
 

A Leakage-Aware L2 Cache Management Technique  
for Producer-Consumer Sharing in Low-Power Chip Multiprocessors* 

Hyunhee Kim and Jihong Kim 
 

School of Computer Science and Engineering 
Seoul National University 

Seoul 151-742, Korea 
+82-2-880-1861, {hh0726, jihong}@davinci.snu.ac.kr 

 
Abstract  As the process technology advances below 90nm, a leakage power management becomes a critical 

issue in realizing low-power chip-multiprocessors (CMPs).  Especially, reducing the leakage power 
consumption of the L2 cache is important because most CMPs dedicate a large portion of their on-chip area for 
an L2 cache, making it a dominant leakage consumer.  In this paper, we propose a novel leakage management 
technique for applications with producer-consumer sharing patterns.  Exploiting particular access sequences 
observed in producer-consumer sharing patterns and the spatial locality of shared buffers, our technique enables a 
more aggressive turn-off of L2 cache blocks once the producer-consumer sharing pattern is detected during run 
time.  Experimental results using a CMP simulator show the proposed technique reduces the energy 
consumption in the on-chip L2 caches and off-chip memory by 14.8% on average over the existing cache leakage 
energy management technique without a performance loss. 

Keywords: leakage energy management, L2 cache, CMPs, producer-consumer sharing 
 
Introduction  Power dissipation becomes an important issue in designing modern CMPs.  Especially, as the 

process technology advances below 90nm, the leakage power consumption becomes a dominant power consumer 
in the total power dissipation.  Therefore, reducing leakage power consumption is a critical design goal for 
low-power CMPs. Since a large on-chip L2 cache is employed in most CMPs to hide a gap between the off-chip 
memory and processors, it dominates the leakage power consumption of the on-chip, thus making the leakage 
power management in a large L2 cache more important.  Most existing cache leakage power management 
techniques (such as the cache decay technique [1]) turn off inactive cache blocks if they have not been accessed 
for predefined threshold cycles.  Although the turn-off based leakage management scheme is simple and 
efficient, the existing leakage management scheme can be further improved by exploiting various run-time 
characteristics of target applications.  In this paper, we focus on applications with producer-consumer sharing 
patterns.  As reported in [8], producer-consumer data sharing is one of the most commonly used methods for 
multithreaded applications.  Our technique is unique in that it took advantages of producer-consumer sharing in 
reducing the leakage energy consumption for CMP architectures.  Fig. 1 shows an overall architecture of our 
target machine used in this paper.  We assume that a target CMP is based on a MESI-like cache coherence 
protocol.  Each processor is assumed to have a private L2 cache as a last level cache.  

 
Leakage Energy Management Technique  In our leakage-aware L2 cache management technique for 

producer-consumer sharing (LAPC) scheme, the main question is how to detect and maintain the consecutive 
addresses of shared buffers observed in producer-consumer sharing patterns.  We describe an efficient detection 
technique that does not require much hardware by exploiting coherence transactions.  We also present a 
history-based aggressive threshold setting technique for detected shared buffer L2 blocks. 

For shared buffer detections, LAPC exploits a particular sequence of coherence transactions observed in 
producer-consumer sharing patterns.  Fig. 2 shows a series of coherence transactions between a producer and a 
consumer, assuming a snoop based MESI protocol.  When (1) the producer writes data in “A”, one of the shared 
buffer addresses, (2) the coherence transaction “ReadX A” is generated to invalidate the copy of it in the 
consumer’s cache if it exists.  On the other hand, when (3) the consumer reads the data in “A”, (4) “Read A” is 
generated for a read miss.  In our technique, we detect this pattern in coherence transactions by using a global 
table and stream registers efficiently as shown in Fig. 3. 

To detect the addresses which belong to the shared buffer, the global table maintains entries for an address and 
a set of bits representing the producer and consumer processor of the corresponding address.  The FSM shown 

                                                  
* This work was supported in part by the Brain Korea 21 Project in 2008 and by the Korea Science and Engineering Foundation (KOSEF) grant funded 
by the Korea government (MEST) (No. R0A-2007-000-20116-0). This work was supported by World Class University (WCU) program through the Korea 
Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R33-2008-000-10095-0). The ICT at Seoul National 
University provides research facilities for this study. 



 

in Fig. 4 summarizes how each global table entry changes when “ReadX A” and “Read A” transactions appears 
on the bus.  To manage the consecutive addresses of the detected shared buffer using a small hardware, the 
stream registers are also employed.  (The stream registers were proposed in [7] for snoop filtering but we use 
them for storing the addresses of the shared buffer by exploiting the high spatial locality of them.)  Each stream 
register, which represents a contiguous region R of the shared buffer, consists of the base address of R, mask, and 
producer and consumer bits.  The mask whose zero indicates “don’t care” bit is used when deciding whether an 
address matches the base of the stream register or not.  As shown in Fig. 5, when updating the stream register, a 
new register is allocated if an address from the global table matches none of the registers.  Otherwise, it is added 
to the existing stream register updating the mask so that differing bit positions between the base and address can 
be “don’t-care” bit. 

After a stream of the shared buffer is detected, LAPC applies a more aggressive turnoff threshold for shared 
buffer L2 blocks based on a weighted average of the past hit intervals (instead of a predefined turnoff threshold) 
which is updated whenever a read or a write hit to the shared buffer block occurs.  When the cache blocks of the 
shared buffer in the producer’s cache are turned off, they are written to the consumer’s cache for future reuse.  
Although not discussed explicitly in this paper, LAPC can disable the shard buffer detection mechanism (e.g., by 
OS's control) when a target application is known to have no producer-consumer sharing.  Note, however, our 
current estimate of the energy overhead of LAPC is negligible, taking less than 1% of the L2 cache energy, which 
was calculated by CACTI 4.1 [5]. 

 
Experiments  To evaluate the proposed LAPC technique, we modified the CATS [2] simulator.  Table I 

shows a machine configuration used for simulations.  Table II summarizes the power parameters for the L2 
cache and off-chip estimated from using [5] and [6].  Table III shows the benchmarks used in the experiment. 
All the programs in the benchmarks are from [3] and [4].  In a combination of four programs, each program is 
assumed to be a consumer for its left program and a producer for its right program while communicating with 
shared buffers.  

Fig. 6 shows the normalized energy consumption of the L2 caches and off-chip memory where BASE indicates 
when no cache leakage management technique is used.  The LAPC technique reduces the energy consumption 
in the private L2 caches and off-chip memory by 14.8% on average over the existing cache decay technique, 
DECAY, by turning off the cache blocks of the detected shared buffers aggressively than other cache blocks after 
the burst of the shared buffer accesses.  Especially, LAPC can reduce the leakage energy consumption more 
compared to DECAY when the DECAY technique cannot turn off the cache blocks enough as shown in bench2 
and bench4, 16.6% and 21.3%, respectively.  As shown in Fig. 7, the proposed scheme does not suffer any 
performance loss even though it turns off the cache blocks of the shared buffer earlier than other cache blocks.  
This indicates that our shared buffer detection technique works well although the stream registers detect the more 
addresses than the shared buffers used. 

 
Conclusions  Reducing leakage energy consumption of the on-chip L2 cache becomes an important issue in 

designing modern CMPs because most CMPs employ a large on-chip L2 cache for performance improvement.  
Although the existing cache leakage management technique can reduce the leakage energy consumption 
efficiently, we showed that exploiting the application knowledge, producer-consumer sharing in this case, can 
significantly improve the efficiency of leakage energy reductions. In this paper, we proposed LAPC that 
efficiently detects shared buffer accesses and aggressive turns off L2 blocks belonging to the detected shared 
buffers.  Experimental results showed that the proposed technique can reduce the energy consumption in the L2 
caches and off-chip memory by 14.8% on average over the existing technique without a performance loss. 

 
[1]  S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting generational behavior to reduce cache leakage power,” Proc. of ISCA, 

pp. 240-251, 2001.  
[2]  D. Kim, S. Ha, and R. Gupta, “CATS: cycle accurate transaction-driven simulation with multiple processor simulators,” Proc. of DATE, 

pp. 749-754, 2007.  
[3]  C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for evaluation and synthesizing multimedia and 

communications systems,” Proc. of MICRO, pp.330-335, 1997. 
[4]  M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench: A free, commercially representative 

embedded benchmark suite,” Proc. of WWC, pp. 3-14, 2001. 
[5]  T. David, T. Shyamkumar, and J. Norman, “Cacti 4.0: An integrated cache timing, power and area model,” 

http://www.hpl.hp.com/research/cacti/, 2006. 
[6]  Micron Technology, Inc., “Calculating memory system power for DDR,” 2005. 
[7]  V. Salapura, M. Blumrich, and A. Gara, “Improving the accuracy of snoop filtering using stream registers,” Proc. of MEDEA 

Workshop, pp.25-43, 2007. 
[8]  L. Cheng and H. B. Carter, and D. Dai, “An adaptive cache coherence protocol optimized for producer-consumer sharing,” Proc. of 

HPCA, pp.328-339, 2007. 



 

  Table I 
  Machine configurations used for simulations 
 

Processor 4 Processors, in-order 
L1 I/D-Cache 32 KB, 1-way, 

32 B block, 1-cycle latency 
L2 Private Cache 256 KB, 4-way,  

128 B block, 6-cycle latency 
Off-Chip Memory 300-cycle access latency 
Global Table 256 entries, 26 bits/entry 
Stream Registers 8 entries, 68 bits/entry 
 
 
Table II 
L2 cache and memory energy parameters 
 

CMOS technology 70nm 

Private 
L2 Cache 

Dynamic read 0.11 nJ 
Dynamic write 0.01 nJ 
Leakage power 1802 mW 

Off-Chip 
Memory 

Dynamic 
read/write 

2 nJ 

Standby Power 50 mW 
 
 

  Table III 
Four benchmark combinations used in experiments 
 

bench1 lu, fft, g721, blowfish 
bench2 fft, mmul, lu, qsort 
bench3 adpcm, mmult, fft_inv, qsort 
bench4 lu, mmul, g721, qsort 

 
                

P0

IL1 DL1 

Private 
L2

Memory

Shared Bus

P1

IL1 DL1 

Private 
L2

P2

IL1 DL1 

Private 
L2

P3

IL1 DL1 

Private 
L2

 
Fig.  1 Overview of target CMPs  

 
P0

(Producer)

IL1 DL1 

Private L2

P1
(Consumer)

IL1 DL1 

Private L2

(1) Write to 
A in Shared 
Buffer

(2) ReadX A

(3) Read 
miss A

(4) Read A

Memory

Shared Bus

 
 

Fig.  2 Transactions between a producer (P0) and a 
consumer (P1) 

 

 
P0

IL1 DL1 

Private L2

Off‐Chip Memory

Shared Bus

P1

IL1 DL1 

P2

IL1 DL1 

P3

IL1 DL1 

Stream 
Registers

Stream 
Registers

Stream 
Registers

Stream 
Registers

Private L2 Private L2 Private L2

address P C

address P C

…
 

Global Table

 
 

Fig.  3 Overall architecture of LAPC 
 
 

address = 0x0
producer = 0
consumer = 0

consumer |= 
processor ID

address = A
producer |= 
processor ID

ReadX A Read A

reset
/ update Stream Register 
(address, producer, consumer)

reset

Start

 
Fig.  4 FSM of a Global Table entry  

 
 

base = 0x0
mask = 0x0
producer = 0
consumer = 0

base = A
mask = 
0xffffffff
producer = P
consumer = C

mask = 
~(base^A’)

update Stream Register
(A, P, C)

Start

update Stream Register
(A’, P, C)

mask = 
~(base^A’’)

update Stream Register
(A’’, P, C)

. . .

reset  
 Fig.  5 FSM of a Stream Register  
 
 

0%

20%

40%

60%

80%

100%

bench1 bench2 bench3 bench4N
or
m
al
iz
ed

 E
ne

rg
y 
Co

ns
um

pt
io
n

BASE DECAY LAPC

 
 

Fig.  6 Normalized energy consumption for the 
benchmarks 

 
 

0%

20%

40%

60%

80%

100%

120%

bench1 bench2 bench3 bench4

N
or
m
al
iz
ed

 P
er
fo
rm

an
ce

BASE DECAY LAPC

   

Fig.  7 Normalized performance for the benchmarks 


