedup can reduce a large number of page read
operations sent to flash memory.

On the other hands, it is also observed that about 39%
of read requests to unique pages actually require two
page read operations. In order to further reduce this read
performance penalty, FineDedup uses a chunk packing
scheme. The key idea of this scheme is to group chunks
belonging to the same logical page in the chunk buffer
and then write them to the same physical page together.

Fig. 5 shows an example of the chunk packing scheme
when three page write requests, Req 1, Req 2, and Req 3,
are consecutively issued from a host system. Req 1
contains two duplicate chunks ‘A’ and ‘B’ and two
unique chunks ‘C’ and ‘D’. As expected, only ‘C’ and ‘D’
out of four chunks are sent to the chunk buffer. The next
request Req 2 does not have any duplicate chunks, so all
of them are moved to the chunk buffer. As depicted in
Fig. 5, the chunks ‘E’, ‘F’, ‘G’, and ‘H’ belong to the
same logical page and form single page data. Thus,
FineDedup writes them to flash memory together,
leaving the chunks ‘C’ and ‘D’ in the chunk buffer. When
Req 3 is issued with two more unique chunks ‘I’ and ‘J’,
‘C’ and ‘D’ along with ‘I’ and ‘J’ are written to flash
memory. All those chunks can be written to the same
physical page together because every chunk of each
request is not broken up into two pages.

Note that the main objective of this scheme is to
prevent chunks of a unique request to be scattered across
multiple pages avoiding unnecessary data fragmentation.
In order to directly insert an incoming unique request to
chunk buffer, page-sized free space should be managed
to be always available in the buffer. When there is no free
space for the next request without any suitable chunks of

requests to form a single page, the chunks of a partially
duplicate request should be broken up into two pages.
Most partially duplicated requests, however, are 3/4-
Duplicate pages as shown in Fig. 1, which means there
are many requests of one unique chunk in the chunk
buffer. Therefore, it is expected that most requests will be
written to the same page even when the size of the chunk
buffer is not large since it is not quite difficult to find an
appropriate chunk to fit a flash page. It has been
observed that the effectiveness of the chunk buffer does
not significantly increase when its size is more than 8 KB
which is twice larger than that of a flash page. The size of
the chunk buffer was thus set to 8 KB for the evaluation.
In the above example, if it is assumed that the chunk
buffer can contain 8 chunks and Req 3 has three unique
chunks, only two chunks of Req 3 will be written along
with existing chunks, ‘C’ and ‘D’, leaving the other
chunk in chunk buffer. A large chunk buffer provides
more chance to avoid the request scattering.

Remaining data in the chunk buffer could be lost when
a power failure occurs. Recent SSDs have a large DRAM
cache (e.g., 256 - 512 MB) and use it as a device buffer.
Moreover, they support internal cache power protection
through the use of supercapacitors to flush out
information in DRAM to flash memory at the event of
power failure. In order to keep the reliability in
FineDedup, the remaining data in the chunk buffer can be
stored to flash memory during power protection
procedure as well as the mapping information of the
written page. In conclusion for chunk buffer design, there
is a trade-off between potential read performance and
reliability depending on the chunk buffer size. The size
of the chunk buffer, hence, should be determined
according to the characteristics of workloads.

3. Memory Overhead Management

As mentioned in Section IV.1, FineDedup handles

requested data in the unit of a chunk. Therefore,
FineDedup must maintain a chunk-level mapping table
that maps a logical chunk address to a physical chunk
address in flash memory. Since the size of a chunk is
smaller than that of a page, a chunk-level mapping table
is much larger than the page-level mapping table. For
example, if the page size is 4 KB and the chunk size is 1
KB, the size of a chunk-level mapping table is four times

Fig. 5. A packing scheme in the chunk buffer.

654 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF …

larger than that of a page-level mapping table.
In order to reduce the amount of memory space

required for a mapping table, FineDedup employs a
hybrid mapping table which is composed of two types of
mapping tables: a page-level mapping table and a chunk-
level mapping table. As depicted in Fig. 1, fully duplicate
pages (4/4 duplicate) and unique pages still account for a
considerable proportion of the total written pages. For
these pages, the page-level mapping is more appropriate
because they can be directly mapped to corresponding
pages in flash memory. The chunk-level mapping is
required only for partially duplicate pages.

Fig. 6 shows the overall architecture of the hybrid
mapping table used in FineDedup. The primary mapping
table (PMT) is maintained in the page level while the
secondary mapping table (SMT) is maintained in the
chunk level. The entry of the PMT is either a physical
page address (PPA in Fig. 6) in flash memory or an index
of the SMT (chunk address (CA) in Fig. 6).

If the chunk-level mapping is not necessary for a
requested page, for example, unique page or fully
duplicate page, the corresponding entry of the PMT
directly points to the physical address of the newly
written page or existing unique page in flash memory,
respectively. On the other hand, if a partially duplicate
page is requested for writing, FineDedup allocates a new
entry in the SMT. As depicted in Fig. 6, each entry of
SMT is composed of four fields, each of which points to
the physical chunk address in flash memory. FineDedup
then updates the new entry so that each field points to the
physical chunk address. The corresponding entry of the
PMT indicates the newly allocated entry of the SMT.

Using the hybrid mapping table, FineDedup can
reduce the amount of memory space for keeping the
mapping table. However, the problem of this hybrid
mapping approach is that the size of the mapping table

can greatly vary according to the characteristics of
workloads. For example, if some workloads have many
partially duplicate pages, the size of the SMT gets too big.
On the other hand, if workloads mostly have unique
pages or duplicate pages, it can be very small. Thus, the
hybrid mapping table cannot be directly adopted in real
SSD devices whose DRAM size is usually fixed. To
overcome such a limitation, FineDedup adopts a
demand-based mapping strategy in which the entire
chunk-level mapping table is stored in flash memory
while caching only a fixed number of popular entries in
DRAM memory. The Cached PMT and Cached SMT in
Fig. 6 represent the cached versions of the PMT and
SMT, respectively.

It has been known that the demand-based mapping
requires extra page read and write operations during the
address translation [10]. For instance, if a mapping entry
for a chunk to be read is not found in the in-memory
mapping table, that entry must be read from flash
memory while evicting a victim mapping entry to flash
memory. The temporal locality present in workload,
however, helps keep the number of extra operations small.
The mapping information of requests issued in similar
times will be stored in the same flash page. Once a
mapping page is loaded in memory, hence, most requests
issued in similar times are serviced from the mappings in
memory.

V. EXPERIMENTAL RESULTS

In this section, it is described that the experimental
settings and explained the benchmarks used for the
evaluation in detail. Then the effect of the proposed
FineDedup technique is assessed on the SSD lifetime.
Finally, it is analyzed that the read performance penalty
and the memory overhead caused by FineDedup.

1. Experimental Settings

In order to evaluate the effectiveness of FineDedup,

the experiments are performed using a trace-driven
simulator with the I/O traces collected under various
applications. The trace-driven simulator modeled the
basic operations of NAND flash memory, such as page
read, page write and block erase operations, and included
several flash firmware algorithms, such as garbage

Fig. 6. An overview of the demand-based hybrid mapping
table.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 655

collection and wear-leveling. The proposed FineDedup
technique and the existing deduplication techniques were
also implemented in the simulator. For trace collection,
the Linux kernel 2.6.32 is modified and I/O traces are
collected at the level of a block device driver. All the I/O
traces include detailed information about the I/O
commands sent to a storage device (e.g., the type of
requests, logical block addresses (LBA), the size of
requests, etc.) as well as the contents of the data sent to
or read from a storage device. The I/O traces are recoded
while running various real-world applications. The
detailed descriptions of these I/O traces are summarized
in Table 1.

2. Effectiveness of FineDedup

As FineDedup exploits the duplicated chunks smaller

than a page, the effectiveness of FineDedup is
determined by the ratio of duplicated chunks of the
workloads. In this section, it is described that how much
duplicated data are eliminated by the FineDedup
compared to the existing scheme.

Fig. 7 shows the amount of data written to flash
memory by FineDedup over the existing scheme. The
results shown in Fig. 7 are normalized to RAW_req,
which represents the total amount of data written to flash
memory without data deduplication. It is assumed that
the existing page-based deduplication technique as a
baseline case. The baseline is denoted by BL_4KB for a 4
KB flash page and BL_8KB for an 8 KB flash page.
FineDedup technique is denoted by FD_4KB and
FD_8KB for a 4 KB flash page and an 8 KB flash page,
respectively. The chunk size in FineDedup is set to 1 KB
for a 4 KB flash page and 2 KB for an 8 KB flash page.

In order to see the effectiveness of FineDedup with
various chunk sizes, the chunk size for an 8 KB flash
page is set as 2 KB. In addition, by selecting 1 KB and 2
KB as the chunk size for 4 KB and 8 KB page,
respectively, the number of chunks per page is the same
for each case, which results the same number of
fingerprints calculations.

As shown in Fig. 7, the effectiveness of deduplication
techniques is highly workload-dependent. The amount of
data eliminated by the deduplication technique notably
increases when FineDedup is applied in most of the
traces except M-media. When the chunk size is set as one
fourth of the flash page size, FineDedup removes on
average 16% more duplicate data over BL_4KB for a 4
KB flash page. Particularly, FineDedup saves 24% flash
writes over BL_4KB. For an 8 KB flash page, it removes
more duplicate data, on average by 23% over the existing
technique. For PC, FineDedup saves 37% flash writes
over BL_8K.

As expected, the benefit of FineDedup mainly derives
from the decreased chunk size because it increases the
probability of finding and eliminating duplicate data.
Especially, PC trace shows a large number of update
requests with little different data, so FineDedup can
effectively identify unchanged data as duplicate while
existing deduplication technique regards them as unique
data. For the M-media trace, it is extremely difficult to
find duplicate data because the data were already highly
compressed. Thus, both the existing deduplication
techniques and FineDedup are not effective in reducing
the amount of data written to flash memory.

3. Read Overhead Evaluation

As explained in Section IV.2, fine-grained chunking in

FineDedup may increase read response time. In this work,

Table 1. A summary of traces used for the evaluations

Trace Description Writes Reads

PC Web surfing, emailing and
editing document, etc. 3.1 GB 40 MB

Sensor Storing semiconductor
fabrication sensor data 2.6 GB 66 KB

Synth Synthesizing hardware modules 2.5 GB 70 MB

Install Installing & executing programs
(office, DB) 4.9 GB 119 MB

Update Updating & downloading
software packages 3.5 GB 103 MB

M-media Downloading & playing
multimedia files 3.2 GB 36 MB

Fig. 7. The amount of written data under various schemes.

656 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF …

the number of read operations was used as the metric of
the read overhead. In terms of the response time, the
number of read operations can be regarded as the worst
case response time since it cannot reflect parallelism.

Fig. 8 shows the normalized number of page read
operations compared with the number of read requests in
the workloads. RAW_Req indicates the number of
original page read requests. BL refers to the number of
page read operations of the baseline FineDedup without
employing proposed optimization schemes. BL+PS,
BL+RB and BL+PS+RB indicate the number of page
reads of FineDedup with the proposed packing scheme,
the chunk read buffer, and both, respectively. The size of
the chunk read buffer was set to 8 MB and the chunk
buffer size was set to 200 KB. RAW_RB indicates the
number of page reads when RAW_Req has an additional
8 MB read buffer, which is the same size as BL+RB, and
it is managed by the LRU policy. As shown in Fig. 8,
employing the chunk read buffer is more effective than
the packing scheme for reducing additional page read
operations in most workloads. This is because the
packing scheme is only effective for the requests
containing no duplicate chunks whereas the chunk read
buffer can absorb most of the read requests to frequently
accessed chunks. FineDedup with both the packing
scheme and chunk read buffer incurs on average less than
5% of additional read operations over the existing
deduplication technique.

Compared with the baseline policy with the 8 MB read
buffer (i.e., RAW_RB), FineDedup reads about 10% more
pages which are still small enough. One interesting
observation here is that there is only 6% improvement
after adding the 8 MB buffer to RAW_Req. This
performance gain is quite marginal compared with huge
improvement in FineDedup – FineDedup exhibits 25%
better performance with the same amount of DRAM. In

our observation, this is because FineDedup deduplicates
the contents in DRAM, and thus provides larger effective
DRAM capacity. The detailed analysis is given in
Section V.6.

4. Memory Overhead Evaluation

As explained in Section IV.3, chunk level mapping

table requires large memory space to handle partially
duplicate pages. In FineDedup, the demand-based hybrid
mapping table is proposed to reduce the required
memory size for a mapping table without performance
degradations.

In Fig. 9, the effectiveness of the proposed mapping
table is evaluated in terms of the hit ratio and the amount
of additional written data with various memory sizes for
the cache. Since the demand-based PMT of the hybrid
mapping table in FineDeup is the same approach as the
DFTL [10], which is a well-known demand-based
scheme to exploit the page-level mapping, the overhead
of PMT can be estimated from the overhead of DFTL.
Thus, in order to focus on the overhead of the SMT, it is
assumed that DFTL is employed as the baseline mapping
scheme in the evaluation.

Fig. 9(a) shows the hit ratio of the cached SMT. With a

Fig. 8. The number of page read operations.

Fig. 9. The effectiveness of the demand-based hybrid mapping
table in FineDedup with various cache sizes.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 657

120 KB cache, more than 95% of the mapping table
accesses are absorbed. In addition, Fig. 9(b) shows extra
written data caused by the evicted page entries from the
SMT cache. Since mapping table accesses occur in the
middle of read/write operations, it is important to reduce
the amount of written data from evicted page entries in
terms of read/write performance. Similar to the hit ratio,
the overhead by the eviction becomes almost negligible
when the cache size is set to 120 KB under most
workloads.

Note that the memory overhead in the M-media trace
is not as significant as the other traces when the cache
size is very small as shown in Fig. 9, although all of them
have a similar number of read requests. It is mainly
because the former traces do not benefit from the fine-
grained chunking scheme. Since most of data in the M-
media trace contains unique data, chunk-level mapping
table is used only for small amount of data. As a result,
FineDedup does not incur a significant memory overhead
even when the fine-grained chunking method is not
effective.

While achieving the low overheads on read
performance and memory space as described in Section
V.3 and this section, FineDedup requires only about 10
MB more memory space in total which is 2% of memory
space for high-end SSDs, i.e., 512 MB.

5. Evaluation of the Effectiveness of Cached Mapping
Table for Mixed Workloads

The effectiveness of the cached mapping table is

evaluated for mixed workloads. Fig. 10 shows the
normalized amount of additionally written data due to the
mapping table eviction. The mixed traces are composed

by accumulating individual traces in the order of PC,
Synth, Sensor, Install, and Update. For example, mixed
workload 4 is composed with PC, Synth, Sensor, and
Install.

Although, the cached mapping table is not effective as
the number of traces is increased, the performance
degradation rate is smaller than the number of workload
increasing rate. Moreover, mapping table caching will be
effective when the caching memory is big enough to
contain the working set of each trace. In the evaluation,
the required memory space for the cached mapping table
is about 1MB for the mixed workload. Considering that
commercial SSDs have hundreds of GBs of DRAM, the
memory overhead of a few MB is not large.

6. Evaluation of the Effectiveness of the Chunk Read
Buffer

The effectiveness of the chunk read buffer between the

baseline policy and FineDedup is evaluated. Fig. 11
shows the amount of page reads for the baseline policy
and FineDedup with and without the read buffer. The
read buffer absorbs about 8% read requests of RAW_req,
whereas the read requests are reduced by about 25% with
the read buffer for FineDedup on average. Based on the
analysis, the higher effectiveness of the read buffer in
FineDedup is because of the increased memory
utilization by deduplication. The read buffer in the
baseline policy can absorb read requests for pages that
have already been read. Chunk read buffer in FineDedup,
however, can also absorb the read requests for
deduplicated pages pointed by the hybrid mapping table.
Therefore, with the same read buffer size, more read
requests can be absorbed in FineDedup.

Fig. 10. The amount of extra written data due to mapping table
eviction for the mixed workload.

Fig. 11. The number of page reads with and without read
buffer.

658 TAEJIN KIM et al : FINEDEDUP: A FINE-GRAINED DEDUPLICATION TECHNIQUE FOR EXTENDING LIFETIME OF …

VI. CONCLUSIONS

In this paper, a fine-grained deduplication technique
for flash-based SSDs is proposed. By using a fine-
grained deduplication unit, the proposed FineDedup
technique increases the amount of data eliminated by
data deduplication by up to 24% over the existing page-
based deduplication technique, extending the SSD
lifetime by the same amount. FineDedup inevitably
increases the overall read response time because of data
fragmentation. By employing a chunk read buffer and a
chunk packing scheme, however, the read performance
overhead is limited to less than 10% in comparison with
the existing deduplication technique. To reduce the
memory space required for a chunk-level mapping table,
FineDedup adopts a hybrid mapping scheme. The
evaluation results show that FineDedup is effective in
improving the SSD lifetime, requiring only about 2%
more memory space of a high-end SSD.

ACKNOWLEDGMENTS

This research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ministry
of Science, ICT and Future Planning (MSIP) (NRF-
2015M3C4A7065645). The ICT at Seoul National
University provided research facilities for this study.
(Corresponding Author: Sungjin Lee)

REFERENCES

[1] G. Naso, L. Botticchio, M. Castelli, C. Cerafogli,
M. Cichocki, P. Conenna, et al., “A 128Gb 3b/cell
NAND flash design using 20nm planar-cell
technology,” in Proc. International Solid-State
Circuits Conference, San Francisco, USA, pp. 218-
219, Feb. 2013.

[2] M. Sako, Y. Watanabe, T. Nakajima, J. Sato, K.
Muraoka, M. Fujiu, et al., “A Low-Power 64Gb MLC
NAND-Flash Memory in 15nm CMOS Technology,”
in Proc. International Solid-State Circuits Conference,
San Francisco, USA, pp. 1-3, Feb. 2015.

[3] F. Chen, T Luo, and X. Zhang, “CAFTL: A content-
aware flash translation layer enhancing the lifespan of
flash memory based solid state drives,” in Proc. 9th
USENIX Conference on File and Storage

Technologies, San Jose, USA, pp. 1-14, Feb. 2011.
[4] A. Gupta, R. Pisolkar, B. Urgaonkar, and A.

Sivasubramaniam, “Leveraging value locality in
optimizing NAND flash-based SSDs,” in Proc. 9th
USENIX Conference on File and Storage
Technologies, San Jose, USA, pp. 1-13, Feb. 2011.

[5] Z. Chen and K. Shen, “OrderMergeDedup:
Efficient, Failure-Consistent Deduplication on
Flash,” in Proc. 14th USENIX Conference on File
and Storage Technologies, Santa Clara, USA, pp.
1-10, Feb. 2016.

[6] W. Li, G. Jean-Baptise, J. Riveros, and G.
Narasimhan, “CacheDedup: In-line Deduplication
for Flash Caching,” in Proc. 14th USENIX
Conference on File and Storage Technologies,
Santa Clara, USA, pp. 1-15, Feb. 2016.

[7] D. Meister and A. Brinkmann, “dedupv1: Improving
deduplication throughput using solid state drives” in
Proc. IEEE Mass Storage Systems and Technologies,
Incline Village, USA, pp. 1-6, May 2010.

[8] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane, “Tradeoffs in scalable data routing
for deduplication clusters,” in Proc. 9th USENIX
Conference on File and Storage Technologies, pp.
1-15, San Jose, USA, Feb. 2011.

[9] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y.
Dodis, K. E. Fleming, A. Khan, J. Krishnamurthy, Y.
Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E.
Tromer, and Y. L. Yin, “The MD6 hash function – a
proposal to NIST for SHA-3”.

[10] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A
flash translation layer employing demand-based
selective caching of page-level address mapping,” in
Proc. 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 229-240, Washington, USA, Mar. 2009.

Taejin Kim received the B.E. degree
in computer engineering from
Sungkyunkwan University, Korea, in
2010, and the M.E. degree in
computer science and engineering
from Seoul National University,
Korea, in 2012. He is currently

working toward Ph.D. degree at Seoul National
University. His research interests include storage systems,
operating systems, and embedded system software.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 659

Sungjin Lee is an assistant professor
at the DGIST. He earned the PhD and
MS degrees in computer science and
engineering from the Seoul National
University in 2013 and 2007,
respectively, and received the BE
degree in electrical engineering from

the Korea University in 2005. His current research
interests include storage systems, operating systems, and
system software.

Jihong Kim (M’00) received the B.S.
degree in computer science and
statistics from Seoul National
University, Korea, in 1986, and the
M.S. and Ph.D. degrees in computer
science and engineering from
University of Washington, WA, in

1988 and 1995, respectively. Before joining SNU in 1997,
he was a Member of Technical Staff in the DSPS R&D
Center of Texas Instruments in Dallas, Texas. He is
currently a Professor in the School of Computer Science
and Engineering, Seoul National University. His research
interests include embedded software, low-power systems,
computer architecture, and storage systems.

