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Abstract

A large portion of radio energy in smartphones is wasted
during a special waiting period, known as the tail time,
after a transmission is completed. In order to save the
wasted energy during the tail time, it is important to ac-
curately predict whether a subsequent transmission will
occur in the tail period. In this paper, we propose a novel
general-purpose predictive dormancy technique, called
Personalized Diapause (PD). By automatically extract-
ing meaningful network activities as network contexts,
our proposed technique takes advantage of per-user us-
age characteristics of each network context in deciding
when to release a radio connection within the tail time.
Our experimental results using real network usage logs
from 25 users show that PD can save the radio energy
consumption by up to 36% with about 10% reconnection
increase.

1 Introduction
The radio energy consumption in smartphones is steadily
increasing. For example, in 3G network smartphones, ra-
dio communications are responsible for about 30% of
the total energy consumption in smartphones. A signifi-
cant portion of the high radio energy consumption comes
from the energy wasted during a special interval, known
as the tail time. The tail time refers a fixed-length inter-
val I,,; after a packet transmission is completed. Dur-
ing this interval of the length T;,;, a radio connection
is maintained at high power level. Since re-establishing
a radio connection after releasing the radio resource in-
curs a long delay and a high signaling overhead, the 3G
protocol maintains the radio connection during the tail
time, expecting that a subsequent transmission is very
likely to happen in the tail time. If there is no transmis-
sion during /;,;;, however, a large amount of radio energy
is wasted. For example, in our network usage study of
25 Android smartphone users, we observed that, on aver-
age, about one third of the total radio energy was wasted
during tail times, waiting for a subsequent transmissions
(which didn’t occur). Since 4G wireless communication
standards such as 4G LTE also employ similar tail times,
saving wasted energy in tail times are very important in
achieving a high energy efficiency in smartphones.

In order to save the wasted energy during the tail time,
the fast dormancy feature [1] was recently proposed. The

fast dormancy protocol enables a smartphone radio mod-
ule to quickly release its radio connection even in tail
times if the radio module decides that no additional data
transmission occurs within the tail time. By exploiting
the fast dormancy protocol when there is no more subse-
quent transmission, a smartphone can reduce the energy
consumed in the tail time. In utilizing the fast dormancy
feature efficiently, a key challenge is to predict whether
(or when) a subsequent data transmission will occur in
the tail time, after the current data transmission has been
completed. If the request time of the next network trans-
mission is mispredicted to occur in the tail time, a large
amount of energy is wasted in the tail time. If the next re-
quest is mispredicted not to occur in the tail time, a large
radio reconnection overhead (both to a smartphone and a
mobile network) should be paid.

Existing predictive dormancy techniques such as TOP
[2] are, however, difficult to apply for many existing apps
because these techniques require some run-time hints
from apps. For example, TOP relies on apps for provid-
ing hints on the next transmission so that it can decide if
aradio connection should be released or not after the cur-
rent transmission is completed. A multimedia streaming
app, for example, may easily provide such hints when
a multimedia download is completed while playing the
downloaded content, because a user may not need to ac-
cess a mobile network for a while. Although these tech-
niques can work well when such hints on the next trans-
mission are explicitly provided, most interactive apps
such as SNS apps (e.g., a google talk app and a facebook
app) cannot accurately estimate the next transmission be-
cause it is very difficult to predict how an individual user
will interact with the apps. Therefore, the existing tech-
niques are not applicable to apps with more general net-
work transmission patterns. Furthermore, if app develop-
ers do not provide such hints, it is very difficult to apply
these techniques. Since they rarely pay attention to their
apps’ transmission behavior, we believe that only a small
number of apps can exploit the fast dormancy feature ef-
ficiently, thus wasting a significant amount of energy un-
necessarily by missing many potential opportunities for
exploiting the fast dormancy feature.

Intuitively, what the existing techniques lack is a sys-
tematic and automatic way of extracting meaningful
user-level network activities from a running app, not de-



pending on app-assisted future network usage hints from
app developers. If such network activities can be auto-
matically identified by a system software, and the sys-
tem software can accurately estimate future radio com-
munication patterns, the energy efficiency of the radio
communication can be significantly improved by exploit-
ing the fast dormancy feature for most existing apps in a
more efficient fashion.

In this paper, we propose a novel network activ-
ity extraction technique that automatically classifies se-
mantically equivalent network activities. Our technique,
which exploits program contexts [3], partitions an app’s
network activities into a small number of equivalent
network contexts. Our Android smartphone user study
shows that each extracted network context has unique
characteristics for transmission trend in the tail time, and
different users behave quite differently even for the same
network context. By carefully monitoring how each user
reacts at each network context, we can develop an effi-
cient personalized predictive dormancy technique. In this
paper, we propose such a novel general-purpose network
energy optimization technique, called Personalized Dia-
pause (PD), based on our automatic network context ex-
traction technique. In order to evaluate our proposed PD
technique, PD was implemented on Android 2.3 (Ginger-
bread) smartphones. Our experimental results show that
PD can save the radio energy consumption by up to 36%
with about 10% increase in the radio reconnection over-
head over when no fast dormancy feature is used.

The rest of the paper is organized as follows. We ex-
plain our proposed network context extraction technique
in Sec. 2. In Sec. 3, we summarize key observations from
our smartphone user study on network usages where a
network context was used as a basic monitoring unit. We
describe the main modules of the proposed PD technique
in Sec. 4. Experimental results are reported in Sec. 5.
Sec. 6 concludes with a summary and future work.

2 Extraction of Network Context

Atomic Network Transmission In order to group a se-
ries of inter-related network transmissions into a mean-
ingful network activity, we first define an atomic network
transmission (ANT) as a network data transfer initiated
from a socket API function. For example, the socket API
functions such as connect, write, read, send and recv can
initiate different ANTs. In order to distinguish different
ANTs, we associate each ANT with its unique ID, called
as ANT-ID. ANT-ID 7(7;) of an ANT 7; is computed by
summing the addresses of functions in the call stack [3]
(within the Dalvik VM) that lead to the socket API func-
tion that initiates the corresponding ANT.

Network Contexts and Equivalent Network Con-
text Block Using ANTs defined above, we represent
the network transmissions of an app A as a sequence
84 of ANTs, ie., 84 = (11,...,T,) where 7; is an
ANT and 7; happens before 7; if i < j. Given the se-
quence 84, we construct a sequence ©C4 of network con-
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Fig. 1: An example of extracting network context blocks.

texts, Cq = (€4,...,C), where € is a network con-
text. A network context G4 consists of successive ANTS
(Tiy» Tiy+1,---» T, +k—1) Where the inter-ANT interval be-
tween two consecutive ANTS is less than a threshold time
Teontexs- Therefore, there is at least Tpprer idle transmis-
sion interval between any two @? and G‘?.

Intuitively, each network context represents a mean-
ingful clustered network activity such as an activity of
downloading a song. We define two network contexts, G4
and GA are equivalent if at least one ANT-ID 7(7;,) of

T, in C‘A is equivalent to ANT-ID 71:(1] ) of 7, in @A
group of equivalent network contexts is called an ( eqmv—
alent) network context block (NCB). Each network con-
text in the same NCB represents a semantically similar
network activity.

Fig. 1 illustrates how NCBs are automatically ex-
tracted using an example. Given a sequence of ANTs
8§ =(11,...,77), we partition 8 into three network con-
texts, C;,C, and C3. Since 73 and 77 have the same
execution path, 73 and 77 have the same ANT-ID, i.e.,
7(13) = m(17). Therefore, C; and C3 belong to the same
NCB B; ={€y,C3}. On the other hand, €, forms its own
NCB B, = {C,}. Two equivalent network contexts, Cj
and C3 in B, are assumed to perform the same network
activity. For example, if C; were used to streaming mu-
sic, €3 would be assumed to do the same streaming ac-
tivity. Since the network contexts in the same NCB are
assumed to perform the semantically same network ac-
tivity, we use an NCB as a basic unit of monitoring each
user’s network activity characteristics.

Immediate Successor of Network Context and NCB
We also define the immediate successor context for a net-
work context. For a network context €;, if C; happens af-
ter C; and there is no other network context between C;
and C;, we call C; the immediate successor context of
C;. In particular, we define the first ANT of the imme-
diate successor context of a network context as the im-
mediate successor transmission of a network context. In
Fig. 1, the immediate successor context of the network
context C; is C,, and the immediate successor transmis-
sion of the network context C; is 74. Similarly, given an
NCB B = {€,...,C;}, we define the immediate succes-
sor transmissions of B as the set of the immediate suc-
cessor transmission of each C; € B. (In the rest of this
paper, for a network context or an NCB, when there is no
confusion, we use ‘immediate successor (IS)’ and ‘im-
mediate successor transmission’ interchangeably.)
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Fig. 2: Analysis of Tail Utilization Rates.
3 Smartphone Network Usage Analysis

In order to understand how smartphone users interact
with a mobile network, we collected detailed ANT logs
of smartphone network usage from 25 active smartphone
users in Seoul. The study participants represented di-
verse user groups, aged between 20 and 40, including
college students, graduate students, bankers and kinder-
garten teachers. For this study, we distributed a modified
Dalvik VM to the subjects and ANT logs over a period
of 2 weeks have been collected. From the collected ANT
log of each participant, we extracted NCBs, resulting in
2,011 different [user, NCB] combinations.

In order to evaluate if NCBs are good monitoring units
in understanding user’s network usage characteristics,
we have computed the tail utilization rate (TUR) for each
[user, NCB] combination. For a given user # and an NCB
B, TUR(u,B) is computed by a ratio of the number of
IS’s of B occurred in tail times over the total number of
network context invocations of B in the user #’s ANT log.
In order to verify whether users tend to react in a similar
fashion to the same network activity, we compared two
weekly TURs! for the same [user, NCB] combination.
The result, summarized in Fig. 2(a), shows that for over
70% of 2,011 [user, NCB] combinations, the TUR differ-
ence between two weekly TURs is less than 10%. Small
TUR fluctuations for the same [user, NCB] combinations
strongly suggest that the proposed network context is ap-
propriate in capturing semantically meaningful network
activities and users’ network transmission tendency.

Although the TUR difference is quite small for a
given [user, NCB] combination, TUR values for differ-
ent NCBs significantly vary even for the same user, as
shown in Fig. 2(b). For example, TUR of NCB B is
almost zero (i.e., almost no IS occurs in the tail time.),
thus the tail time is unnecessary for such NCBs. On the
other hand, when NCB B, is completed, it is likely that
an IS occurs in the tail time. From this analysis result,
we observed that it is important to develop a predictive
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dormancy technique that can adapt to user’s varying net-
work transmission behavior over different NCBs.

We have also observed that even when TUR for a given
[user, NCB] combination is high, actual distributions of
IS occurrences are quite skewed. Fig. 3 illustrates this ob-
servation using IS occurrences in the tail times of NCBs
B, and B3. Although both B, and B3 have high TUR val-
ues as described above (Fig. 2(b)), the IS distributions are
skewed to the right. For example, most IS’s of NCB B3
happen within the first 5 seconds of the tail time while
most IS’s of NCB B, occur within the first 8 seconds.
Fig. 3 also shows that the IS skewness of a given NCB
is preserved over week-by-week comparisons. Our PD
technique exploits these persistent right-skewed distribu-
tions in determining the likelihood of an IS occurrence,
for example, after x seconds in the tail time.

Another important observation was that, even for the
same NCB, there is a strong personalized tendency on
network transmissions in tail times. As shown in Fig. 4,
which shows TURs of the same NCB from a messenger
app for 25 users, we observed that TURs for the same
NCB are significantly different among different users.
For instance, user 22 tends to check his/her messages
frequently and react to them quickly, while user 13 re-
acts very slowly to messages. Clearly, for user 13, a large
amount of energy is wasted in the tail time. In order to
take into account of these strong personalized network-
usage characteristics, our proposed technique employs a
user-specific online prediction model for /5’s.

4 Personalized Diapause Architecture

Based on the NCB characteristics discussed in Sec. 3,
the proposed PD technique keeps track of TURs for ex-
tracted NCBs and decides if an IS will occur in the tail
time using TUR distributions. Fig. 5 shows an architec-
tural overview of the PD technique. The personalized
network activity predictor, which was added as an addi-
tional module to the Dalvik VM, is responsible for imple-
menting the PD technique. Whenever the call stack tracer
identifies an ANT, the ANT is sent to the network con-
text block extractor module (whose key steps were de-
scribed in Sec. 2) where related ANTs are grouped into
an NCB. Then, the immediate-successor trainer mod-
ule builds an IS model for each NCB. Based on the
immediate-successor model, the cost-benefit analysis en-
gine module determines when to invoke the fast dor-
mancy feature based on the tail time power model. Fi-
nally, the dormancy granter module invokes the fast dor-
mancy feature when requested.
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Fig. 5: An architectural overview of Personalized Diapause.
4.1 Immediate-Successor Trainer

In order to predict whether an IS will occur or not in the
tail time after a given network context of an NCB is com-
pleted, PD builds an immediate-successor model for each
NCB in its immediate-successor trainer module. The key
step of the immediate-successor trainer module is to con-
struct a skewed TUR distribution for each NCB.

The immediate-successor model for an NCB B main-
tains how many times IS’s occur in tail times over the
total number of B’s invocations. We divide the inter-
context interval between two network contexts into N +

1 subintervals, sg,...,sny, where each subinterval s; =
[bi, e;) can be specified using b; = i- T}f,” ,ei=(i+1)- %

(when i < N) and ¢; = oo (when i = N). Each subinterval
s; for i < N keeps track of the number 7; of IS’s occurred
in L4 of [bj, e;). For IS’s occurred after T;,;;, we accumu-
late their occurrences in ny.

Fig. 6 illustrates the process of building an immediate-
successor model for NCB B;. In this example, we as-
sume that the network contexts C; and C, belong to B
while C3 belongs to B;. Because the inter-context inter-
val 0; between C; and C; is 4.3 (i.e., the first ANT of C,
occurs in the subinterval s4 of the tail time after C; has
been completed.), it increments n4. For the inter-context
interval 6,, n7 is incremented since 6, > T;,;;.

4.2 Cost-Benefit Analysis Engine

In order to determine when to invoke the fast dormancy
feature, the cost-benefit analysis engine of PD consid-
ers the cost-benefit tradeoff based on the immediate-
successor model of NCB B. The benefit §; of s; = [b;, ¢;),
which indicates the expected energy benefit when a ra-
dio connection is released at b;, is defined as §; = P,y ¥
(Tyais — bi) where P,y is the power consumption within
the tail time2. The cost C; of s;, which indicates the en-
ergy penalty when a radio connection needs to be re-
established within s;, is given by C; = Eypg + (Tair —
b;) X Pgy where E,,, is the energy overhead param-
eter of re-establishing a radio connection. The second
term in C; is necessary because, once a radio connec-
tion is re-established within s;, the expected energy ben-
efit B; should be canceled. The gain G; of s;, which in-
dicates the energy gain when a radio connection is re-
leased at b;, is defined as G; = B; — f(\’:_il pr X Cr, where
Dk given by ny/ ):}JYZO nj, represents the probability of
IS occurrences in s;. Since G; assumes that there will
be no IS in [bg,e;—1), the cost-benefit analysis module
actually chooses b, as the time to invoke the fast dor-
mancy feature where by, maximizes (1 — Opy—1) X Gy

N =7, Teu=7 (seconds)

Subintervals ip the tail time

IS model |n0|n1|n2|n3|n4‘n5‘n5‘
for NCB B, o s T “se
____________________ 2] _1_=—‘4,3 6, =8.9 > Tiqiy
ANT 1| | T2|| T T4 |T T
€, € NCB B, G, €ENCB B, €3 eNCB B,

time (s

Fig. 6: An example of building an immediate-successor moc(if):l.
where O,,_1 = J’?':_Ol pj (1 <m < N)and 0 (m=0). For
1 <m < N, O,,— indicates the probability of IS occur-
rences in [bg,e;1). If multiple apps are using the current
radio connection, the dormancy granter first checks if it
will be safe for these apps to disconnect the connection.

Adaptive Cost-Benefit Tradeoff From the viewpoint
of energy saving in smartphones, when E, ;4 is small, it is
more beneficial for PD to switch to the dormancy mode
more aggressively. However, if E,;; is too small, the fre-
quency of switching to the dormancy mode can be too
high. Since too frequent switches can incur a high sig-
naling overhead to a mobile network (as well as longer
delays to mobile users), we manage the frequency of dor-
mancy mode switches adaptively by using the soft upper
bound on the acceptable number of mode changes. In the
current implementation, PD allows about 6% increase in
the number of reconnections over when no fast dormancy
feature is used. For example, if the current number of ra-
dio reconnections exceed more than 6% of the radio re-
connections under no fast dormancy feature, The cost-
benefit analysis engine increases E,p; by AE,pq, thus
making it less likely to release a radio connection. The
initial value of E,;; was determined by measurements.

5 Experimental Results

In order to evaluate the efficiency of the proposed PD
technique, we have implemented PD on Nexus S An-
droid reference smartphones running Android 2.3 (Gin-
gerbread). We modified Dalvik VM for tracking call
stacks that lead to the socket API functions. The addi-
tional PD modules which are described in Sec. 4 were
also implemented to Dalvik VM and Android frame-
work.

In our experiments, we have used a custom ANT log
replayer tool for reproducing the collected ANT logs
from 25 users. For energy consumption comparisons, we
have used our 3G energy simulator, which was developed
based on our smartphone power measurement study in
a similar fashion to one used in [4]. The tail time T;,;
was set to 15 seconds and its power consumption P,
was assumed to be 410 mW. N was set to 15 and T¢,ex
was set to 3 seconds®. The energy overhead of running
the PD modules was not included in the presented re-
sults, because the PD’s impact on the execution time was
very small. For example, each NCB extraction and sub-
sequent computations took less than 1 ms. Since the av-
erage number of NCBs per app was 3, this extra execu-
tion time was negligible.

Fig. 7 shows the impact of PD on the energy con-
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Fig. 7: PD’s effect on energy saving and reconnection overhead.

sumption and radio reconnection overhead for four rep-
resentative users. Using no-fast-dormancy support as a
baseline, Fig. 7(a) shows how PD’s energy saving ratios
change over different 6’s. PD was evaluated under the
assumption that the increase in the number of radio re-
connections is limited by 10%, 15% and 20%, respec-
tively (i.e., 6 = 10,15 and 20). The result shows that PD
can save the radio energy on average by 23% over the no-
fast-dormancy case with 6 = 10. For User 4, the maxi-
mum energy saving of 36% is achieved over the no-fast-
dormancy case. For 6 = 15 and 6 = 20, PD saves more
energy, on average by 31% and 35% over the base line,
respectively.

In order to better understand the energy efficiency of
PD, we have also compared PD with the off-line optimal
technique, called Oracle, which uses an oracle predic-
tor on future network usages. Since Oracle has a com-
plete knowledge on future network usages, it achieves
the possible maximum energy saving if no reconnection
increase is allowed. Oracle, which is not implementable
in practice, is useful in objectively understanding the ef-
ficiency of PD. As shown in Fig. 7(a), PD performs close
to Oracle when 0 = 15 and § = 20. Note that PD saves
even more energy than Oracle in Users 1 and 4 (as well
as the average cases) when & = 20. This is because, with
6 = 20, PD gets more aggressive in disconnecting radio
connections in the tail time, at the expense of increased
reconnections. The energy efficiency gap between PD and
Oracle comes mainly from when PD chooses the dor-
mancy mode switch time in the latter part of the tail time
based on its cost-benefit analysis model while Oracle
can choose the dormancy mode switch time without this
waiting time. Since any practical on-line technique can-
not avoid this initial waiting time, although we need more
thorough evaluations, we think that PD is a competitive
solution among practical on-line techniques.

In order to understand the impact of our proposed
fine-grained NCB classification technique on radio en-
ergy savings, we compared PD with PD,y;ficq, a simpli-
fied version of PD. PD,,;fi.¢ assumes that all NCBs have
the same single unified immediate-successor model. That
is, the cost-benefit analysis module of PD,;fi.q makes
mode switch decisions based on one unified immediate-
successor model which was constructed over all NCBs.
Fig. 7(b) shows that PD achieves on average 12% higher
energy saving over PDy;fi,q With 6 = 10. For User 3, PD
saves 26% more radio energy than PD,;ficq. This com-
parison clearly shows that a fine-grained NCB separation

based on semantical differences is important in achieving
a high energy efficiency.

6 Conclusions

We have presented a new general-purpose predictive dor-
mancy technique, PD, for optimizing the radio energy
consumption of smartphones with the fast dormancy fea-
ture. Based on a novel automatic extraction technique
of meaningful network activities into network context
blocks, PD takes advantage of personalized network con-
text usages in deciding when to release a radio connec-
tion within the tail time. Our experimental results show
that PD can save the radio energy consumption on aver-
age by 23% over when no fast dormancy feature is used
when 10% reconnection increase is allowed.

Our current work can be extended in several direc-
tions. For example, our current definition of equivalent
network contexts may be too relaxing. A tighter equiv-
alency definition may be more efficient in finding more
meaningful NCBs. As a longer-term direction, we plan to
investigate if our ‘network context’ idea can be extended
for other types of system optimizations. For example, we
plan to investigate if other useful information can be col-
lected at NCBs which can provide useful hints for vari-
ous network energy/performance optimizations.
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Notes

IWeek-by-week TUR comparisons may not be appropriate if net-
work activities are repeated with a longer period (e.g, two weeks).
However, since the collected logs contain 2-week network traces only,
we focused on week-by-week comparisons in this paper.

2For brevity, we assume that there is one power state in the tail time.
If a radio connection is maintained at multiple power states during the
tail time (e.g., two different power states in 3G network), such power
states can be easily supported.

3We evaluated different T,opey values from 1 sec to 3 sec, but there
were only negligible changes in the experimental results.



