
Refactored Design of I/O Architecture
for Flash Storage

Sungjin Lee, Jihong Kim, Member, IEEE, and
Arvind, Fellow, IEEE

Abstract—Flash storage devices behave quite differently from hard disk drives

(HDDs); a page on flash has to be erased before it can be rewritten, and the

erasure has to be performed on a block which consists of a large number of

contiguous pages. It is also important to distribute writes evenly among flash

blocks to avoid premature wearing. To achieve interoperability with existing block

I/O subsystems for HDDs, NAND flash devices employ an intermediate software

layer, called the flash translation layer (FTL), which hides these differences.

Unfortunately, FTL implementations require powerful processors with a large

amount of DRAM in flash controllers and also incur many unnecessary I/O

operations which degrade flash storage performance and lifetime. In this paper, we

present a refactored design of I/O architecture for flash storage which dramatically

increases storage performance and lifetime while decreasing the cost of the flash

controller. In comparison with page-level FTL, our preliminary experiments show a

reduction of 19 percent in I/O operations, improvement of I/O performance by 9

percent and storage lifetime by 36 percent. In addition, our scheme uses only 1
128

DRAM memory in the flash controller.

Index Terms—Storage systems, file systems, NAND flash memory, I/O

architectures

Ç

1 INTRODUCTION

IT is well-known that the physical properties of NAND flash are dif-
ferent from those of HDDs. To provide interoperability with existing
block I/O subsystems, NAND flash-based devices employ an inter-
mediate software layer, called a flash translation layer (FTL) [7].
Though interoperability is highly desirable, the usefulness of FTL-
based storage is continuously being questioned. In FTL-based stor-
age, NAND flash is managed by two different software layers, a file
systemand FTL, each ofwhich has a different design goal. This dupli-
cate management incurs high inefficiency in terms of performance,
lifetime, and cost. FTL has to maintain a huge mapping table in
DRAM and requires powerful embedded processors (e.g., three
CPUsw/ 1 GBDRAM [10]) to run complicated firmware algorithms,
including logical-to-physical mapping and garbage collection [7].
The duplicate storage management by two different layers also
incurs lots of extra I/Os, degrading storage performance and lifetime.

In order to overcome the inefficiency of FTL-based storage, sev-
eral alternative software architectures have been proposed. A host-
based FTL solution like DFS [4], [12], [14] mitigates these problems
by moving some key functions of FTL to a host device driver. Sup-
porting FTL functions in the host, however, cannot eliminate the
duplicate management problem of flash storage because it simply
changes the system software layer where FTL is running. Thus, the
host-based FTL still wastes considerable host resources and incurs
many extra I/Os.

Another alternative solution is to use flash file systems (FFS)
like JFFS2 and YAFFS. Using NAND-specific interface layers (e.g.,
MTD), FFS directly manages flash blocks of raw NAND chips with-
out any helps from FTL. However, FFS have serious limitations for

use in recent flash devices like SSDs and eMMCs. The internal
architecture (e.g., channel organizations and I/O interleaving) of
flash devices is both quite complex and different for each storage
vendor [7]. Storage vendors are also reluctant to divulge the inter-
nal architecture of their devices and prefer hiding all those details
behind the block I/O interface. FTL, provided by the storage ven-
dor, performs internal storage management using rich proprietary
information. In practice, FFS cannot work with most flash devices
and is only used in limited embedded systems with few raw
NAND chips.

In this paper, we propose a REfactored Design of I/O architec-
ture, called REDO, which solves the duplicate management prob-
lem while preserving the advantages of FTL-based storage. REDO
refactors two main components of the I/O subsystem—the file sys-
tem and the storage device. REDO removes logical-to-physical
mapping and garbage collection from the storage device. Instead, a
refactored file system (RFS) directly manages the storage address
space, including the garbage collection. Unlike host-based FTL, all
those functions are conducted by RFS without any helps from an
intermediate host layer like a device driver. This eliminates the
need for maintaining a large logical-to-physical page-map table,
allowing us to perform garbage collection more efficiently at the
file system level. A refactored storage device controller (RSD)
becomes simpler because it runs a small number of essential flash
management functions. RSD maintains a much smaller logical-to-
physical segment-map table to manage wear-leveling and bad
blocks. Unlike FFS, REDO provides interoperability with block I/O
subsystems, allowing SSD vendors to hide all the details of their
devices and NAND characteristics.

We have implemented RFS as a new file system in the Linux
kernel and tested it using a flash storage device emulator for RSD.
Our preliminary experiments show that REDO eliminates the well-
known tradeoff between performance and cost in designing flash
storage—it shows better I/O performance with smaller hardware
resources than page-level FTL.

2 REFACTORED I/O ARCHITECTURE FOR FLASH

REDO is based on a log-structured file system (LFS) and, in the
remainder of this paper, we assume LFS as a baseline file system.
This is reasonable because many new file systems for SSDs are
based on LFS. Usually, LFS works better than traditional file sys-
tems like EXT4, so it is regarded as a better file system solution
to SSDs.

Fig. 1a shows the architecture of the FTL-based storage with
LFS. Typical LFS (e.g., Sprite LFS [6], NILFS [9], and F2FS [3])
manages a logical address space as one huge log and FTL also
manages a physical address space in an LFS-like manner with a
logical-to-physical mapping table. LFS and FTL also run their
own garbage collection algorithms. The same NAND flash is thus
doubly managed by two different layers in a similar manner.
REDO eliminates this duplicate storage management. As depicted
in Fig. 1b, the storage space management and garbage collection
modules of RFS directly manage NAND flash, removing logical-
to-physical mapping and garbage collection from a storage device.
Only simple wear-leveling and bad-blocks management remain in
RSD. As the reliability of NAND substrate continuously degrades,
those lifetime management functions can be effectively supported
by the storage controller where detailed physical information for
NAND devices is available. REDO maintains compatibility with
the existing block I/O interface, enabling us to use existing block
I/O subsystems. It is important to notice that the interface
between the RFS and RSD does not interfere with exploiting
device-level parallelism.

Nomenclature. We will use the following nomenclature for a
page, a block and a segment in this paper. A file usually consists of
4 KB blocks, which we will refer to as pages. Flash storage typically

� S. Lee and A. Mithal are with the Massachusetts Institute of Technology, Cambridge,
MA 02139. E-mail: chamdoo@gmail.com, arvind@csail.mit.edu.

� J. Kim is with the School of Computer Science and Engineering, Seoul National
University, Seoul, Korea. E-mail: jihong@davinci.snu.ac.kr.

Manuscript received 20 Feb. 2014; revised 27 May 2014; accepted 3 June 2014. Date of
publication 23 June 2014; date of current version 19 June 2015.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2014.2329423

70 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015

1556-6056� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

consists of 4 KB flash pages and much larger blocks (typically 64 to
128 pages). In LFS, storage management is often done in much
larger chunks, known as logical segments or simply segments. Typi-
cally, a segment is 2 MB which is two to four times larger than a
flash block.

2.1 Duplicate Storage Management Problem

To explain the problems associated with the duplicate storage
management, we begin with a description of LFS (Fig. 2). Our
explanation is based on Sprite LFS [6] because it is well-known
and many LFSs follow its design concept. The problem of Sprite
LFS is also observed in modern LFS like NILFS [9] and F2FS [3].
LFS first buffers file data and inodes in DRAM and it periodi-
cally performs an out-place update in segment size chunks to
HDD or SSD. LFS needs to maintain an inode map which indi-
cates the locations of inodes scattered across the storage space.
An out-place update by its very nature invalidates some old
pages in the file system which causes changes in the inode map.
For crash recovery, LFS also maintains a check-point which
points to pieces of the inode map. LFS stores the check-point in a
fixed location for fast construction of the file system at mount
time. Otherwise, LFS would have to scan the entire storage space
to build the file system. The check-point is typically updated
every 30 seconds or when an explicit sync command is issued.
Once all the free space is exhausted, LFS performs garbage col-
lection to reclaim free space.

Even though the overall architecture of LFS is well suited to
the physical natures of NAND flash, the plain combination of LFS
and FTL works inefficiently. Using the write request sequence
used in Fig. 2, we show the problems that arise with such a sim-
ple combination in Fig. 3. We assume that the segment size is
twice the flash block size, and the file-system page size is the
same as the flash page size.

Using a logical-to-physical mapping table, FTL writes the
incoming data to free space in a similar way that LFS does,

overcoming the limitation of NAND flash to perform in-place
updates. In Fig. 3a, the check-point CP is initially written and
then is updated twice after the pieces of the inode map, IM#1 and
IM#2, are written. Since the check-point is updated in the fixed
location with the same logical address, FTL writes the new check-
point to the free space of NAND flash while invalidating the pre-
vious version. In LFS with FTL, both FTL and LFS perform gar-
bage collection with their own policies. Suppose that FTL is the
first one to trigger garbage collection. In Fig. 3b, the blocks 0

and 2 are chosen as a victim and four valid pages for the file A

and IM#1 are copied to free blocks. The victim blocks are then
erased. LFS must trigger garbage collection whenever the file sys-
tem runs out of space. In Fig. 3c, the files A and C are copied to
the free space of a file system, and IM#1 is updated to IM#3 to
indicate the new locations of A and C. LFS finally informs the stor-
age device that the victim segment has become garbage by issuing
a TRIM command. Notice that the movement of the pages for A

and IM#1 by the FTL garbage collection turns out to be useless.
Useless page copies do not occur in traditional file systems like

EXT4 and NTFS. However, such systems cause an inordinate
amount of in-place updates which, in turn, triggers much more
garbage collection at the flash device level. This is confirmed by
our empirical results in Section 3 where for four out of five bench-
marks REDO outperforms other systems.

2.2 Refactored File System

To solve the problem of the duplicate storage management, RFS is
designed differently from the conventional LFS in two ways; it
only issues out-place update commands and informs a storage
device about which blocks have become erasable via TRIM com-
mands. This frees the flash controller from the task of garbage col-
lection all together. The question of unnecessary copies in the flash
storage never arises in REDO.

A logical segment in RFS corresponds directly to a “physical
segment”, which is the group of flash blocks. This eliminates the
need of logical-to-physical page-map table, enabling us to access
NAND flash directly. In the next section, we will see that RSD
maintains a segment-map table that maps segment addresses sup-
plied by RFS to real physical segments. This remapping requires

Fig. 2. An example of how LFS handles write requests. Five files are written to free
space along with their inodes in the following order: A, B, C, B, D, and E. The file
B is written twice. The pieces of the inode map, IM#1 and IM#2, which point to
the locations of inodes, are written together. The check-point CP is overwritten in
the fixed location of the segment 0 which is reserved for the check-point.

Fig. 1. A comparison between FTL-based storage and REDO.

Fig. 3. An example of how LFS and FTL manage NAND flash. The file A and IM#1 are copied unnecessarily.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015 71

much smaller tables and is for bad-block management and wear-
leveling only.

Fig. 4 shows how RFS manages NAND flash when the write
requests shown in Fig. 2 are issued. As depicted in Fig. 4 a, RFS
writes file data, inodes, and the pieces of the inode map in an out-
place update manner. Unlike LFS, the incoming data are written to
a physical segment corresponding to a logical segment, and their
relative offsets in the logical segment are preserved in the physical
one. For check-pointing, RFS reserves two fixed logical segments,
called check-point segments. In Fig. 4, the logical segments 0

and 1 are check-point segments (the segment 1 is not shown).
RFS then appends new check-points with different version num-
bers, so that the overwrites never happen. RFS manages all the
obsolete data at the level of a file system and triggers garbage col-
lection when free space is exhausted. In Fig. 4b, RFS chooses the
logical segment 2 as a victim and copies live data to free space.
The victim segment becomes free for future use. To inform that the
physical segment for the victim has obsolete data, RFS delivers a
TRIM command to RSD. Finally, RSD marks the physical segment
out-of-date and erases flash blocks.

At mount time, RFS finds a check-point with the latest version
number by scanning two check-point segments and then uses it to
build a file system. Considering that the segment size is several
megabytes, the time taken to find the latest check-point is negligi-
ble. If the free space in two segments is exhausted, RFS reclaims a
free segment by garbage collection. The garbage collection for
check-point segments is simple. The latest version of a check-point
is always stored in one of two check-point segments. If one seg-
ment has the latest check-point, the other segment has only the old
versions. RFS frees this old segment and issues a TRIM command
to inform the storage device that the corresponding physical seg-
ment has obsolete data. Then, RFS reuses the freed logical segment
to write new check-points. Even if RFS uses two logical segments
repeatedly, it does not imply a rapid wear-out of those segments
because the storage device manages the wear-leveling.

Note that RFS does not change the existing storage space man-
agement and garbage collection modules of LFS. It merely modifies
the check-point management module to avoid in-place updates.
This simplicity enables RFS to be easily adapted to other LFSs. The
crash recovery of RFS is also not changed greatly; in fact, the recov-
ery process is exactly the same as that of LFS except for finding the
latest check-point.

2.3 Refactored Storage Device

The direct storage management of RFS greatly simplifies the archi-
tecture of RSD, lowering the cost of building a storage device close
to that of SSDs with simple block-level FTL. The flash blocks
belonging to a physical segment are mapped to different channels
and ways that can be operated in parallel. File-system pages and
flash pages in the logical and physical segments are statically
mapped to maximize device-level parallelism. Fig. 5 shows an
example of how a logical segment is mapped to a physical segment
when there are four channels and one way. The number of file-
system pages per logical segment is assumed to be 16. RFS trans-
fers the bulk of data to RSD in the ascending order of their logical
addresses after buffering them in DRAM. Thus, this simple static
mapping can maximally exploit device-level I/O parallelism.

The handling of write requests in RSD is depicted in Fig. 6. RSD
maintains the segment-map table, and each entry of the table
points to physical blocks that are mapped to a logical segment.
When write requests come, RSD calculates a logical segment num-
ber (i.e., 100) using the logical file-system page number (i.e., 1,600).
Then, it looks up the remapping table to find the physical blocks
mapped to the logical segment. If physical blocks are not mapped
yet, RSD builds the physical segment by allocating new flash
blocks. RSD picks up free blocks with the smallest P/E cycles in
the corresponding channel/way. A bad block is ignored. If there
are flash blocks already mapped, RSD writes the data to the fixed
location in the physical segment as depicted in Fig. 5. Block erasure
commands are not explicitly issued from RFS. But, RSD easily fig-
ures out which blocks are out-of-date and are ready for erasure
because RFS informs RSD of physical segments only with obsolete
data via a TRIM command. RSD handles overwrites like block-
level FTL. This is inefficient, but since RFS only issues out-place
updates, it works efficiently with RFS.

RSD has a simple architecture compared with other flash devi-
ces. Thus, we expect that existing flash devices can be easily modi-
fied to support RSD. It is also worth noting the differences between
REDO and nameless write [15]. The nameless write removes dupli-
cate storage management by moving file-system functions to a stor-
age device. This makes a storage device more complicated, and,
furthermore, requires many custom I/O interfaces for the interac-
tions between the host and the device. REDO not only reduces

Fig. 5. Logical and physical segment mapping. Fig. 6. Handling of write requests in RSD.

Fig. 4. An example of how RFS in REDO manages NAND flash.

72 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015

complexity of a flash controller, but also does not require any cus-
tom interfaces.

3 EXPERIMENTS

We implemented RFS in F2FS [3]. RSD was implemented in an SSD
emulator, called FlashBench [11], which emulated the array of
NAND flash using host DRAM. FlashBench also ran several firm-
ware algorithms, including address mapping and garbage collec-
tion. FlashBench was organized with two channels and two ways.
A flash block consisted of 4 KB 128 pages. The total SSD capacity
was 512 MB.

We compared REDO with F2FS running on top of two dif-
ferent FTL designs: block-level and page-level FTLs, which are
denoted by F2FS+BFTL and F2FS+PFTL. RFS in REDO was
based on F2FS, so RFS used the exactly same module as F2FS
for address management and garbage collection. To eliminate
in-place updates, we modified the check-point module of F2FS.
Since F2FS allowed in-place updates to the inode map, we
modified F2FS so that it wrote the inode map in an out-place-
update manner. For page-level FTL, a greedy policy was used
[7]. We also compared REDO with EXT4 running with page-
level FTL, which is denoted by EXT4+PFTL.

For our evaluation, we used five benchmarks: POSTMARK [2],
BONNIE++ [8], TIOBENCH [5], SYSBENCH [1], and IOZONE [13], and set
parameter values so that the maximum file size created did not
exceed the storage capacity. The benchmarks were configured to
generate sufficient I/Os for meaningful evaluation. For other
parameters, default values were used.

Fig. 7 shows the impact of the elimination of useless copies on
the reduction of I/O operations. Since useless page copies do not
occur in EXT4+PFTL, we compare REDO with F2FS+BFTL and
F2FS+PFTL. On average, REDO reduces the number of I/O opera-
tions by 61 and 19 percent over F2FS+BFTL and F2FS+PFTL. The

benefit of eliminating useless copies increases in proportion to gar-
bage collection overheads at the FTL. BONNIE++ exhibits high gar-
bage collection overheads, incurring lots of page copies. By
eliminating unnecessary copies, REDO reduces the number of I/O
operations by 51 percent over F2FS+PFTL. For IOZONE with low
garbage collection overheads, the number of I/O operations
decreases by 5 percent.

Fig. 8 shows the runtime of F2FS+BFTL, EXT4+PFTL, F2FS
+PFTL, and REDO. REDO reduces the runtime by 50.1, 40.1, and
9.2 percent over F2FS+BFTL, EXT4+PFTL, and F2FS+PFTL.
Except for F2FS+BFTL, for TIOBENCH, SYSBENCH, and IOZONE,
EXT4+PFTL shows the worst performance because of many
extra I/Os at the FTL level. In case of BONNIE++, EXT4+PFTL
works better than F2FS+PFTL because of higher garbage col-
lection overheads of F2FS+PFTL at the FTL. By removing use-
less copies, REDO reduces the runtime by 3 and 28 percent over
EXT4+PFTL and F2FS+PFTL. For POSTMARK, both F2FS+PFTL

and REDO perform worse than EXT4+PFTL. POSTMARK is a
small-file-oriented benchmark. F2FS does not efficiently handle
lots of small files, issuing 1.9� more I/O requests to the SSD
over EXT4+PFTL, which in turn increases the overall runtime
of F2FS+PFTL and REDO.

Table 1 shows that REDO reduces the number of block era-
sures by 36, 62, and 94 percent over F2FS+PFTL, EXT4+PFTL,
and F2FS+BFTL. This implies that REDO improves the SSD
lifetime by the same amount. Table 2 lists the mapping table
sizes. When the SSD capacity is 512 MB, the mapping table
sizes for F2FS+BFTL, EXT4+PFTL, F2FS+PFTL, and REDO are
4, 512, 512, and 4 KB, respectively. If the SSD capacity is 1
TB, the mapping table increases to 1 GB in EXT4+PFTL and
F2FS+PFTL. Even if only a small fraction of DRAM is
required (which is the same as F2FS+BFTL), REDO outper-
forms F2FS+PFTL and EXT4+PFTL.

In conclusion, our results showed that REDO eliminated the
tradeoff between performance and cost in designing SSDs, realiz-
ing a high-performance and low-cost storage solution.

4 CONCLUSION

We presented a new I/O architecture, called REDO, for flash-based
SSDs. Experimental results showed that refactoring the file system
and the storage device software was very effective—reducing the
number of I/O operations by 19 percent while improving the stor-
age performance and lifetime by 9 and 36 percent, respectively,
and simultaneously lowering the amount of DRAM by 1

128 over
page-level FTL with F2FS.

ACKNOWLEDGMENTS

This research was supported by the National Research Founda-
tion (NRF) of Korea (NRF-2013R1A6A3A03063762, NRF-
2013R1A2A2A01068260, No. 2010-0020724). At MIT, CSAIL
Samsung Electronics (#692509) supported this work.

Fig. 7. Reduction in I/O operations.

TABLE 1
The Number of Block Erasure Operations

Fig. 8. Runtime (second).

TABLE 2
The Size of a Mapping Table

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015 73

REFERENCES

[1] A. Kopytov, “SysBench: A system performance benchmark,” http://
sysbench.sourceforge.net/, 2004.

[2] J. Katcher, “PostMark: A new filesystem benchmark,” NetApp, Inc., Sunny-
vale, CA, USA, Tech. Rep. TR3022, 1997.

[3] J. Kim, “F2FS: Introduce flash-friendly file system,” [Online]. Available:
http://lwn.net/Articles/518718/, 2012.

[4] M. Jung, E.-H. Wilson, W. Choi, J. Shalf, H.-M. Aktulga, C. Yang, E. Saule,
U.-V. Catalyurek, and M. Kandemir, “Exploring the future of out-of-core
computing with compute-local non-volatile memory,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2013, pp. pp. 75:1–75:11.

[5] M. Kuoppala, “Tiobench: Threaded I/O Bench for Linux,” [Online]. Avail-
able: http://sourceforge.net/projects/tiobench/, 2002.

[6] M. Rosenblum and J.-K. Ousterhout, “The Design and implementation
of a log-structured file system,” in Proc. 13th ACM Symp. Operating
Syst. Principles, 1991, pp. 1–15.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J.-D. Davis, M. Manasse, and R.
Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf., 2008, pp. 57–70.

[8] R. Coker, “The Bonnie++ benchmark,” [Online]. Available: http://www.
coker.com.au/bonnie++/, 2001.

[9] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai, “The
Linux implementation of a log-structured file system,“ ACM SIGOPS Oper.
Syst. Rev., vol. 40, no. 3, 2006.

[10] Samsung Corp., “Samsung SSD 840 EVO data sheet, Rev. 1.1,” [Online].
Available: http://samsung.also.ch/fileadmin/Dateien/pdf/Samsung_SS-
D_840_EVO_mSATA_ Data_Sheet_Rev_1.0.pdf, 2013.

[11] S. Lee, J. Park, and J. Kim, “FlashBench: A workbench for a rapid develop-
ment of flash-based storage devices,” in Proc. Int. Symp. Rapid Syst. Proto-
typing, 2012, pp.163–169.

[12] W.-K. Josephson, L.-A. Bongo, K. Li, and D. Flynn, “DFS: A file system for
virtualized flash storage,” in Proc. USENIX Conf. File Storage Technol., 2010,
pp. 85–100.

[13] D. Capps and W. Norcott, “Iozone filesystem benchmark,” [Online]. Avail-
able: http://www.iozone.org/, 2003.

[14] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D.-K. Panda, “Beyond
block I/O: Rethinking traditional storage primitives,” in Proc. Int. Symp.
High Perform. Comput. Archit., 2011, pp. 301–311.

[15] Y. Zhang, L.-P. Arulraj, A.-C. Arpaci-Dusseau, R.-H. Arpaci-Dusseau,
“De-indirection for flash-based SSDs with nameless writes,” in Proc. USE-
NIX Conf. File Storage Technol., 2012, pp. 1–16.

74 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

